
Sequence analysis

Haplotype assembly of autotetraploid potato

using integer linear programing

Enrico Siragusa1, Niina Haiminen1, Richard Finkers2, Richard Visser2

and Laxmi Parida1,*

1IBM T J Watson Research Center, Yorktown Heights, NY, USA and 2Wageningen UR Plant Breeding, Wageningen,

The Netherlands

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on June 28, 2018; revised on January 14, 2019; editorial decision on January 18, 2019; accepted on January 22, 2019

Abstract

Summary: Haplotype assembly of polyploids is an open issue in plant genomics. Recent experi-

mental studies on highly heterozygous autotetraploid potato have shown that available methods

do not deliver satisfying results in practice. We propose an optimal method to assemble haplo-

types of highly heterozygous polyploids from Illumina short-sequencing reads. Our method is

based on a generalization of the existing minimum fragment removal model to the polyploid case

and on new integer linear programs to reconstruct optimal haplotypes. We validate our methods

experimentally by means of a combined evaluation on simulated and experimental data based on

83 previously sequenced autotetraploid potato cultivars. Results on simulated data show that our

methods produce highly accurate haplotype assemblies, while results on experimental data con-

firm a sensible improvement over the state of the art.

Availability and implementation: Executables for Linux at http://github.com/Computational

Genomics/HaplotypeAssembler.

Contact: parida@us.ibm.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many plants of agronomic importance are polyploids i.e. their somatic

cells contain more than two copies (p>2) of each haploid set of chro-

mosomes. Seedless varieties of watermelon and banana are human-

induced triploids (p¼3); cultivars of potato, peanut, cotton, tobacco

and coffee are naturally occurring tetraploids (p¼4); wheat is hexa-

ploid (p¼6). N’Diaye et al. (2017) demonstrated how haplotype-based

analysis results in an increase of the phenotypic variance explained

(50.4% on average) compared with single marker analysis when detect-

ing loci associated with color traits in durum wheat. Knowledge of the

haplotypes, the distinct sequences of haploid chromosomes, is limited or

absent even for common cultivars. This fact limits the effectiveness of

plant breeding to selectively develop particular phenotypic traits.

One method for determining haplotypes is bulk DNA sequencing

followed by haplotype assembly. The haplotypes are sequenced

jointly and then demultiplexed in silico by assembling sequenced

DNA fragments based on a known reference haplotype. A study by

Uitdewilligen et al. (2013) demonstrated successful genotyping by a

targeted resequencing of a panel of 83 autotetraploid potato culti-

vars. Assembling haplotypes from their Illumina HiSeq paired-end

data should be feasible since potato is highly heterozygous. The

authors observed a variant density of 1 SNP/24 bp in exons and 1

SNP/15 bp in introns in the studied 83-cultivar panel. Despite the

high heterozygosity, a subsequent experimental study by Motazedi

et al. (2017) reported that existing computational methods for

haplotype assembly are not delivering satisfying results in practice.

It is unclear to what extent assemblies are inaccurate because of the

heuristics, or because of insufficient or erroneous data.

1.1 Previous work
Haplotype assembly of diploid genomes has been extensively studied

over the past two decades. Lancia et al. (2001) first introduced the

VC The Author(s) 2019. Published by Oxford University Press. 3279

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(18), 2019, 3279–3286

doi: 10.1093/bioinformatics/btz060

Advance Access Publication Date: 25 January 2019

Original Paper

http://github.com/ComputationalGenomics/HaplotypeAssembler
http://github.com/ComputationalGenomics/HaplotypeAssembler
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/

problem and proposed a combinatorial model called minimum frag-

ment removal (MFR) that is solvable in polynomial time for contigu-

ously sequenced fragments (i.e. single-end reads) but NP-hard for

gapped fragments (i.e. reads obtained via paired-end or mate-pairs

protocols). Subsequently, Lippert et al. (2002) refined MFR as min-

imum error correction (MEC), which is NP-hard even for contigu-

ous fragments. MEC became the de-facto model to assemble diploid

genomes as several exact and heuristic methods have been proposed

for that. We refer the reader to (Schwartz et al., 2010) for a compre-

hensive treatment of haplotype assembly for diploids.

In recent years, the focus shifted towards assembling polyploid

genomes. Aguiar and Istrail (2013) defined an NP-hard problem

named minimum weighted edge removal in a compass graph and

employed a minimum-cost spanning tree heuristic to solve it. Berger

et al. (2014) defined a probabilistic framework and used heuristic

branch-and-bound to find likely haplotypes given the fragments. Das

and Vikalo (2015) casted the problem as a correlation clustering prob-

lem and derived approximate solutions to the associated semi-definite

program via lagrangian relaxation followed by randomized projections

and greedy refinement. Xie et al. (2016) defined a NP-hard problem

called polyploid balanced optimal partition and proposed constrained

dynamic programing to find heuristic solutions. Very recently,

Mazrouee and Wang (2018) proposed a clustering approach to minim-

ize disagreement among fragments. All the above methods are heuristic

and deliver solutions without guarantees for a combinatorial problem

that is hard to approximate (APX-hard) (Bonizzoni et al., 2016).

