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Abstract

In the current COVID19 crisis many national healthcare systems are confronted with an

acute shortage of tests for confirming SARS-CoV-2 infections. For low overall infection lev-

els in the population the pooling of samples can drastically amplify the testing capacity. Here

we present a formula to estimate the optimal group-size for pooling, the efficiency gain

(tested persons per test), and the expected upper bound of missed infections in pooled test-

ing, all as a function of the population-wide infection levels and the false negative/positive

rates of the currently used PCR tests. Assuming an infection level of 0.1% and a false nega-

tive rate of 2%, the optimal pool-size is about 34, and an efficiency gain of about 15 tested

persons per test is possible. For an infection level of 1% the optimal pool-size is 11, the effi-

ciency gain is 5.1 tested persons per test. For an infection level of 10% the optimal pool-size

reduces to about 4, the efficiency gain is about 1.7 tested persons per test. For infection lev-

els of 30% and higher there is no more benefit from pooling. To see to what extent replicates

of the pooled tests improve the estimate of the maximal number of missed infections, we

present results for 1 to 5 replicates.

Introduction

We briefly analyse how pooled testing increases the efficiency of testing for viral infections,

given that only a limited number of tests is available. The idea is to pool samples taken from

several subjects and test the combined sample with a single test. If the test is negative all sub-

jects are negative. If the test is positive all individuals are tested to find the infected ones. Pool-

ing in the context of COVID19 was recently suggested by Dina Berenbaum of the Technion

Israel Institute of Technology [1] and has been implemented at the Rambam Medical Center

and the Technion in Haifa, who have been inviting other hospitals to follow their example [2].

Initial tests there indicate that pooling works for the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2), using available essays. It was initially suggested that up to 32—maybe

over-optimistically even 64—people could be tested with a single test.

Pooled testing, also called group testing, was first introduced by Dorfman (1943) to screen

U.S. soldiers for syphilis [3], and has become a well studied field using a spectrum of
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techniques. Those methods have been widely applied in various fields, for example, in aspects

of DNA sequencing, including applications in clone library screening or protein-protein inter-

action detection [4]. They were also used in tasks of screening human populations and saving

potential screening costs. For example, HIV screening in the United Stated and in Thailand

[5]. Group testing techniques include linear, combinatorial, or adaptive methods. They have

been based on information theoretic considerations [6], or array based methodology [7, 8],

and can be used to address a number of mathematical problems concerning various risk char-

acteristics, partitioning problems, and the trade-off between the test accuracy and efficiency

[9–11]. In the context of the recent crisis potentially new approaches such as noisy group testing
algorithms [12] or double pooling tests [13] are being explored. A review of algorithms can be

found in [14].

While the observation [1, 2] that pooling appears to be a viability strategy for SARS-CoV-2,

a number of factors have been reported that may limit pool-sizes, so that they can be used in

PCR-based tests in a meaningful way. This includes issues concerning sample collection and

assay limitations [15–19], issues of sample dilution, and disease prevalence or incidence (the

expected fraction of positive individuals to be tested, i.e. the infection level), and assay type,

such as S-gene and/or E-gene based essays. The differential sensitivity and specificity between

individual tests and pooled tests of RNA RT-PCR testing protocols, available for SARS-CoV-2,

may also depend on, and therefore limit, pool-sizes that realistically can be used [20, 21]. For

positive test rates between 4 and 24%, for instance, positives in pool sizes up to 30 individuals

could be detected but cycle threshold values, i.e. the number of amplification cycles necessary

to reach detection threshold, may differ up to 5 amplification cycles, [21]. In particular, the

false-negative rate of pooled tests may depend on the pool-size and viral load of patients or

samples, while false positives seem to be essentially unaffected [22]. This suggests to use

smaller pool sizes than the suggested 32 or 64. Repeated testing (replicates) for controlling

false negative rates of pooled tests has been discussed, see, e.g. [23].

