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Background: The mining industry is known worldwide for its highly risky and hazardous working
environment. Technological advancement in ore extraction techniques for proliferation of production
levels has caused further concern for safety in this industry. Research so far in the area of safety has
revealed that the majority of incidents in hazardous industry take place because of human error, the
control of which would enhance safety levels in working sites to a considerable extent.
Methods: The present work focuses upon the analysis of human factors such as unsafe acts, pre-
conditions for unsafe acts, unsafe leadership, and organizational influences. A modified human factor
analysis and classification system (HFACS) was adopted and an accident predictive fuzzy reasoning
approach (FRA)-based system was developed to predict the likelihood of accidents for manganese mines
in India, using analysis of factors such as age, experience of worker, shift of work, etc.
Results: The outcome of the analysis indicated that skill-based errors are most critical and require im-
mediate attention for mitigation. The FRA-based accident prediction system developed gives an outcome
as an indicative risk score associated with the identified accident-prone situation, based upon which a
suitable plan for mitigation can be developed.
Conclusion: Unsafe acts of the worker are the most critical human factors identified to be controlled on
priority basis. A significant association of factors (namely age, experience of the worker, and shift of
work) with unsafe acts performed by the operator is identified based upon which the FRA-based accident
prediction model is proposed.

© 2017 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

considering accident data for quarries, open-cut coal mines, un-
derground coal mines, open-cut metal mines, and underground

The mining industry exists with the well-recognized fact of
having the most arduous working environment, in which the safety
and health of the worker are always a prime concern. Mining safety
has always drawn the attention of researchers working in the field
of health and safety. The metal and mining industry of India has
recorded a strong expansion in the recent past, with the expecta-
tion that India is to become the second-largest steel producer from
2015. Production volumes have also grown steadily during the
period 2007—2015 [1-8]. Therefore, sudden enhancement in pro-
duction levels of manganese has generated an increase in concern
regarding safety scenario of these mines. Nevertheless, adverse
working conditions and technological advancements cannot solely
be blamed for incidents taking place at the working sites. Patterson
and Shappell [9] conducted a study in Queensland, Australia,

metal mines and revealed that irrespective of the mine type, the
major cause of incidents between 2004 and 2008 was skill-based
errors performed by the operators, indicating the need to analyze
mining accidents from a human-factor perspective in the Indian
environment also. The accident analysis in the present work is
performed using the modified human factors analysis and classifi-
cation system (HFACS) framework. HFACS is an adaptation of Rea-
son’s swiss cheese model of accident causation. The HFACS is a
general human error framework, originally developed and tested
within the United States military as a tool for investigating and
analyzing the human causes of aviation accidents [10]. One of the
major lacuna in the model developed by Reason is a less systematic
categorization of the errors. HFACS addresses a more systematic
and detailed classification of human errors at four levels and many
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Fig.1. Modified human factors analysis and classification system framework. DGMS, Directorate General of Mining Safety; FRA, fuzzy reasoning approach; HFACS, human factors

analysis and classification system.

sublevels, as shown in Fig. 1 below. The original model developed
by Wiegmann and Shappell [11] in 2003 includes 19 causal cate-
gories of errors, but the framework modified by Patterson and
Shappell [9] for the Australian mining industry includes 21 causal
categories, including outside factors triggering unsafe conse-
quences. This framework is an investigation model which enables
the identification of human factors involved in any occurring/
recurring unfavorable incident. It is believed that faulty manage-
ment, work practices, and traits of the workers can be effectively
controlled with an efficient safety management system. This can
ultimately contribute towards a considerable reduction in in-
cidents/accidents and aid in the development of a safe working
environment. A total of 88% of incidents take place because of hu-
man error, 10% because of operating machine-related issues, and 2%
because of an act of God [12]. HFACS was primarily adopted for the
aviation industry [10,11,13—21], but the importance of the frame-
work was realized and gradually adopted in other fields, such as in