Integer linear programing (ILP) is a powerful mathematical pro-

graming method to efficiently solve combinatorial problems to opti-

mality (Winston et al., 2003). Schwartz et al. (2010) remarked that

‘the ILP strategy has thus so far received comparatively little atten-

tion in the haplotype assembly field’. The only known ILPs for

haplotype assembly are specific to diploids (Chen et al., 2013;

Etemadi et al., 2018). In a different setting, Szolek et al. (2014) has

successfully applied an MFR-based ILP to haplotype human leuko-

cyte antigen genes from short-sequencing reads. To the best of our

knowledge, haplotype assembly for polyploids has not been attacked

yet using ILP.

1.2 Our contribution
We propose an optimal method to assemble haplotypes in highly

heterozygous polyploids from Illumina short-sequencing reads. Our

method is based on a generalization of MFR to the polyploid case;

we leverage ILP to reconstruct optimal haplotypes. In addition, we

propose haplotyping distance as a general method to perform pair-

wise comparison of polyploids and we apply that to assess the accur-

acy of haplotype assemblies. We validate our models experimentally

through a combined evaluation on simulated and real autotetraploid

potato sequencing data extrapolated from the targeted sequencing

of 83 cultivars performed by Uitdewilligen et al. (2013). Results on

simulated data show that MFR-based ILPs achieve mean 98% hap-

lotyping recall and precision, that is a 4–11% improvement over

existing tools. Results on experimental data confirm the superiority

of our methods in terms of genotyping and read error correction.

2 Materials and methods

2.1 Haplotype assembly
2.1.1 Problem definition

Let us fix p 2 N as organism ploidy and n 2 N as number of

observed loci in a genomic region of interest. Such genomic region

consists of p latent haplotypes H ¼ fh1; . . . ; hpg over the n genomic

loci. At each locus j we observe aj 2 N distinct alleles across all hap-

lotypes in H. We univocally encode alleles as integers so that each

latent haplotype hk is a sequence of alleles hk1 . . . hkn with

hkj 2 ½0; ajÞ. Figure 1a shows an example of latent haplotypes.

We are given as input a multiset ðF;WÞ of preprocessed frag-

ments coming from all the latent haplotypes in H, where fragments

in F ¼ ff1; . . . ; fm have multiplicities in W ¼ fw1; . . . ;wmg. Each

fragment fi is a gapped sequence of alleles fi1 . . . fin with fij 2
½0; ajÞ [f�g and symbol � denoting unknown alleles, i.e. missing

observations due to fragment boundaries, paired sequencing proto-

cols or quality thresholds. Fragments may not exactly match their

originating latent haplotype due to sequencing errors. The haplotype

assembly problem for polyploids is to find the p latent haplotypes in

H given all observations from fragments in ðF;WÞ. Figure 1b illus-

trates an example of input fragments.

2.1.2 Heterozygous loci

In haplotype assembly we ignore homozygous loci, i.e. genomic loci

with only one observed allele. At homozygous loci either all latent

haplotypes have the same observed allele or we have no information

whether observations are wrong or missing. For this reason, we per-

form haplotype assembly only on heterozygous loci, i.e. genomic

loci for which aj > 1.

2.1.3 Concordance and containment

Before introducing combinatorial models for haplotype assembly,

we define basic relations of concordance and containment between

sequences of alleles. The following definitions hold for fragments

and haplotypes, as they are both defined as sequences of alleles.

Let a and b be two allele observations at the same genomic locus.

Given a 6¼ � and b 6¼ �, we say that a and b are concordant if a¼b

and discordant if a 6¼ b. If either a ¼ � or b ¼ �, we say that a and b

are non-discordant and write a ’ b. In addition, if b 6¼ � and either

a ¼ � or a¼b, we say that a is contained in b and write a@b.

We generalize this terminology to sequences of alleles. We say

that sequences of alleles x and y are non-discordant if all alleles of x

and y are non-discordant. Similarly, x is contained in y if all alleles

of x are contained in those of y. Two non-discordant fragments con-

tribute to explain a common latent haplotype, while two discordant

fragments must either originate from distinct haplotypes or imply

some sequencing error.

2.1.4 MFR and MEC for polyploids

Two combinatorial models called MFR (Lancia et al., 2001) and

MEC (Lippert et al., 2002) have been proposed for diploids. These

models are motivated by the parsimony principle by which, within a

set of possible explanations of observations, the simplest one is most

likely to be true. In this instance, the closest possible haplotypes to

input fragments, according to some predefined distance function,

are most likely to be correct. Here we generalize MFR and MEC to

polyploids.

