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In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution
image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of
the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature
extraction algorithmwas proposed, which extracted visual attention features through amultiscale process. And a fuzzy classification
method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-
VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS,
QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative
accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the
classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research
of digital image analysis and the applications of high resolution remote sensing images.

1. Introduction

With the rapid development of satellite and sensor technolo-
gies, remote sensing has become an important and efficient
means to collect earth spatial information in recent years [1–
4]. Remote sensing images with high spatial resolutions can
be acquired from satellites, such as IKONOS, QuickBird, and
WorldView [5, 6]. High resolution remote sensing images
provide us with a great deal of information on texture
structures and spatial details. The improvement in spatial
resolution also increases the intraclass variability of land-
cover classes and reduces the interclass variability between
different classes [7], which increase the fuzziness of classifi-
cation and pose a big challenge for automatic classification
of remote sensing scenes. Remote sensing scenes are the
separated subareas extracted from remote sensing images
and possess specific semantic meanings, such as farmlands
and residential areas. Remote sensing scene classification is a
process to classify specific scenes in remote sensing images,
which is essential to many remote sensing applications and

has attracted much attention in recent years [8–10]. Various
classification methods have been developed, which can be
applied to remote sensing scene classification, such as min-
imum distance method [11], maximum likelihood method
[11], neural network methods [12–16], fuzzy methods [17–
21], support vector machinemethods [21–23], particle swarm
optimization methods [19, 24], artificial immune methods
[25, 26], and Markov model methods [27–29]. However, due
to the complex texture structures and spatial details in high
resolution remote sensing scenes, scene classification is still
a difficult task. Remote sensing scene classification methods
based on visual attention may provide potential solutions to
resolve this issue.

Visual attention is an important characteristic of the
human visual system [30]. The human visual system can be
easily attracted by salient details of an image and recognize
objects or scenes in the image. Visual saliency measures to
what extent details in an image attract human attention [31].
In the past twenty years, visual attention has become one
of the hot spots in the relevant research and applications of
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artificial intelligence [32–36]. In 1998, Itti et al. proposed a
visual attentionmodel [32], which was based on the attention
mechanism of the human visual system. The Itti visual
attention model can be used to extract a variety of features
from input images, such as brightness and color. Then these
features were analyzed and consolidated to generate saliency
maps. Walther and Koch further developed the saliency
model proposed by Itti et al. They introduced a feedback
mechanism in generating saliency maps for object recogni-
tion [33]. Achantay et al. proposed a frequency-tunedmethod
to compute pixel saliency directly and detect salient regions
[34]. Hou and Zhang designed a fast method to detect image
saliency by exploring spectral components in an image [35].
Tian et al. proposed a color saliency model to detect salient
objects in natural scenes [36]. In their color saliency model,
different color features were extracted and analyzed. For
different color features, two efficient saliency measurements
were employed to compute different saliency maps. And
a feature combination strategy was presented to combine
multiple saliency maps into one integrated saliency map.
Scene feature extraction is a key step in scene classification,
which affects the classification accuracy. When the human
visual system observes and classifies scenes, it is usually
through a multiscale process. However, attempts to extract
visual attention features through a multiscale process for
scene classification are relatively rare in literatures.

The assumption of this study is that visual attention fea-
tures could be extracted through amultiscale process for high
resolution remote sensing scene classification. Fuzzy theory
is an effective mathematical tool to process fuzzy and com-
plex information [17–21], which could be suitable for high
resolution remote sensing scene classification. Therefore, the
fuzzy classification method [17–19] is preferred in this study.
The main goals of this study are (1) to propose a novel
visual attention feature extraction algorithmbased onwavelet
transform, which extracts visual attention features through a
multiscale process; (2) to apply a fuzzy classification method
(FC) using visual attention features (VAF) to achieve an
improved accuracy in the scene classification; (3) to compare
and evaluate the effects of FC-VAF with four traditional
classification methods using IKONOS, QuickBird, and ZY-
3 remote sensing scenes; and (4) to discuss the parameter
sensitivity of FC-VAF.

2. Methodology

2.1. Wavelet Transform-Based Visual
Attention Feature Extraction

2.1.1. Basic Principle of Wavelet Transform. The wavelet anal-
ysis is a powerful mathematical tool to obtain decompo-
sition, reconstruction, and a multiscale representation of
signals [37–39]. It introduces inherent scaling and good
identification of signals, which is relevant to the human
perception. A digital image is regarded as a two-dimensional
discrete signal and can be decomposed and reconstructed
by the two-dimensional discrete wavelet transform. The
two-dimensional discrete wavelet transform allows good
localization in both the frequency and spatial domain. The

image can be decomposed into multiple levels using wavelet
basis functions. It can be considered as a chain of successive
levels of decomposition of the image by applying the one-
dimensional discrete wavelet transform in the horizontal
and vertical directions [37–39]. Two-level two-dimensional
discrete wavelet decomposition of an image is illustrated in
Figure 1. There are several popular wavelets in the field of
the wavelet analysis, such as Daubechies wavelets, Symlets
wavelets, and Discrete Meyer wavelet [39]. Different wavelets
lead to different wavelet decomposition effects and applica-
tion results.