the analysis of marine accidents to identify the contribution of
human error towards any marine mishap [22,23], in the medical
industry to identify the common human mistakes made during any
surgical process [24], etc. Application of this framework is not
specifically for the area of manganese metal mines, although a
similar kind of framework was developed for the coal and metal
mining industry in Australia [9]. In 2011 another research was
carried out, utilizing the accident data related to underground and
surface operations in mining in Australia, to understand the human
factors involved in the accidents and to highlight the impact of ill
decision, policies/regulations, and leadership lacunas in the orga-
nization that eventually develops accident scenarios [25]. Because
the first research [9] was conducted with the same database, the
primary focus was upon Levels I and Il of HFACS, meaning the fac-
tors related to the sharp end in the industry; later the focus was
shifted to Levels IIl and IV [25], issues related to leadership prac-
tices, organizational factors, outside factors, etc. A fuzzy-based
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model can be used to resolve issues related to data uncertainty,
vagueness, and impreciseness [26—29]. Application of the fuzzy-
based approach in the area of risk and safety has gained signifi-
cant importance in recent years because the data related to safety
and accidents is highly uncertain and vague in nature. Analysis of
such data and obtaining a robust and reliable outcome for critical
issues such as safety has always been a challenge, which has
evidently been resolved in the number of cases adopting this
approach [30—32]. Baker et al [33] proposed fuzzy analytic hierar-
chy process (FAHP) approach for the assessment of risk level in the
Waterloo rail depot. The criteria considered for evaluation of risk
level using a fuzzy approach are “consequence” and “exposure
frequency of occurrence”. Grassi et al [34] applied a fuzzy technique
for order of preference by similarity to the ideal solution (FTOPSIS)
for risk evaluation in the Italian sausage-making industry. Gurcanli
and Mungen [35] adopted fuzzy logic in a tunneling construction
site for assessment of risk. Wang et al [36] proposed a fuzzy failure
mode and effects analysis approach for risk assessment, the
outcome of which is a fuzzy risk priority number computed based
upon criteria such as occurrence, severity, and detection. Zhou [37]
proposed a hybrid model of set pair analysis and fuzzy logic theory
for real-time risk assessment for storing flammable gas. As an
outcome, deviations from the safety levels related to hazard factors
such as gas leakage, pressure of gas, etc., can be timely assessed and
accidents can be predicted and prevented. Liu and Tsai [38] pro-
posed a fuzzy risk assessment model for the construction industry.
The proposed model is a hybrid model with quality function
deployment (QFD), fuzzy analytic network process (FANP) (for
prioritization of hazards), and failure mode effects analysis. Risk
assessment in uncertain environments using triangular fuzzy
numbers gives better and more reliable results, as the uncertainty
and vagueness of the data can be managed with a fuzzy approach
[39]. Beriha et al [40] proposed a fuzzy-based generalized risk
assessment model that can be adopted irrespective of industry type.
Input parameters considered in this model are the expenses
involved in healthcare, safety training, upgrading process-related
tools, and safety equipment and tools. Output parameters are ac-
cidents that do not cause any disability and do not involve any lost
work days, accidents that caused lost work days, etc. Zheng et al
[41] proposed an FAHP risk assessment model for assessment of risk
in the industries where the environment is hot and humid. Factors
considered for assessment of risk were working, worker, and
environment, with 10 subfactors to evaluate the level of risk
adopting the trapezoidal FAHP technique, and as an outcome the
safety index is evaluated. Risk and safety are also assessed using this
approach specifically in the mining industry and the outcome ob-
tained is considerable in deducing significant conclusions related to
safety levels in mines. Mahdevari et al [42] evaluated health and
safety levels in underground coal mines in Kerman, Iran, using a
fuzzy technique for order of preference by similarity to ideal solu-
tion. Altogether 86 hazards with eight hazard categories were
identified. Hazard categories identified were geo-mechanical, geo-
chemical, electrical, mechanical, chemical, environmental, personal
and social, and cultural and managerial risks. Verma and Chaudhri
[43] proposed a fuzzy-based risk assessment approach in which the
combined output of fuzzy reasoning approach (FRA) and FAHP is
considered to evaluate the level of risk associated with hazard
factors. Criteria for risk evaluation identified are consequence of
severity, level of exposure, and frequency of occurrence, and hazard
factors identified are ground movement, winding in shaft, trans-
portation by machinery, machinery other than transportation, ex-
plosives, electricity, and dust/gas. Verma et al [44] proposed an
FRA-based risk assessment model for metal mines in India, for
cause-wise and place-wise identified hazard factors. Verma and
Chaudhri [45] proposed a fuzzy-based risk assessment model, the