We first define an objective function FR that counts the number

of erroneous fragments that are not contained in candidate haplo-

types H and must be therefore removed from ðF;WÞ to explain a

correct assembly of H:

FRðF;W; HÞ :¼
Xm

i¼1
wi min

p

k¼1
d@ðfi; hkÞ;

where function d@ðfi;hkÞ is defined as 0 if fi@hk and 1 otherwise.

Consequently, MFR is computed by finding the haplotypes H� that

minimize the number of fragments to be removed:

3280 E.Siragusa et al.

MFRðF;WÞ ¼ min
H�

FRðF;W; H�Þ:

Analogously, we define MEC as the sum of minimum Hamming

distances between haplotypes H and input fragments ðF;WÞ. MEC

is based on the following objective function:

ECðF;W; HÞ :¼
Xm

i¼1
wi min

p

k¼1
d ’ ðfi; hkÞ;

where function d ’ ðfi; hkÞ denotes the Hamming distance between

fi and hk parameterized by ’. Hence EC counts the minimum num-

ber of base calling errors in ðF;WÞ to explain a correct assembly

of H.

Figure 1c and d illustrates tabulated values for objective func-

tions FR and EC. Note how a fragment fi can be non-discordant

with (or have equal distance to) more than one haplotype hk. Our

generalization of MFR and MEC does not partition F in k disjoint

subsets as done for instance by Das and Vikalo (2015) and Xie et al.

(2016).

We developed our haplotype assembly model on MFR rather

than MEC for two reasons. First, the simplicity of MFR allowed us

to formulate concise and efficient ILPs. Second, the low error rate of

Illumina sequencing reads suggests that most fragments are correctly

sequenced and do not need to be corrected or removed.

Additionally, the high coverage of the sequenced fragments allows

for removing erroneous fragments yet retaining enough information

for phasing.

2.1.5 Genotype-based MFR

MFR alone is not well-defined in the polyploid case (neither is

MEC). Figure 1a and e illustrates this issue. A notion of coverage is

necessary to determine the number of copies of each unique haplo-

type, while these simple combinatorial models are clearly coverage

oblivious. For this reason we supplement MFR with genotyping in-

formation, that is essentially a surrogate of coverage information.

Genotypes are estimated a priori from fragments ðF;WÞ assuming

uniform sequencing coverage across the haplotypes. MEC-based

models can be easily extended in the same way.

Our extended model takes as additional input a matrix of geno-

types G, where glj 2 N denotes the dosage (i.e. multiplicity) of the

l-th allele observed at locus j and
X

l
glj ¼ p. We use this additional

information to narrow down the search space of our model. Our

genotype-constrained MFR (cMFR) model determines the latent

haplotypes as:

arg min
H� :dðH�Þ¼G

FRðF;W; H�Þ;

where dðHÞ denotes the genotypes matrix induced by candidate hap-

lotypes H. Note how this is the natural generalization of the all-het-

erozygous assumption for diploids by which all observed

heterozygous alleles are believed to be correct and the two latent

haplotypes must be complementary.

We propose also an alternative model that is useful whenever

sequencing coverage is too low to call genotypes accurately. We in-

corporate genotyping information in the objective function as the L1

norm between induced and input genotypes. Consequently, we pri-

oritize fragment removal over genotyping information. Our

genotype-augmented MFR (aMFR) model determines the latent

haplotypes according to a pair of objective functions:

arg min
H�

�
FRðF;W; H�Þ; kdðH�Þ �Gk1

�
;

where FR is used as the primary objective function and the L1 norm

as the secondary objective function.

2.1.6 ILP for genotype-cMFR

Our ILPs are based on containment relation @ between fragments

and haplotypes. In what follows, unless otherwise stated, subscript

i 2 ½1;m�; j 2 ½1;n�; k 2 ½1; p�. We define three types of binary varia-

bles to encode, respectively, fragments to be removed (Line 2), frag-

ments contained in haplotypes (Line 3) and alleles on each

haplotype (Line 4). Variable xi is 0 if fragment fi is to be removed

and 1 otherwise. Variable yik is 1 if fi@ hk and 0 otherwise. Variable

zkjl is 1 if haplotype hk has the lth allele at locus j and 0 otherwise.

For convenience, our ILP maximizes the inverse of function FR and

yik tabulates function d@ in negated form with respect to Figure 1c.

Objective function 1 maximizes the number of unremoved frag-

ments in R weighted by multiplicities in W. Constraint 5 marks a

fragment for removal unless it is contained in some haplotype.

Constraints 6–7 allow a fragment to be contained in a haplotype

only if all its alleles are contained in the haplotype; Constraint 8

(a) (b) (c) (d) (e)

Fig. 1. Example of haplotype assembly. (a) shows a set of latent haplotypes H along with their genotypes. (b) shows a multiset ðF ;W Þ of fragments coming from

H. (c) shows values of d@ between F and H. Objective function FRðF ;W ; HÞ has value 1 as fragment f2 with multiplicity w2 ¼ 1 is not contained in any haplotype.