Here we contribute an estimation of the benefits of a simple, easy to implement, one-stage

pooling strategy. Our main goal is to compute the optimal group-size for pooled tests and their

dependence on the disease prevalence, i.e. the fraction of infected in the target population. We

provide a formula for the optimal group-size, i.e. the optimal number of persons pooled into a

single test, and study the dependence of this optimum on false positive and false negative rates

of the used PCR test. We demonstrate the optimal group-size dependence on the false negative

rate of pooled testing. We briefly remark on a subtlety when using replicate measurements in

group testing to control for the false negative rate of tests. We ask how the number of test repli-

cates affects the false negative rate of the pooled test. We conclude that the optimal group size,

in the considered single-stage pooling approach, should be smaller than the suggested 32-64,

for the currently (April 2020) suspected infection levels in general populations. Finally, we

comment that testing a pooled sample more than twice will essentially not further decrease the

expected maximal number of possibly missed positive cases.

Material and methods

Model

We assume that

• a fraction λ of infected people in a population,

• tests have a false positive rate of γ+ and a false negative rate of γ−. If not stated otherwise, we

assume that testing a pooled sample does not change the false positive and false negative
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rates of the test. We discuss the effect of group-size dependent false negative rates at the end

of the paper.

• We pool samples into groups of size, ω.

• To control false negatives we take r replicates of the pooled test. We then apply a majority

rule, meaning that if the majority of the r replicates are positive, the pooled sample is

declared positive. We will speak of a majority either, (m1) if the number of positive tests is

greater than the number of negative tests or, (m2) if the number of positive tests is at least as

large as the number of negative tests. The two versions of majority rule show a considerable

differences for even numbers of replicates. Although optimal group-size behaves very similar

for both majority rules, rule m2 turns out to be consistently superior to m1 in terms of false

negatives and therefore will be considered in detail in the discussion below.

• If the pooled sample is declared positive, each individual in the respective group is tested

separately.

Under these assumptions we compute

• the optimal group size, ωopt,

• the effective number of persons that can be tested with one test, PPT (persons per test),

• an estimate for the upper bound for the fraction of infected individuals that are missed by

the pooled testing procedure (applied to the population). We call it the pooled testing risk fac-
tor and denote it by PTRF. We also compute the false negative rate, FNR, of pooled testing,

which is the fraction of infected individuals the pooled test will miss on average,

• and finally, we discuss and demonstrate how false negative rates increasing with group size

affect the optimal group-size, false negative rates (FNR), and the pooled testing risk factor

(PTRF).

Optimal group size

We call a group positive if at least one of its members is positive. The probability of a group to

be positive is

p ¼ 1 � ð1 � lÞ
o
: ð1Þ

Because of limitations in test sensitivity and specificity, tests will be falsely declared positive

in (1 − p)γ+ cases. False positives do not decrease the chances to capture a true positive but

only decrease the efficiency in using the available tests. More importantly, tests will miss posi-

tive individuals in pγ− cases, on average. Note that γ+ and γ− might need to be considered care-

fully with respect to how tests are performed (essay type) and who gets tested (patients with

high or low expected viral load).

To see how test replicates affect FNR and PTRF of the pooled test we test a sample r
times and then apply the majority rule (m2). For this we have to compute the conditional

probabilities

g�
þ
ðrÞ ¼

X

i�r=2

r
i

� �

gi
þ
ð1 � gþÞ

r� i
; ð2Þ
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that the majority rule declares the replicate test falsely as positive, and

g�
�
ðrÞ ¼

X

i>r=2

r
i

� �

gi
�
ð1 � g� Þ

r� i
; ð3Þ

that the majority rule declares the replicate test falsely as negative. Note that these equations

hold under the majority assumption (m2) that we have at least as many positive than nega-

tive tests. For majority rule (m1) that we have more positive than negative tests one has to

sum over i > r/2 instead of i � r/2 for g�
þ
ðrÞ, and vice versa for g�

�
ðrÞ, on the left side of the

equations. Also note that for r = 1, we have g�
�
ðr ¼ 1Þ ¼ g�. Hence, the probability, P�

þ
ðrÞ,

that a test with r replicates registers as positive is given by

P�
þ
¼ pð1 � g�

�
Þ þ ð1 � pÞg�

þ
¼ pð1 � g�

þ
� g�

�
Þ þ g�

þ
; ð4Þ

and Pþ ¼ P�
þ
ðr ¼ 1Þ is the probability for a single test to register as positive.