outcome of which is a risk score for the assessment of worker safety.
Verma and Gupta [46] proposed a fuzzy-based risk assessment
approach, the outcome of which is validated by the outcome of the
conventional method of risk assessment (i.e. rapid ranking
method) adopted majorly in the Indian mining industry for broad
brush risk assessment. Rapid ranking method is not a robust tool for
assessment of risk as it is complex; calculations need to be started
from scratch so it is time consuming, continuous involvement of
experts with immense experience is required, and many more la-
cunas have been identified by the author. But the proposed
approach is found to be suitable for the case of the mining industry,
with robust applicability in other industries also. The existing
literature related to the application of fuzzy-based approaches is
highly indicative that adoption of the same for the proposed model
would be suitable. The present work focuses upon analysis of
mining accidents with the perspective of the involvement of human
factors as a precursor to mishaps using a modified HFACS frame-
work. Accidents are coded as per the following categories: unsafe
acts of operators, preconditions to unsafe act, unsafe leadership,
organizational factors, and outside factors, which are further clas-
sified into 21 categories for detailed assessments. Subsequently an
accident prediction fuzzy-based model is proposed to predict the
possibility of the occurrence of mishaps based upon the age of the
worker, experience of the worker, and shift timings in which the
worker will be working. The research emphasizes human-based
factors leading to accidents; therefore, this indicates the need to
understand the chance of mishap based upon factors such as age,
experience of worker, etc., considering the possibility that these are
underlying reasons causing error-making behavior of an operator.

2. Materials and methods
2.1. Data

The accident data reports, summary sheets, and narratives
referred for analysis were gathered from one of the major manga-
nese ore extraction central government undertaking companies
with four mining sites in Maharashtra and six mining sites in
Madhya Pradesh in India. Accident data spanning from 1985 to
2015 was referred for analysis with a total of 119 case histories.
Among these, 17 cases were found to be partially documented and
were discarded; the remaining 102 cases were finally considered.
For accidents leading to fatalities the reports were retrieved from
the Directorate General of Mining Safety, because such reports were
submitted to the central body in consideration of the severity of the
outcome. The forms and reports referred were in standard format
and uniform, as required by the Directorate General of Mining
Safety. The data combined both underground and open-cast mines.

2.2. Coding process

One human factors specialist along with three seasoned experts
with nearly 40 years of experience in the industry, analyzed, coded
the cases, and categorized human factors. Because there was one
rater the consensus classification was deemed appropriate for the
analysis and the concern regarding interrater reliability was insig-
nificant. Incidences were analyzed for each category of the HFACS
framework for coding.

3. Outcome of HFACS analysis

Table 1 describes the details of causal factors. The frequency of
the cases may add up to more than 100% because one incident
might be associated with more than one causal category. As ex-
pected, the maximum contribution to the unsafe incident
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Table 1
Frequency of cases associated with causal code categories

Table 2
Unsafe acts (category of working)

HFACS category Frequency n (102) (%)
Outside factors
Regulatory influences 0 0
Other influences 0 0
Organizational influences
Organizational climate 4 39
Organizational process 6 5.8
Resource management 4 3.9
Unsafe leadership
Inadequate supervision 23 22,5
Planned inappropriate operations 8 7.8
Failed to correct known problems 3 29
Supervisory violations 2 1.9
Preconditions for unsafe acts
Environmental conditions
Technical environment 38 37.2
Physical environment 22 21.56

Conditions of the operator
Adverse mental state 4 3.9
Adverse physiological state 4 3.9
Physical/mental limitations 2 1.9

Personnel factors

Coordination and communication 18 17.6
Fitness for duty 10 9.8
Unsafe acts of the operator
Routine disruption errors 66 64.7
Decision errors 52 50.9
Perceptual errors 4 39
Violations 6 5.8

HFACS, human factors analysis and classification system.

witnessed is due to unsafe acts of operator, followed by pre-
conditions for the unsafe act and, accordingly, unsafe leadership
and finally organizational influences. As far as outside factors are
concerned, no case has been identified as being caused by outside
factors, but this could be due to insufficiency in data compilation
since it cannot be concluded that outside factors did not influence
the safety conditions of the mining sites.