(d) shows function d’. Likewise, objective function EC has value 1 as fragment f2 has at least 1 discordant allele compared with any latent haplotype. (e) shows

an alternative assembly of the fragments. Both latent and assembled haplotypes yield MEC and MFR 1. Assembled haplotypes in (e) become infeasible when

known genotype constraints G are incorporated into MFR or MEC

Haplotype assembly of autotetraploid potato 3281

improves convergence by observing that if fi@ fo and fi =@ hk then

fo =@hk. Finally, Constraint 9 imposes input genotype information on

the haplotypes.

max
Xm
i¼1

wi � xi (1)

s:t:

xi 2 f0; 1g 8k; j (2)

yik 2 f0; 1g 8i; k (3)

zkjl 2 f0;1g 8k; j; l 2 ½0; ajÞ (4)

xi�
Xp

k¼1

yik 8i (5)

yik�1þ
X
fij 6¼�
ðzkjfij � 1Þ 8i; k (6)

yik� zkjfij 8i;k; j : fij 6¼ � (7)

yok� yik 8k; ði; oÞ : fi@ fo (8)

k¼1pP zkjl ¼ glj 8j; l 2 ½0; ajÞ (9)

We remark that Constraint (6) removes ambiguous solutions by

ensuring that yik is 1 if fragment fi and haplotype hk are concordant.

This addresses the case of fragments that are concordant with more

than one haplotype. In other words, Constraint (6) maximizes the

number of containments
Xm

i¼1

Xp

k¼1
yik.

The above ILP may become infeasible when some haplotypes

lack sequencing coverage locally. If a haplotype has no coverage at

locus j with allele l, there will be strictly< glj haplotypes with allele

l. To consider this case, we substitute Constraint 9 with 11–12 (and

keep Constraints 2–8). Now we have to minimize also the distance

between input and induced genotypes, that is:

Xn

j¼1

Xaj�1

l¼0

glj �
Xp

k¼1

zkjl

 !
¼
Xn

j¼1

Xaj�1

l¼0

glj �
Xp

k¼1

Xn

j¼1

Xaj�1

l¼0

zkjl:

We drop the first term because it is a constant (np). As we priori-

tize genotypes over fragment removal, instead of normalizing the

fragment removal term by
Xm

i¼1
wi, we multiply the second term byXm

i¼1
wi. This leads us to Objective function 10.

max
Xm
i¼1

wi xi þ
Xp

k¼1

Xn

j¼1

Xaj�1

l¼0

zkjl

0
@

1
A (10)

Xaj�1

l¼0

zkjl �1 8k; j : fij 6¼ � (11)

Xp

k¼1

zkjl � glj 8j; l 2 ½0; ajÞ (12)

2.1.7 ILP for genotype-aMFR

Genotyping is prone to errors in regions of low coverage or in pres-

ence of allelic bias introduced during fragment selection or

amplification prior to sequencing. Our model cMFR is not robust

with respect to genotyping errors as it minimizes fragment removal

subject to hard genotype constraints. Here we propose an alternative

model aMFR that that minimizes fragment removal first and geno-

typing distance second.

We keep Constraints 2–8 from the previous ILPs and introduce

real variables djl (Line 14) to model absolute distances between in-

put and induced genotypes. We substitute Constraint 12 with 15–16

and incorporate absolute distances in Objective function 13. To pri-

oritize fragment removal over genotyping distance, we add a nor-

malization constant 1=ð2npÞ. Note that fragment removal (the

summand on the left) is a function over N, while genotyping dis-

tance (the summand on the right) is at most 2np. We normalize gen-

otyping distance within ½0; 1Þ so that fragment removal is the

primary objective function.

max
Xm
i¼1

wi � xi �
1

2np

Xn

j¼1

Xaj�1

l¼0

djl (13)

djl 2 Rþ0 8j; l 2 ½0; ajÞ (14)

glj �
Xp

k¼1

zkjl � djl 8j; l 2 ½0; ajÞ (15)

Xp

k¼1

zkjl � glj � djl 8j; l 2 ½0; ajÞ (16)

2.2 Haplotype comparison
We now describe methods to compare two polyploids X; Y over a

common genomic region. In particular, we propose haplotyping dis-

tance as a general method for pairwise comparison of polyploids

with arbitrary genotypes. For simplicity, in what follows we assume

that all alleles in X and Y are known, i.e. there is no�. Handling of

unknown calls is covered in Section 3 as they relate to the definitions

of recall and precision.

2.2.1 Phasing distance

We call phasing distance the minimal Hamming distance between

haplotypes in X and any permutation of the haplotypes in Y:

dPðX;YÞ :¼ min
r2Rp

Xp

k¼1

d ’
�

xk; yrðkÞ

�
;

where Rp denotes the set of all permutations of sequence

f1;2; . . . ; pg and rðkÞ the element at position k in permutation r.