The expected number of tests per person therefore can be estimated by the upper bound, Q,

given by

Q ¼
1

o
rð1 � P�

þ
Þ þ ðr þ oÞP�

þ

� �
¼ P�

þ
þ

r
o
; ð5Þ

and the number of persons per test (PPT) then simply follows the lower bound,

PPT ¼ 1=Q ¼
o

r þ P�
þ
o
: ð6Þ

For r = 1 Eq (5) is exact. The reason why, for r> 1, Eq (5) is in fact an upper bound for the

expected number of tests per person (and PPT a lower bound for the expected number of per-

sons processed per test) is the following. One could save some of the r replicates in the follow-

ing way. Consider r to be an odd integer, so that the majority rules m1 and m2 are identical.

For certain sequences of positive or negative results, the majority rule is fulfilled or can no lon-

ger be fulfilled before all r test replicates have been performed. For instance, for r = 3 one

could skip the third test if the first two tests already were positive. Why? Since one already has

achieved a majority of positive tests. Similarly, if the first two tests are negative, the third can

be skipped. This would effectively reduce r = 3 to r� ¼ 2 4

8
þ 3 4

8
¼ 5=2 ¼ 2:5 (note that r/r� =

1.2), and r = 5 to r� ¼ 3 8

32
þ 4 4

32
þ 5 20

32
¼ 35=8 ¼ 4:375 (note that r/r� � 1.143). However,

since in practice the number of replicates will typically be r = 1 (Q and PPT are exact and r� =

r = 1) or r = 2 and the bounds for all r> 1 are more favourable than the respective bounds—

and do not excessively deviate from the true expectation values. Here we do not consider the

complication of path-dependent replicate numbers and consider r tests performed indiscrimi-

nately. An on-line pool-size calculator (for the case r = 1) working on the basis of this analysis

can be found online [24].

Similarly, one can compute an upper bound for the expected number of cases that we

might miss when testing pooled samples, PTRF. It is expressed as the expected number of

missed infections per tested person (not per tested infected person). If we assume that a group

is positive and we test it, then we miss it when the majority rule gives us a negative, which hap-

pens, when in the majority of cases we get a false negative. We therefore get that the pooled

testing risk factor is given by

PTRF � pðg�
�
þ ð1 � g�

�
Þg� Þ : ð7Þ
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Note that the expected maximal number of missed infections, PTRF, must not be confused

with the false negative rate of the pooled test, FNR ¼ g�
�
þ ð1 � g�

�
Þg� � 2g� , which is the

average number of individuals one expects to miss in pooled testing per infected person. Note

that the approximation holds for r = 1 only and small γ−. If there are no biases or correlations

within or between groups, we get that the number of missed infections will be λ FNR� 2γ−λ,

which does not depend on group-size. It can be checked that PTRF = p FNR. The advantage of

PTRF over FNR is that in testing of biased groups one can be confronted with correlated cases

with an increased chance of multiple infections within a group, w.r.t. the entire population.

PTRF therefore captures this situation by considering the upper bound of missed positives

rather than the average.

Results

Results for the optimal pool size, ωopt, and the persons per test, PPT, see Fig 1. In Fig 1A the

optimal pool size is shown for a population-wide infection level of 1%. In Fig 1B the increase

of PTRF with pooling size is seen. Here we use a false negative rate of γ− = 0.02 and a false posi-

tive rate of γ+ = 0.0012, which are sensible estimates for PCR tests that are currently used in

Austria (as of March 20) [25]. We show the case for r = 1, 3, and 5 replicates for the pooled test

in full lines, blue, orange, and green. Replicates for r = 2 and 4 (even) are shown for majority

rule m2 with dotted lines in red and purple, respectively. We find that r = 1 assumes ωopt = 11

where it achieves a PPT of approximately 5.14 persons per test and a PTRF of 4.14 10−3. For

r = 2 under m2 one gets ωopt = 15, PPT is 3.63, and PTRF 2.13 10−3, whereas for r = 2 under

m1 (which is not shown in the figure) one gets that ωopt = 16, the PPT is 3.78, and FNPT 1.38