3.1. Unsafe acts of operators

This category is one of the major contributors in mishaps: there
were 66 cases of routine disruption errors, 52 cases of decision
errors, four cases of perceptual errors, and six cases of violations.
Each of the subcategories of unsafe acts is further categorized for a
comprehensive and systematic classification: (1) attention failure,
postural errors, electrical errors, etc., included under skill-based
errors; (2) information processing, risk assessment, and situa-
tional assessment is included under decision errors; (3) violation of
usage of personal protective equipment and procedural violation is
included under violation nanocodes; and (4) misjudgement, visual,
and auditory errors were included under perceptual error nanoc-
odes. The most prevailing act of the operator identified in this study
is attention failure (23.53%), followed by procedural (decision) er-
rors (14.71%), technique errors (12.75%), situational assessment
(10.78%), and risk assessment (9.8%). The outcome of the HFACS
analysis showed that unsafe operator acts were of maximum
importance, therefore these were studied in detail in order to un-
derstand whether unsafe acts performed by the operator are
influenced by factors such as age, experience, time of shift, place
where operator is working, and category of work assigned to the
operator. The results for the same are given in Tables 2—6 below. It
is noted that in the underground mining category, 35 out of 66
incidents were found to occur because of skill-based errors; in the
same category 13 out of 52 incidents occurred because of decision
errors; two out of four incidents were due to perceptual errors, and

Category of working Skill-based Decision Perceptual Violations (n)

errors (n) errors (n) errors (n)
Underground mining 35 13 2 2
Underground filling 4 8 0 1
Open-cast mining 2 6 0 1
Open-cast transportation 3 4 0 1
Open-cast 13 11 1 0
mechanical/electrical
Ore cleaning floor 0 0 0 0
Surface working 0 0 0 0
Worker others (field man) 9 10 1 1

one out of six incidents occurred due to violations performed by the
operator. The other tables can be interpreted in a similar way. The
detailed analysis shows that skill-based errors are top priority,
followed by decision errors, leaving a dominant impact upon all the
factors considered below. Skill-based errors and decision errors are
the top priority in all categories, similarly in all shift timing, age,
and experience categories, the most common unsafe act performed
leading to any incident is skill-based errors and decision error.

Further, an attempt has been made to understand if there is any
significant association between two top priority unsafe acts, with
the factors discussed below, because perceptions and violations did
not show a considerable contribution towards mishaps.

To develop a fuzzy-based predictive system for accidents, the
preliminary step is to identify input variables. These variables are
identified based upon the outcome of the significance testing per-
formed to identify the significant association between the factors of
age, experience, shift, category of working, place of work, and un-
safe act performed by the worker. The predictive model can analyze
the factors most associated with unsafe acts and a robust outcome
related to risk level can be obtained and considered for the devel-
opment of intervention strategies. The association between “cate-
gory of working” and “unsafe acts performed by the operator” is
found to be insignificant [Prs = 0.027 (Prest < Py) ns]. Followed
by testing for significant association between “shift of working”
and “unsafe acts performed by the operator”, the outcome is
significant (A2, = 7.815 and A%, = 1.306, Prest > Pq, i,
P, = 0.727). Thereafter, other factors such as place of work, age of
worker, and experience of worker are tested to identify the
existence of a significant association with unsafe acts. The
outcomes obtained are: “place of work” is insignificantly
associated with unsafe acts of worker (Prest < 0.001, i.e., Prest < Py);
“age of the worker” is found to be significantly associated

with unsafe acts performed by the operator
(X2 i = 5-991, A2, = 0.241, and Py = 0.886 > Py), lastly

“experience of the worker” is found to be significantly

associated unsafe acts performed by the operator
(X2 il = 9488, A2, 1 =4.776, and Pres; = 0.311 > P,).  Because

unsafe acts of the operator is found to have a significant
association with shift of working, age of worker, experience of
worker, the FRA-based accident prediction model is developed
considering these as input factors.

Table 3
Unsafe acts (shift of working)

Shift of working Skill-based Decision Perceptual Violations (1)
errors (1) errors (n) errors (n)

General 22 16 2 2

I shift 28 19 2 4

11 shift 11 13 0 0

111 shift 5 4 0 0
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Table 4 Table 6

Unsafe acts (place of accidents) Unsafe acts (experience of worker)
Place of accidents Skill-based Decision Perceptual Violations (1) Experience of Skill-based Decision Perceptual Violations (n)

errors (n) errors (n) errors (n) worker errors (1) errors (n) errors (1)

Stopping area 32 23 0 2 1 mo—1y 7 13 0 3
Tramming road 3 13 0 0 1-5y 14 11 1 0
Benches 2 0 0 2 6-10y 17 11 2 3
Ore cleaning floor 4 12 0 0 11-20y 19 9 1 0
Other transportation road 21 0 4 0 >20y 9 8 0 0
Workshop 0 2 0 0
Stores 0 0 0
Above ground 3 2 0 5 are done prior to the worker joining, which they have to clear