We compute phasing distance in Oðn2 þ p!Þ time by proceeding

in two easy steps. First, we compute the Hamming distance between

all pairs of haplotypes in X and Y. Second, we permute haplotypes

in Y to minimize the sum of Hamming distances with respect to the

ordered haplotypes in X.

2.2.2 Haplotyping distance

Phasing distance does not model haplotype switch operations.

Therefore, in terms of mismatches, a switch between two pairs of

corresponding haplotypes can be more or less costly depending on

its genomic position. A switch towards the center of the genomic re-

gion is accounted as a long sequence of mismatches rather than a

single operation with unitary cost. Figure 2a–c shows examples of

switches.

3282 E.Siragusa et al.

Berger et al. (2014) introduced vector error as a generalization of

switch error to count the number of switches between two polyploid

genomes. Vector error denotes the minimum number of segments on

all chromosomes for which a switch must occur between halotypes

in X and Y (in the diploid case this is exactly twice the switch error).

Vector error has limited applicability on practical instances because

it is defined only for genomic regions with equal genotypes (see Fig.

2d). To overcome this limitation, we propose haplotyping distance

as a generalization of vector error.

Haplotyping distance counts the minimum number of haplo-

type switches and genotype mismatches between two polyploids.

To compute haplotyping distance we extend the dynamic program-

ing algorithm for vector error given by Xie et al. (2016)

(Supplementary Fig. S3). Algorithm 1 operates on X and Y trans-

posed, i.e. it advances from left to right one column (locus) at time.

We denote by sðyjÞ the column j of Y permuted by s. Initialization

(Line 3) counts the number of mismatching alleles at column j¼1

between X and each permutation r 2 Rp of the haplotypes in Y.

Recurrence (7) minimizes the haplotyping distance for each col-

umn j>1, building up from the distance precomputed for column

j�1. The minimum distance obtained by permuting the haplotypes

in Y as r 2 Rp, the cost of remaining allele mismatches, and the

number of switches introduced by going from permutation s to r
are added to the haplotyping distance for permutation s at column

j�1. Algorithm 1 computes haplotyping distance in Oðn � p!2Þ time

and Oðp!Þ space.

1: function dH(X;Y)

2: for all r 2 Rp do

3: h1r d ’
�

x1; rðy1Þ
�

4: for j 2 to n do

5: for all r 2 Rp do

6: hjr mins2Rp
fhðj�1Þs þ d ’

�
xj; sðyjÞ

�
þ kr� sk1g

7: return minr2Rp
hnr

Algorithm 1: Dynamic programing calculation of haplotyping distance.

Computation proceeds on X and Y transposed, and sðyjÞ denotes the

locus j of Y permuted by s. Distance d ’
�

xj; sðyjÞ
�

denotes the number

of allele mismatches at locus j, while kr� sk1 is the number of switches

to go from permutation s to r.

3 Results

3.1 Experimental data
We obtained targeted high-throughput sequencing data for 83 high-

ly heterozygous autotetraploid (p¼4) potato cultivars by

Uitdewilligen et al. (2013). Cultivars have been sequenced on

Illumina HiSeq 2000 at 63� median coverage with 2�96 bp

paired-end reads from fragments of 300 bp mean length and 60 bp

standard deviation. We reproduced the analysis pipeline described

in (Uitdewilligen et al., 2013) for read mapping, deduplication, vari-

ant calling and genotyping. We produced a total of 996 test instan-

ces by selecting 12 high-quality genomic regions from the

sequencing panel. Supplementary Table S1 shows the genomic coor-

dinates of the selected regions, as well as the median number of het-

erozygous variants per sample.

3.2 Simulated data
We simulated tetraploid data matching the real genotypes of the 83

potato cultivars by Uitdewilligen et al. (2013). First, we used the

haplotype simulator SimBA-hap (Siragusa et al., 2017) to generate

80 samples from each genomic region with genotypes fitting those

of the sequenced cultivars. We remark that simulated variants and

genotypes are biallelic and error-free. Subsequently, we used the

read simulator Mason (Holtgrewe, 2010) to produce Illumina-like

sequencing reads from each simulated region. We produced an

Illumina-like paired-end dataset reflecting the technical specifica-

tions of actual Illumina instruments: 90� coverage with 2�150 bp

paired-end reads from fragments of 500 bp mean length and 60 bp

SD at 0:3 % mean sequencing error. To assess the effect of sequenc-

ing errors and fragments length on haplotype assembly, we simu-

lated two supplementary datasets by altering specific simulation

parameters. We produced a second paired-end dataset consisting of

error-free paired-end reads and a third dataset by simulating mate-

pair sequencing fragments of 1000 bp mean length and 400 bp

standard deviation (with sequencing errors). Mate-pair sequencing

allows for investigating haplotypes across a longer range. We pro-

duced a total of 960 test instances per dataset.