10−2. Note that PTRF for r = 2 and m1 is worse than PTRF for r = 1. In general, ωopt and PPT
are very similar for majority rules m1 and m2 even for even r. However, the PTRF values of

even replicates r for m2 are consistently lower than those for m1. In the case r = 2 by a factor of

approximately 2.67. Typically, the PTRF values for even r under m1 are even higher than the

PTRF of the next odd replicate test with r − 1. For this reason we suggest to not use majority

rule m1. Note that the false negative rate, FNR, does not depend on group-size with values

Fig 1. Group test efficiency. (A) Increase of test efficiency in persons per test, PPT. The maximum of this curve indicates the optimal pool

size, ωopt for a given infection level (1%) and given false negative and positive rates of the test. Results are shown for r = 1, 2, 3, 4 and 5

replicates of testing the pooled sample. the maximum efficiency gain is naturally found for r = 1 and is about 5.1 persons per test, followed by

r = 2 with a gain of approximately 3.6. (B) The pooled test risk factor for the pooled sample, PTRF. The result shows that taking more

replicates decreases the false negatives. However, note that this also decreases the efficiency in terms of PPT. γ+ = 0.0012 and γ− = 0.02.

https://doi.org/10.1371/journal.pone.0240652.g001
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3.96% (1 replicate), 2.04% (2 replicates), 2.15% (3 replicates), 2.00% (4 replicates), 2.01% (5

replicates). Also for the FNR, we see that a pooled test with n replicates, with n being odd, has

a higher FNR than the respective test for n − 1 replicates. However, FNR for n + 2 replicates is

always smaller than for n replicates.

The group-size dependent PTRF, on the other hand, is again decreasing for r� 2, after an

initial decrease from r = 1 to r = 2. This somewhat counter-intuitive behaviour comes from the

the dependence of the optimal pool size ωopt on r. In fact it can be computed by searching the

maximum of PPT and solving for ω, i.e. by solving d
dr PPTðrÞ ¼ 0 (compare SI1 in S1 File). It is

approximately given by

oopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir
l ð1 � g�

�
ðrÞ � g�

þ
ðrÞÞ

r

; ð8Þ

which is increasing faster in r than FNR ¼ g�
�
þ ð1 � g�

�
Þg� � g

�
�
þ g� decreases, which

explains why PTRF = p FNR increases with increasing r, for r� 2 (compare S12 Fig and S12.1

Fig in S1 File).

Fig 2 shows the dependence of optimal group size, persons per test, and PTRF on infection

levels. In Fig 2A we see the optimal group size, ωopt, as a function of the infection level of the

population. The inset shows the case for low infection levels between 0 and 3%. The case for

r = 1, 3, and 5 replicates is shown in solid lines, blue, orange, and green, while the even repli-

cates r = 2 and 4 are shown as dotted lines, red and purple, respectively. Fig 2B shows the opti-

mal efficiency gain of persons per test, PPT, also with an inset showing small infection levels.

Fig 2C gives the risk factor PTRF for pooled testing. It is clearly visible that, for a fixed infection

level, taking more than two replicates, r> 2, does not improve PTRF. However, r = 2 does

improve it by approximately a factor of 1.5. The jumps in the curves are due to discrete jumps

of the optimal group sizes.

We computed the same values for a false negative rate of γ− = 0.05. The results for ωopt and

PPT practically do not change, however, in this scenario, PTRF approximately doubles or tri-

ples for all infection levels.

To get a better understanding of the effect that group-size dependence has on of false nega-

tive rates, we compare three scenarios. We assume that false positive rates are constant (γ+ =

0.0012) and false negative rates increase linearly with group size. We assume that at the

Fig 2. Infection level dependence. (A) Optimal pool size, ωopt, as a function of the infection level of the population. The inset is a blow-up for low

infection levels. The cases for r = 1, 3, and 5 replicates is shown in blue, red, and orange, respectively. (B) Efficiency gain of persons per test, PPT; the inset

shows low infection levels. (C) The pooled testing risk factor PTRF. It is clear that taking more replicates does practically not lower PTRF, except for r = 2.