3.2. Preconditions for unsafe acts

Preconditions for unsafe acts is further classified into environ-
mental (physical and technical environment), operator’s condition,
and personnel factors. The mining industry is known for its dy-
namic and difficult environmental conditions. Issues concerned
with illumination, ventilation, etc., have been a hurdle in main-
taining safety at the worksite. Technical environmental factors
were found to be responsible in 38 cases. Condition and mainte-
nance of tool and operations related to tools and equipment
(36.85%) were identified as being mostly responsible for mishaps;
standard operating procedures (SOPs) and risk assessment were
lower (10.5%) because the mines are semimechanized, so issues
related to noncompliance or violating SOPs are very low and most
risks associated with faulty machines are quickly assessed and
handled cautiously. Under physical environment, weather is also an
important factor, but it has not contributed to a great extent in
leading mishaps. The rainy season is the most concerning envi-
ronmental condition for the mining industry and specifically for
open-cast mines. During this season, the mining site is drowned
which obstructs work. Interaction of such hazardous site conditions
and workers is limited, which helps to prohibit accidents; pumps
are used to remove water from the site until the sites are accessible
for working.

The physical environment was found to be responsible in 22
cases. Surface/road conditions (27.27%) followed by visibility
(18.18%) was found to be dominant. The contribution of ergonomics
was identified as being insignificant because the mines are semi-
mechanized, so uncomfortable, unsuitable man—machine interac-
tion or faulty workplace design is not noticed.

Condition of the operator was found to be responsible in 10
cases. Still, it is a very important factor to be considered because an
operator with poor mental health will definitely underperform the
task, which might lead to unsafe consequences and also poor
productivity. Physical/mental limitations and adverse physiological
state (40.02%) was noticed to be the priority as a causal factor for
accidents under this category. Under the category of physical/
mental limitations, learning ability limitations were found to be
responsible to a greater extent, followed by condition-based res-
piratory issues; the rest of the factors were not considerably
noticed, because height, weight, hearing capability, and vision tests

Table 5
Unsafe acts (age of worker)
Age of worker (y) Skill-based Decision Perceptual Violations (n)
errors (n) errors (n) errors (n)
18—-32 15 13 2 0
33-47 36 26 1 3
48—-60 15 13 1 3

mandatorily. If the worker eventually develops any limitation
during his work then he is assigned light duty, for example, medical
attendant on site, peon in office, store, etc.

With analysis, personnel factor was found to be responsible in
28 cases. It was found that the contribution of communication and
coordination (64.29%) is of topmost priority, followed by fitness for
duty (35.70%).

3.3. Unsafe leadership

The role of the leader is to provide adequate training and
guidance to the team members to perform any task/operation
efficiently and safely. In the absence of adequate leadership or
leadership violations etc., unwanted consequences can come into
existence. This category is further subdivided into inadequate
leadership (22.55%) which was a major causal factor in incidents,
followed by planned inappropriate operations (7.84%), failure to
correct known problems (8.21%), and leadership violations (5.38%).
As expected, leadership violations were the lowest. Under the
category of inadequate leadership, training-related issues showed a
major contribution (39.13%). At times it happens that less than
adequate training is given to the worker to perform the task; there
are a variety of mandatory trainings in order to work on a mining
site, such as when there is a change in SOP, refresher training, etc.
Alternatively, if the worker does not have competency to learn this
can also create problems related to an unsafe working environ-
ment. Safety oversight (30.4%) had the second highest contribution
in mishaps. The analysis showed that safety regulatory re-
quirements were still not set, yet the operator was permitted to
continue working which led to mishap. The timber that is used to
provide roof support in underground mines has a certain specifi-
cation which has to be followed, the material winding in any sit-
uation should not be used for movement of man and material
together, no matter how heavy cap-lamp batteries are, it has to be
carried in underground. If any kind of deviation is noticed in
following such practices, an efficient leader should take immediate
action to avoid any mishap. In some of the cases this was missing,
leading to issues related to safety oversight.