3.3 Infrastructure
We implemented our ILPs for MFR in Cþþ using IBM CPLEXVR

12.7.0 and the software library SeqAn 2.3.2 (Reinert et al., 2017).

In all experiments we configured CPLEX timeout at 600 s. We ran

and evaluated our MFR-based models against HapCompass (Aguiar

and Istrail, 2013), SDhaP (Das and Vikalo, 2015), H-PoP (Xie et al.,

2016) on all real and simulated instances. Although HapCompass

accepted standard BAM and VCF files, for SDhaP and H-PoP we

had to produce intermediate fragment files using scripts provided by

Motazedi et al. (2017) relying on HapCut’s tool extractHAIRS

(Bansal and Bafna, 2008). Out of 960 instances of experimental

data, H-PoP failed to produce results on one and SDhaP on two

instances. In those cases we considered their assembled haplotypes

to be fully unknown (all�). We were unable to run HapTree (Berger

et al., 2014) on any of our instances nor to communicate with its

corresponding authors. To insure reproducibility of the results, we

wrote a Snakemake pipeline (Köster and Rahmann, 2012) and

deployed it on IBM CloudTM using private single-core instances.

3.4 Recall and precision
Haplotype assembly tools may omit some or all allele calls at certain

loci, presumably due to insufficient sequencing data. We therefore

measured recall and precision accounting for uncalled alleles in the

assembled haplotypes.

Given simulated haplotypes X of ploidy p over n alleles and

assembled haplotypes Y with lðYÞ uncalled alleles, we computed

the number of incorrectly called alleles as dðX;YÞ � lðYÞ, where d is

phasing or haplotyping distance. Analogously, we computed the

number of correctly called alleles as np� dðX;YÞ � lðYÞ. We

(a) (b) (c) (d)

Fig. 2. Example of haplotype comparison. Phasing distance between (a) and

(b) is 2, while it is 4 between (a) and (c). On the contrary, vector and haplotyp-

ing distance is 2 in both cases (note how suffixes of haplotypes y1 and y2 can

be switched in (c). Distance between (a) and (d) is undefined in vector error,

while it is 1 in phasing and haplotyping distance

Haplotype assembly of autotetraploid potato 3283

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data

defined recall as the fraction of correctly called alleles over all

alleles, which is equivalent to:

1� dðX;YÞ þ lðYÞ
np

;

and precision as the fraction of correctly called alleles over all called

alleles, which is equivalent to:

1� dðX;YÞ
np� lðYÞ :

We defined genotyping recall and precision analogously. Both

known genotypes G and induced genotypes dðYÞ may contain un-

known alleles. The number of called alleles is np� lðYÞ. We com-

puted the number of incorrectly called alleles as:

Xn

j¼1

Xaj�1

l¼0

max ðdjlðYÞ � gjl; 0Þ

and the number of correctly called alleles as called minus incorrectly

called alleles.

We defined recall and precision also in terms of MEC. Given the

assembled haplotypes Y, we computed the number of alleles implied

to be incorrect as ECðY; F; WÞ, those implied to be correct as:

Xm
i¼1

wi

�
jfij �min

p

k¼1
d ’ ðyk; fiÞ

�
;

and the total number of alleles as
Xm

i¼1
wijfij. Here jfij denotes the

number of non-missing values in fi.

3.5 Results on simulated data
Table 1 (left) shows mean precision and recall for each tool on

the Illumina-like paired-end dataset with respect to haplotyping,

phasing, genotyping and MEC, as well as mean runtime and

memory footprint. Model cMFR obtained consistently the high-

est values in all precision and recall categories. In particular,

cMFR obtained 8.4% higher phasing recall than SDhaP. Model

aMFR lost 1.1–1.4% recall and precision in haplotyping and

phasing. Note that HapCompass achieved perfect genotyping but

it obtained the lowest recall and precision in haplotyping, phas-

ing and MEC. We remark how MEC is in agreement with hap-

lotyping and phasing when ranking the tools by recall and

precision. Mean runtime for cMFR is 17.6 s while for aMFR it

is 45.0 s. H-PoP and HapCompass achieved significantly lower

runtimes compared to our MFR-based ILPs but their recall in all

categories is equally lower. Memory footprint stayed within 120

MB for all tools except SDhaP that required 6 GB of main

memory.

Figure 3 (left) shows the distribution of haplotyping recall

and precision values on the Illumina-like paired-end dataset.

Supplementary Figure S1 (left) shows recall and precision under

phasing distance. Recall and precision values under phasing distance

are lower with respect to haplotyping distance because phasing dis-

tance does not employ switch operations. Nonetheless, there is no

significant change in the relative performances of haplotyping tools.

Supplementary Table S2 and Supplementary Figure S2 (left)

show results on the error-free paired-end dataset. Recall and preci-

sion values are in line with those on the Illumina-like paired-end

dataset shown in Table 1 (left). All tools show between 0.1 and

0.3% improvement on the error-free dataset. That is in agreement

with the 0.3% sequencing error-rate used for Illumina-like reads

simulation. None of the tools achieved perfect haplotyping recall or

precision.