γ+ = 0.0012 and γ− = 0.02. By taking γ− = 0.05, ωopt and PPT remain practically unchanged, FNPT doubles for all infection levels in this case (not shown).

https://doi.org/10.1371/journal.pone.0240652.g002
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maximally considered group size of 100, scenario (1) has the same value as for group size 1 (γ−
= 0.02); (2) has 5 times that value, and (3) has 10 times that value. While optimal group-size

and PPT do essentially not change, the PTRF depends strongly on variable group sizes. This is

seen in Fig 3A, 3B and 3C, whose panels correspond to scenarios 1, 2, and 3, respectively.

Insets magnify the results for low infection levels. Fig 3D, 3E and 3F, (corresponding again to

scenarios 1, 2, and 3) shows that, while r = 1 is the most efficient choice, r = 2 gives a clear

improvement for PTRF, and that r> 2 does not improve the relation between the gain in

terms of PPT and PTRF, except for PTRF levels below 0.2–0.5%.

Conclusions

• The optimal pool size and efficiency of pooling strongly depends on the infection level of the

population. Let’s assume the simplest case of only one test (1 replicate). From Fig 2A and 2B

we read off that for an infection level of 0.1%, the optimal pool size is about 34, the efficiency

gain is about 15 tested persons per test. For an infection level of 1%, the optimal pool size is

11, the efficiency gain is about 5 fold. For an infection level of 10%, the optimal pool size is

reduced to 4, the efficiency gain is a factor of 1.7. For infection levels of 15% this factor drops

below 1.5 and the optimal pooling size becomes 3. This size of 3 remains the optimal pooling

size up to infection levels of 29% where the efficiency drops to 1.1. From infection levels of

30% and larger pooled testing ceases to be effective.

• Replicates help to lower the pooled testing risk factor, PTRF. Using two replicates can signifi-

cantly lower the pooled testing risk factor. However, increasing numbers of replicates to

three is only warranted for group sizes larger than 20. We find that for one replicate at an

Fig 3. Group-size dependence of the false negative factor seen in three scenarios of false negative rates that increase linearly with group-size;

no group-gize dependence (A,D), a doubling (B,E), and a quadrupling (C,F) of the false negative rate values at group-size 20. (A), (B), and (C)

show that the overall best choice of replicates with respect to PTRF, are r = 1 and r = 2. The insets are blow-ups for low infection levels. Panels (D),

(E), and (F) show that this remains true if we consider the optimal PTRF at a given gain in persons per test, PPT, except maybe for very low infection

levels, corresponding to PTRF below 0.5%, i.e. optimal group sizes larger than 20.

https://doi.org/10.1371/journal.pone.0240652.g003
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infection level of 0.1% we will maximally miss about 1 positive case in 800 pooled tests

(0.13%) at most. At 1% we will maximally miss about 1 case in every 241 pooled tests

(0.41%); see also Fig 1B.

• When even numbers of replicates are used, majority rule m2 should be implemented, i.e. a

pool should be considered positive if at least half of the replicates are positive. For odd num-

bers of replicates rules m1 and m2 are identical. Rule m1, that there must be more positive

than negative replicates, does not essentially change the optimal group-size for pooling. In

relative to m2, m1 has a higher pooled testing risk factor, i.e. the maximal number of positive

individuals that can be expected to be missed per tested individual. For two replicates, r = 2,

m1 has a an even higher pooled testing risk factor than using one replicate, r = 1.

Let us emphasize that a pooling strategy is most powerful for population-wide screening and

mixed samples, for example at airports. Using them for highly biased samples, e.g. for samples

from patients already showing symptoms, will be much less effective. Note, that situations with

many asymptomatic individuals, with possibly low viral loads, require test protocols that oper-

ate in ranges with values of false negative rates larger than 0.02, which would make r = 2 repli-

cates the overall favourable choice.

Example

We finish with a practical example. For Austria, a country with slightly less than 10 million

inhabitants an actual infection level of 0.1% would indicate an optimal pool size of 34. For a

level of 1% it would be 11. Assuming the true number of infected to be somewhere between

10,000 and 100,000 this would mean a reasonable choice of pooling sizes of about 20. This

number is definitively lower than the suggested sizes reported in [1, 2] and about the upper

range of pool sizes, that due to possible dilution of viral RNA in the pooled samples, are typi-

cally used in screening. The expected gain for this pool size would be about a factor of 10, if 1

replicate is indicated, and a gain of about 5.5 for 2 replicates.
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