It was noticed that in emergency circumstances, certain de-
cisions were taken which are unconventional during normal situ-
ations/operations. The execution of such decisions with poor plan
formulation will never result in the intended manner, which was
also found in the analysis. Major causal factors under planned
inappropriate operation were improper task or work plan (50.28%),
followed by the work assignment (25.14%) nanocode. If a blaster is
not available and there is an emergency, a worker who has not done
blasting before cannot be assigned with the task of blasting, or a
driver who has never operated or driven heavy earth moving ma-
chinery before, but has been driving jeeps/ambulances on site
should not be allowed to drive loaders, dumpers, or tippers under
emergency conditions. Anyone who is in job rotation and has
handled such machinery can be assigned tasks during an emer-
gency situation to avoid accidents. If an improper work assignment
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is made then that might lead to unfavorable events. Leadership
violation was found to be negligibly responsible. Another inference
can be drawn from this: leadership violation might have been
responsible, but not documented or reported to overcome the
drastic after effects upon the employment of the personnel
responsible or vigilance inquiry issues.

3.4. Organizational influences

In a total of 14 cases, organizational factors were found to be
responsible. Organizational process (42.64%) was identified as the
dominant factor. Irregular reporting was found to create issues in
the cases analyzed. Time pressure and shortage of staff were other
important identified causal factors. As far as outside factors are
concerned, these were not identified when analyzing cases. One of
the reasons could be that documentation provided for analysis did
not describe any outside factor responsible in mishaps.

4. Fuzzy reasoning approach

As discussed in previous sections, if any significant association
exists between factors such as age of the worker, place of work, shift,
or experience, then an FRA model can predict the level of risk
associated with the given situation (combination of above-
mentioned factors, for example prediction of risk level if “a worker
of age 27 years, with 1 year of experience, working in the third shift
i.e., night shift underground”). So that once the risk level can be
predicted for a given situation and if a considerable risk level is re-
flected than changes such as in time, place, or nature of work can be
made, the level of risk can be rechecked, and finally the allocation of
work can be made. This can enhance preparedness against unsafe
consequences and a safe working environment can be developed
and maintained in the future. The outcome of the significance
testing indicated a significant association between unsafe acts of the
worker with the age, shift, and experience of the worker. Consid-
ering the same, and with the help of three experts with 40 years of
experience in this field, a fuzzy rule base was prepared to develop in
the inference engine so that risk level can be assessed.

A fuzzy set can be defined as: A fuzzy subset A of a universe of
discourse U is characterized by a membership function u: U— (0,1)
which associates with each element u of U a number p (u) in the
interval (0, 1) which represents the grade of membership of u in A.
The fuzzy set A of U = ul, u2 ..... u, will be denoted:

n
A= A = ZF‘A () (1)

i=1

where = stands for the union [26].
A fuzzy number can be demonstrated with an example of the
triangular fuzzy number, given as;

i, (t‘a tm, t”a> (2)

and can be interpreted as [43]:

0, x<tla
¢l
th,—t
Haa(X) = ua : ()

ta—x m u

w5 [ as<Xx<t,

tua—tma

0, X >t

The proposed FRA model was developed using MATLAB R2009a,
Fuzzy Logic tool box. The FRA model is used where only a small

portion of the knowledge (information) for a typical problem might
be regarded as certain or deterministicc The FRA model was
developed with the following steps.

4.1. Fuzzy inputs

Fuzzy inputs need to be crisp numerical values limited to the
universe of discourse of the input variable. The degree to which the
input belong to appropriate fuzzy sets is decided through a mem-
bership function, which is one of the critical steps in deciding and
defining inputs. The output is a fuzzy degree of membership be-
tween 0 and 1.

4.2. Application of fuzzy operator

Once the inputs are fuzzified, the degree to which each part of
the antecedent is satisfied for each rule is identified. The output is
always a single truth value, but if there is more than one part in the
antecedent, the fuzzy operator is applied to get one number that
represents the result of antecedent, of that rule which is applied to
the output function.

4.3. Implication

To shape up the consequent implication method is applied.
Implication occurs for each rule, the number given by the ante-
cedent is the input for implication. Each rule has a weight which is
applied to the number given by the antecedent. Normally it takes 1
and it does not affect the implication process, this number may be
varied from time to time from 1 in order to weigh one rule relative
to another.

4.4. Aggregation

All the fuzzy sets representing the output of each rule are
combined to a single fuzzy set. Aggregation occurs once for each
output variable. The input for the aggregation process is the list of
truncated output functions returned by the implication process for
each rule. The output of the aggregation process is one fuzzy set for
each output variable.

4.5. Defuzzification

The input given to the fuzzy reasoning system is crisp, similarly
the output is also expected in crisp form. The defuzzification pro-
cess gives a crisp form of output. The aggregate output fuzzy set is
the input for this step and the output is crisp in nature.