Supplementary Table S3 and Supplementary Figure S2 (right)

show results on the mate-pair dataset. Model cMFR obtains 99.5%

mean recall and 99.7% mean precision under haplotyping distance,

showing improvement over the paired-end dataset. That is an almost

perfect assembly. Conversely, none of the other assemblers shows a

significant improvement on the mate-pair dataset with respect to the

paired-end datasets.

3.6 Results on experimental data
We computed genotyping recall and precision by comparing the gen-

otypes induced by the assembled haplotypes to the genotypes previ-

ously computed by the variant caller. In addition, we computed

precision and recall values for MEC as this can be done without

knowing the true haplotypes. Recall and precision under MEC cor-

relate well with haplotyping and phasing, as seen in Table 1 (left).

Table 1 (right) shows mean precision and recall of each tool

across all real instances with respect to genotyping and MEC, as

well as mean runtime and memory footprint. MEC precision for all

tools is comparable to what observed on simulated data, while MEC

recall on experimental data drops significantly for H-PoP and

SDhap. Figure 3 (right) shows the distribution of MEC versus geno-

typing recall and precision on all real instances. As expected, cMFR

and aMFR values are concentrated on the top right corner, with

cMFR lying on (or very close to) the 100% MEC line and aMFR

lying on the 100% genotyping line.

Table 1. Haplotype assembly results

Simulated tetraploid potato data Experimental tetraploid potato data

Haplotyping Phasing Genotyping MEC Resources Genotyping MEC Resources

Tool Recl.

[%]

Prec.

[%]

Recl.

[%]

Prec.

[%]

Recl.

[%]

Prec.

[%]

Recl.

[%]

Prec.

[%]

Time

[s]

Mem.

[MB]

Recl.

[%]

Prec.

[%]

Recl.

[%]

Prec.

[%]

Time

[s]

Mem.

[MB]

cMFR 98.0 98.1 95.8 95.8 100.0 100.0 99.9 99.9 17.6 48 99.8 100.0 99.1 99.2 95.0 59

aMFR 96.8 97.0 94.5 94.7 99.7 99.7 99.8 99.9 45.0 48 98.4 98.6 99.8 99.9 58.9 49

H-PoP 87.2 92.4 85.1 90.3 97.2 98.7 94.3 98.9 1.1 63 94.0 96.3 88.4 98.7 1.2 59

SDhaP 91.1 94.1 87.4 90.5 98.5 99.4 96.6 99.2 34.6 6309 95.2 96.5 91.3 98.9 50.1 6309

HapCompass 86.8 86.9 81.8 82.1 100.0 100.0 92.6 92.8 4.7 112 99.2 99.7 90.0 93.9 6.8 114

Note: The left panel shows results on simulated data, while the right panel shows results on experimental data. Mean values across all tested instances. Values

in bold denote best results in each category.

3284 E.Siragusa et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz060#supplementary-data

4 Discussion

Motivated by practical limitations in breeding autotetraploid potato

cultivars, we investigated methods for haplotype assembly of poly-

ploids. We designed haplotype assembly models that are based on

MFR, incorporate sequencing coverage using genotypes and are

solved to optimality using ILP. In addition, we proposed haplotyp-

ing distance to overcome the limitations of existing methods in com-

paring polyploid genomes. We applied haplotyping distance to

evaluate the accuracy of haplotype assemblies.

Results on simulated data showed that our methods achieve a

sensible improvement over the state of the art. Existing methods do

not attain our performances either because of inadequate modeling,

because of implementation issues, or because of heuristics failing to

find optimal solutions. It is hard to assess to which extent each of

these factors affects the performances of existing tools. Aggressive

heuristics employed to speed up runtimes may significantly lower

the accuracy of H-PoP and HapCompass on our datasets.

Significantly higher precision compared with recall suggests that

H-Pop and SDhaP tend to skip certain loci that might be harder to

assemble. This issue is even more evident on experimental data.

Our combined evaluation helped us to interpret performances on

experimental data in absence of an experimental validation. Results

on experimental data confirmed the improvements of our methods

in terms of MEC and genotyping distance. As these two objectives

are orthogonal, a simultaneous improvement in MEC and genotyp-

ing distance gives us confidence that the quality of the assemblies

improved.

In particular, results on simulated mate-pair data show that lon-

ger fragments dramatically boost assembly accuracy. Our models

produce almost-perfect assemblies, within 0.3% mean haplotyping

precision, while assemblies using H-Pop, SDhap or HapCompass

plateau at 8–13% or even worsen compared to paired-end data.

These results suggest that our methods could be used to derive high-

quality haplotype assemblies of tetraploid potato using a combin-

ation of mate-pair sequencing reads in order to capture long-range

variant interactions and paired-end sequencing reads at higher

coverage in order to call genotypes accurately.