2.1.2. Visual Attention Feature Extraction through a Multi-
scale Process. Wavelet transform can obtain the multiscale
representation of images. Therefore, a novel visual attention
feature extraction algorithm based on wavelet transform is
proposed, which extracts visual attention features from the
saliency maps of remote sensing scenes through a multiscale
process.

Visual saliency in an image measures to what extent
details attract human attention [31]. Tian et al. proposed a
color saliencymodel to detect salient objects in natural scenes
[36]. In their color saliency model, different color features
were extracted and analyzed. For different color features, two
efficient saliency measurements were proposed to compute
different saliency maps. And a feature combination strategy
was presented to combine multiple saliency maps into one
integrated saliency map. We adopt the color saliency model
above to obtain the integrated saliency map 𝑠(𝑥, 𝑦) for an
image 𝑓(𝑥, 𝑦) as follows [36]:

𝑠 (𝑥, 𝑦) = 𝑀∑
𝑚=1

𝑤𝑚 ∗ 𝑠𝑚 (𝑥, 𝑦)
𝑀∑
𝑚=1

𝑤𝑚 = 1

𝑠𝑚 (𝑥, 𝑦) = 1
1 + exp (−𝑑𝑚 (𝑥, 𝑦) /𝑑𝑚)

𝑑𝑚 (𝑥, 𝑦) = 𝑓𝑚 (𝑥, 𝑦) − 𝑓𝑚 ,

(1)

where 𝑀 = 3; 𝑠𝑚(𝑥, 𝑦) (𝑚 = 1, 2, 3) represent the saliency
maps of the intensity, hue, and saturation components of the
image, respectively; 𝑤𝑚 (𝑚 = 1, 2, 3) represent the weight
values of 𝑠𝑚(𝑥, 𝑦) (𝑚 = 1, 2, 3), respectively; 𝑓𝑚(𝑥, 𝑦) (𝑚 =1, 2, 3) represent the intensity, hue, and saturation compo-
nents of the image, respectively; 𝑓𝑚 is the average value of
𝑓𝑚(𝑥, 𝑦); 𝑑𝑚 is the average value of 𝑑𝑚(𝑥, 𝑦).

The visual attention features are extracted from an inte-
grated saliency map as follows.

(a)The integrated saliencymap is decomposed byN-level
two-dimensional discrete wavelet transform. The multiscale
representation of the integrated saliency map is obtained and
composed by LL1, LL2, . . . , LL𝑁. The multiscale representa-
tion of an integrated saliency map for visual attention feature
extraction is illustrated in Figure 2, where𝑁 = 2.
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Figure 1: Two-level two-dimensional discrete wavelet decomposition of an image.

(b) Visual attention focuses are extracted in the top level
of the multiscale representation. The salient points in the
top level are extracted based on the saliency values of the
points. The human visual system can be easily attracted by
the most salient point. Therefore, the most salient point is
selected as the first and current visual attention focus. Then
visual attention is shifted among the salient points in the top
level. The next visual attention focus is the unselected salient
point which is closest to the current visual attention focus.
For example, there are three salient points in Figure 2. The
most salient point𝐴2 is selected as the first and current visual
attention focus.Then select the salient point 𝐵2 as the second
visual attention focus because it is closer to 𝐴2 than 𝐶2.

(c) Visual attention is shifted from the top level to the
low level of the multiscale representation. Take the visual
attention focus 𝐴2 in Figure 2, for example. According to the
position relation between two adjacent levels of themultiscale
representation, 𝐴2 in LL2 corresponds to a small region in
LL1. Select the point with maximal value in the region as the

corresponding visual attention focus𝐴1. In the same way, we
can obtain the visual attention focus𝐴0 in the visual saliency
map.

(d) The saliency values of the visual attention focuses
in the visual saliency map are used as the visual attention
features for scene classification. In Figure 2, the saliency
values of 𝐴0, 𝐵0, and 𝐶0 are used as the visual attention
features.

2.2. Fuzzy Classification of Remote Sensing Scenes. We apply
the fuzzy classification method [17–19] using visual attention
features to achieve an improved accuracy of scene classifica-
tion. The classification procedure is described as follows.