5. Application of FRA model

For the present case the FRA model is of three inputs and one
output type (Fig. 2). The three inputs are, “age of the worker”,
“experience of the worker”, and “shift of work” and the output is
“risk level”. Firstly the input parameters need to be defined with
qualitative descriptors and membership functions. The yardsticks
developed defining qualitative descriptors are shown in detail in
Table 7.

Fuzzy inference is the actual process of mapping from a given
input to an output using fuzzy logic. Once the input is given to the
inference system, it is mapped with the rules fed into the system
and then as an outcome a defuzzified output is generated. In the
present case there are three input parameters, each having a
different number of qualitative descriptors based upon which the
number of rules is decided. Eighty-eight rules were developed in
the database, there should have been 100 (5 x 5 x 4) rules, based
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upon qualitative descriptors of input parameters, but few rules
were discarded based upon insignificant logic, such as a fresher
cannot be 57 years of age, a middle aged person cannot be a fresher,
or a very young worker cannot have 20 years of experience. Such
rules are not logically correct. With such screening the rule base
was developed and the system was tested.

6. Results and discussion

The present work demonstrates the causal factors in the genesis
of mining accidents using the HFACS framework. A total of 21 causal
categories were reviewed to assess incidents with the aim to
highlight the dominant participation of human error, including
latent conditions leading to unacceptable consequences such as a
mishap. The results are indicative, the “unsafe act” causal factor was
observed to be responsible in a maximum number of cases. When
this category was analyzed in detail with respect to factors such as
category of working, place of accident, age of worker, experience of
worker, and shift of work, skill-based errors were found to have a
dominant impact and age of worker, experience of worker, and shift
of work had a significant correlation with unsafe acts performed
leading to accidents; this was followed by decision errors at second
priority in all the cases discussed. Outside causal factors were not

found to contribute to accidents, but this does not signify that these
factors are dormant. It can be an outcome of partially preserved
data/insufficient records pertaining to regulations or any other in-
fluences. Based upon the findings of HFACS, the proposed model
has been found to work satisfactorily in identifying the level of risk
associated with the given situation considering the age, experience,
and shift of worker as input factors and the risk level associated
with the situation as output. The accident statistics given in pre-
vious section highlights the age group, the experience slab for
worker performing unsafe acts in certain time of work. These trend
inference from statistical data is being utilized to test the model and
predict the level of risk. To validate, the input given to the model is
fresher in the category of experience, very young in the category of
age and general shift (from 8:00 am to 4:00 pm) as the time of work,
then risk level obtained is 1.8 which is a low level (with reference to
the yardstick for risk level given above). The outcome obtained is as
expected. Thereafter the shift timing was changed to III (from
10:00 rm to 6:00 am) and risk level came out to be 5.4, i.e., possible.
This can be interpreted as follows: if this worker is to be assigned
work then because he is a fresher and very young, immediately
giving him a III shift should be avoided, as accident scenarios might
develop. Similarly, a reverse case is tested with this model, i.e., the
level of risk if the worker is middle aged with average experience of

’ Fuzzy inference engine ‘

\:

’ Fuzzy rule base ‘
(1) Fuzzification of
inputs

(2) Application of fuzzy
operator

(3

(4

(5

Implication
Aggregation
Defuzzification

- =

Output

Fresher
Experience of the £ Average experience
worker
\ Above average
experience
Maximum experience
/’ Very young ‘
’ Young ‘
Age of the /
worker i’ Middle-aged ‘
’ Aged ‘
’ Oldest ‘
’ General shift ‘
/’ | Shift ‘
Shift of work H’ Il Shift ‘
\] Il Shift |

Fig. 2. Fuzzy reasoning approach model for risk assessment.
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Table 7
Yardstick for input and output parameters

Experience of worker

Qualitative descriptor Description Parameter

Fresher 1mo—1y Trapmf [0 0 0.5 1.5]
Minimum 1-5y trimf [0.5 1.5 2.5]
Average 6-10y trimf [1.5 2.5 3.5]
Above average 11-20y trimf [2.5 3.5 4.5]
Maximum >20y trapmf [3.5 4.5 5 5]

Age of worker

Qualitative descriptor Description Parameter

Very young 18-27y trapmf [0 0 0.5 1.5]
Young 28-37y trimf [0.5,1.5,2.5]
Middle aged 38—47y trimf [1.5 2.5 3.5]
Aged 48—57y trimf [3.5 3.5 4.5]
Oldest >58y trapmf [3.5 4.5 5 5]

Shift of work

Qualitative descriptor Description Parameter
General 8:00 AM—4:00 pm trapmf [0 0 1 2]
I 6:00 AM—2:00 Pm trimf [1 2 3]
1l 2:00 pvM—1:00 pm trimf [2 3 4]
11 10:00 pM—6:00 Am trapmf [3 4 5 5]

Risk level

Qualitative descriptor

Description

Parameter

Low
Possible

Risk is acceptable
Risk is tolerable but

trapmf [0 0 3 4]
trapmf [3 4 6 7]

should be further
reduced if
cost-effective
to do so
Risk must be reduced
if it is reasonably
practicable to do so
High Risk must be reduced
to safe level unless in
exceptional circumstances

Substantial trapmf [6 7 9 10]

trapmf [9 10 12 12]

5—10 years and assigned to work in III shift, then the level of risk is
9.15 which is high, so the allocation of such workers to the III shift
should be avoided under the given circumstances. In such cases the
ideal combination of the worker having experience of between 1
year and 5 years and aged between 27 years and 37 years can be
allocated the III shift because the risk level from the FRA model is
4.7, i.e., low. Similarly, many such input combinations can be tested
and suitable allocations of the workers can be made to control
unsafe working environments. In this way accident-inducing situ-
ations can be predicted in advance and prevention can be taken
accordingly. Further, to control operator or worker error, the
following organizational recommendations can be made. (1) Pro-
vision for repeated training modules for workers. At the time of
employment initial vocational training along with refresher
training within a suitable span to upgrade the workers’ skill set
with changing technology, and finally with changes in job special
training should mandatorily be given to workers. (2) Effective su-
pervision of work to avoid cases of noncompliance to SOPs. (3) Use
of latest devices or personnel protective equipment with proper
demonstration/training for the usage to the workers. (4) Mecha-
nization of selected activities such as ore cleaning on ore cleaning
floor. (5) Deployment of advanced transportation machineries with
provision for rear view camera. (6) Automatic coordination of
movement of man and material winding instead of manual coor-
dination and communication. (Observation: the conventional
bellman system is presently followed). (7) Mechanization of
manual loading activity of ore. (8) Provision to maintain better

illumination and ventilation levels in underground workings. (9)
Safety week celebration to sensitize workers with the importance
of safety and develop safety in their minds. (10) Quality of materials
such as timber for support, explosives with appropriate shelf life,
shaft winding rope, etc., should be retained as per the standard
because it directly affects the safety levels in worksites. (11) The
human tracking machine should be used in underground mines.

7. Conclusion

The work presents a detailed analysis of mine accidents in un-
derground as well as open-cast manganese mines in India. The
HFACS framework was adopted to perform the analysis and sig-
nificant findings were obtained. Based upon the findings an FRA
model was proposed to assess the risk level for a given situation
and modify the same if found critical. The outcome of the research
work is highlighted as follows. (1) Unsafe acts of worker found to be
the most critical factor in the development of accident scenarios in
mining sites, with a maximum contribution of skill-based errors
performed by the workers. (2) Underground mining approach,
stopping area, I shift of work, worker within the age group of 33—47
years and with 6—10 years of working experience are most critical
for consideration in the development of intervention strategies. (3)
Faulty behavioral traits and organizational lacunas were indicated
as the outcome of HFACAS analysis and can be considered further to
develop mitigation plans and intervention strategies for the in-
dustry. (4) Age, experience of the worker, and shift of work have a
significant correlation with unsafe acts performed, ultimately
leading to accidents. (5) The FRA-based risk prediction model
proposed can be adopted by the safety analyst to predict the risk
associated with a given situation and perform task allocation
accordingly to prevent hazardous outcomes.

The present work demonstrates a noble approach to risk and
safety assessment. In recent past significant research performed in
the area of safety management has been found to be limited with
respect to scope because data-based, questionnaire, and interview-
based analysis of the data is not performed and the outcome
indicated is merely the trend for accidents or reasons behind the
mishap. But the present work is a step further in conventional
research performed in this area, where the outcome of microlevel
accident analysis has been utilized to develop an accident predic-
tion model to interpret the risk levels associated with a given sit-
uation and alter them accordingly. In future, the work can further
be extended for other minerals extracted for commercial purpose in
India and safety levels at sites can be improved.
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