(a) Multiple original features are extracted from the
samples of remote sensing scenes, including gray level cooc-
currence matrix features [40], Laws texture energy features
[40], and visual attention features. These features consist of
feature vectors, which represent the corresponding scenes in
the recognition process.
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Figure 2: The multiscale representation of an integrated saliency map for visual attention feature extraction (𝑁 = 2).

(b)The features are transformed into fuzzy features using
the standard S-function as follows:

𝜇𝑌 (𝑦) =

{{{{{{{{{{{{{{{{{{{{{

0 𝑦 < 𝑎
2 × [(𝑦 − 𝑎)(𝑐 − 𝑎) ]

2

𝑎 ≤ 𝑦 < 𝑏
1 − 2 × [(𝑐 − 𝑦)(𝑐 − 𝑎) ]

2

𝑏 ≤ 𝑦 < 𝑐
1 𝑦 ≥ 𝑐,

(2)

where 𝑎, 𝑏, and 𝑐 are the fuzzy parameters; 𝑏 = (𝑎 + 𝑐)/2.
(c) Fuzzy class centers are obtained by using the mean

value method. Suppose 𝑐𝑖𝑗 is the 𝑗th component of the class
center of the 𝑖th class,𝑁 is the number of the training samples
of the 𝑖th class, and 𝑡𝑛𝑗 is the 𝑗th component of the feature
vector of the training sample 𝑛; then 𝑐𝑖𝑗 is computed as follows:

𝑐𝑖𝑗 = 1
𝑁
𝑁∑
𝑛=1

𝑡𝑛𝑗, (3)

where 𝑗 = 1, 2, . . . ,𝑀; 𝑀 is the dimension of the feature
vectors of the samples.

(d) Test samples are classified using Euclidean fuzzy
closeness degree on the basis of the fuzzy closeness principle
[18].

(e) Fuzzy classification results are assessed using overall
accuracy (OA), Kappa coefficient (KC), average producer’s
accuracy (APA), and average user’s accuracy (AUA) based on
confusion matrices [41, 42].

A flowchart of the fuzzy classification process is shown in
Figure 3.

3. Case Study

3.1. Materials. In order to validate the effectiveness of FC-
VAF, 80 samples of remote sensing scenes were selected as the
experimental data from widely used high spatial resolution
remote sensing images, including IKONOS, QuickBird, and
ZY-3 images. The samples consist of four classes, which are
residential areas, farmlands, woodlands, and water areas,

Multiple feature extraction from scene samples

Feature fuzzification

Fuzzy class center computation

Accuracy assessment results

Remote sensing scene samples

Test scene sample classification

Classification accuracy assessment

Figure 3: Flowchart of the fuzzy classification process.

respectively. Each class has 20 samples where 10 samples
are used as the training samples and all are used as the
test samples. The size of the samples is 100 × 100 pixels.
Representative samples of remote sensing scenes are shown
in Figure 4.

3.2. Methods and Results. To demonstrate the effectiveness of
FC-VAF, comparisons were carried out between FC-VAF and
scene classification based on four traditional algorithms. The
four methods for comparison are standard backpropagation
neural network classification (SBPC), adaptive learning rule
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Figure 4: Representative samples of remote sensing scenes. (a) Residential areas; (b) farmlands; (c) woodlands; (d) water areas.

backpropagation neural network classification (ALRBPC),
general regression neural network classification (GRNNC),
and fuzzy classification (FC). Four gray level cooccurrence
matrix features and four Laws texture energy features were
extracted from these samples for all scene classification
methods. The Euclidian closeness degree measurement was
adopted in both FC and FC-VAF. Symlets wavelet was
adopted in FC-VAF. The main parameters of different meth-
ods are shown in Table 1.

We compared the results of different scene classification
methods using the measures of OA, KC, APA, and AUA.
Table 2 shows the performances in terms of the classification
accuracy derived by SBPC, ALRBPC, GRNNC, FC, and FC-
VAF. FromTable 2, we can see that GRNNCoutperformed FC
and ALRBPC using OA, KC, APA, and AUA, while SBPCwas
the worst performer. FC-VAF obtained the best classification

results among the fivemethods according to the values ofOA,
KC, APA, and AUA. For example, the OA values of SBPC,
ALRBPC,GRNNC, FC, and FC-VAF are 76.3%, 78.8%, 82.5%,
80.0%, and 85.0%, respectively. The KC values of SBPC,
ALRBPC, GRNNC, FC, and FC-VAF are 0.683, 0.717, 0.767,
0.733, and 0.800, respectively. FC-VAF can obtain satisfactory
classification results in such images, because FC-VAF is on the
basis of fuzzy theory and utilizes visual attention features in
the process of classification.

4. Discussion

4.1. Discussion of the Effects of Wavelet Decomposition Levels.
Thedecomposition level (DL) ofwavelets is the key parameter
of FC-VAF, which affects the accuracy of scene classification.
The scene classification accuracy of FC-VAF related toDLwas
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Figure 5: The effects of different wavelet decomposition levels (DL) on the classification accuracy. OA represents overall accuracy, KC
represents Kappa coefficient, APA represents average producer’s accuracy, and AUA represents average user’s accuracy.

analyzed and discussed. The 80 samples of scenes in the case
studywere usedwith differentDL values (DL = 1, 2, 3). Other
parameters of FC-VAF were kept the same as those in the
case study.The classification accuracy of FC-VAF for each DL
value is shown in Figure 5. It shows that, with the increase of
the DL value, the OA value increases to the maximum 85.0%
when DL is 2 and then decreases. KC, APA, and AUA have
similar trends as that of OA. Therefore, the optimal value of
DL is 2 among the three values for FC-VAF in this application.

4.2. Discussion of the Effects of Different Wavelets. Different
wavelets lead to different wavelet decomposition effects,
which affect the classification accuracy of FC-VAF. The
scene classification accuracy of FC-VAF related to wavelets
was analyzed and discussed. The 80 samples of scenes in
the case study were used with different wavelets. Other
parameters of FC-VAFwere kept the same as those in the case
study. The classification accuracy of FC-VAF using different

wavelets is shown in Figure 6. It shows that DMeyer wavelet
outperformed Daubechies wavelet using the measures of
OA, KC, APA, and AUA, while Symlets wavelet was the
best performer. For example, the OA values of Daubechies
wavelet, DMeyer wavelet, and Symlets wavelet are 81.3%,
82.5%, and 85.0%, respectively. Therefore, Symlets wavelet
is optimal among the three wavelets for FC-VAF in this
application.

5. Conclusions

In this study, a novel visual attention feature extraction
algorithm was proposed, which extracted visual attention
features through a multiscale process. And a fuzzy classi-
fication method using visual attention features (FC-VAF)
was developed to perform high resolution remote sensing
scene classification. FC-VAF was evaluated by using 80
samples of remote sensing scenes, which were selected from
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Figure 6: The effects of different wavelets on the classification accuracy. OA represents overall accuracy, KC represents Kappa coefficient,
APA represents average producer’s accuracy, and AUA represents average user’s accuracy.

Table 1: Main parameters of different methods.

Method Parameter description Parameter value

SBPC

Number of hidden layers 1
Number of neurons in hidden layers 15

Learning rate 0.01
Maximum number of epochs to train 5000

ALRBPC

Number of hidden layers 1
Number of neurons in hidden layers 15

Learning rate 0.01
Ratio to increase learning rate 1.05
Ratio to decrease learning rate 0.7

Maximum number of epochs to train 1000
GRNNC Spread parameter 0.5

FC Fuzzy parameter 𝑎 0.2
Fuzzy parameter 𝑐 0.8

FC-VAF

Fuzzy parameter 𝑎 0.2
Fuzzy parameter 𝑐 0.8

Level of wavelet decomposition 2
Number of VAF 4

widely used high resolution remote sensing images, including
IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved
more accurate classification results than four traditional
classification methods according to the measures of OA, KC,
APA, and AUA.The OA values of SBPC, ALRBPC, GRNNC,
FC, and FC-VAF are 76.3%, 78.8%, 82.5%, 80.0%, and 85.0%,
respectively. The KC values of SBPC, ALRBPC, GRNNC,
FC, and FC-VAF are 0.683, 0.717, 0.767, 0.733, and 0.800,
respectively. The classification accuracy of FC-VAF related to
the decomposition level and to the wavelets was discussed.

FC-VAF can extract visual attention features through a
multiscale process and improve the accuracy of scene classi-
fication in high resolution remote sensing images. Therefore,
FC-VAF not only advances the research of visual attention
models and digital image analysismethods, but also promotes
the applications of high resolution remote sensing images.
Possible further development of the study will focus on
the integration of FC-VAF and other intelligent algorithms
to further improve the accuracy of high resolution remote
sensing scene classification.
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Table 2: Comparisons of different scene classification methods.

Methods
Scene classification accuracy indicators

Overall accuracy
(OA) (%)

Kappa coefficient
(KC)

Average producer’s
accuracy (APA) (%)

Average user’s
accuracy (AUA) (%)

SBPC 76.3 0.683 76.3 78.4
ALRBPC 78.8 0.717 78.8 81.5
GRNNC 82.5 0.767 82.5 86.8
FC 80.0 0.733 80.0 82.4
FC-VAF 85.0 0.800 85.0 89.1
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