Conversely, on Illumina short-sequencing reads, we do not ex-

pect MEC-based models to provide significant improvements over

MFR. Precision and recall results on error-free sequencing data indi-

cate that residual errors in the assemblies are due to insufficient data

(i.e. too short fragments) rather than erroneous sequencing data.

Results on simulated mate-pair data show that longer fragments

boost assembly accuracy and thus support our hypothesis.

Conversely, we expect long noisy reads to be challenging for MFR-

based models. We did not investigate this latter hypothesis because

we have no access to such experimental data.

Longer runtimes suggested that experimental data has higher

complexity than our simulated data, as was to be expected. Our

simulation did not faithfully reproduce all possible artifacts that

may arise along high-throughput sequencing pipelines and cumulate

along sample preparation, base calling, read mapping, variant call-

ing and genotyping steps. In addition, our simulation did not ac-

count for the presence of copy number variations (CNVs) or

complex structural variations in the genomic regions of interest.

While our ILPs are flexible enough to take in consideration known

CNVs, we did not explore this direction. We believe that CNV mod-

eling might play an important role in the assembly of experimental

data.

Conflict of Interest: none declared.

References

Aguiar,D. and Istrail,S. (2013) Haplotype assembly in polyploid genomes and

identical by descent shared tracts. Bioinformatics, 29, i352–i360.

Bansal,V. and Bafna,V. (2008) HapCUT: an efficient and accurate algorithm

for the haplotype assembly problem. Bioinformatics, 24, i153–i159.

Berger,E. et al. (2014) Haptree: a novel Bayesian framework for single individ-

ual polyplotyping using NGS data. PLoS Comput. Biol., 10, e1003502.

Bonizzoni,P. et al. (2016) On the minimum error correction problem for

haplotype assembly in diploid and polyploid genomes. J. Comput. Biol., 23,

718–736.

Chen,Z.Z. et al. (2013) Exact algorithms for haplotype assembly from

whole-genome sequence data. Bioinformatics, 29, 1938–1945.

Das,S. and Vikalo,H. (2015) SDhaP: haplotype assembly for diploids and pol-

yploids via semi-definite programming. BMC Genomics, 16, 260.

Etemadi,M. et al. (2018) Better ILP models for haplotype assembly. BMC

Bioinformatics, 19, 52–52.

Holtgrewe,M. (2010) Mason–a read simulator for second generation sequenc-

ing data. Technical report, FU Berlin.

Köster,J. and Rahmann,S. (2012) Snakemake: a scalable bioinformatics work-

flow engine. Bioinformatics, 28, 2520–2522.

Lancia,G. et al. (2001) SNPs problems, complexity, and algorithms. In: Meyer

auf der Heide,F. (ed.) European Symposium on Algorithms. Springer, pp.

182–193.

Lippert,R. et al. (2002) Algorithmic strategies for the single nucleotide

polymorphism haplotype assembly problem. Brief. Bioinformatics, 3,

23–31.

Mazrouee,S. and Wang,W. (2018) Polycluster: minimum fragment disagree-

ment clustering for polyploid phasing. IEEE/ACM Trans. Comput. Biol.

Bioinform., doi: 10.1109/TCBB.2018.2858803.

Motazedi,E. et al. (2017) Exploiting next-generation sequencing to solve the

haplotyping puzzle in polyploids: a simulation study. Brief. Bioinform., 19,

387–403.

N’Diaye,A. et al. (2017) Single marker and haplotype-based association ana-

lysis of semolina and pasta colour in elite durum wheat breeding lines using

a high-density consensus map. PLoS One, 12, e0170941.

Fig. 3. Haplotype assembly results. The two plots on the left show haplotyping recall and precision on simulated data, while the two plots on the right show MEC

versus genotyping on experimental data. Dots in the scatter plot denote results for individual instances, while circles denote mean values per tool

Haplotype assembly of autotetraploid potato 3285

Reinert,K. et al. (2017) The seqan cþþ template library for efficient sequence

analysis: a resource for programmers. J. Biotechnol., 261, 157–168.

Schwartz,R. et al. (2010) Theory and algorithms for the haplotype assembly

problem. Commun. Inform. Syst., 10, 23–38.

Siragusa,E. et al. (2017) Linear time algorithms to construct populations fit-

ting multiple constraint distributions at genomic scales. IEEE/ACM Trans.

Comput. Biol. Bioinform., doi: 10.1109/TCBB.2017.2760879.

Szolek,A. et al. (2014) Optitype: precision HLA typing from next-generation

sequencing data. Bioinformatics, 30, 3310–3316.

Uitdewilligen,J.G. et al. (2013) A next-generation sequencing method for

genotyping-by-sequencing of highly heterozygous autotetraploid potato.

PLoS One, 8, e62355.

Winston,W.L. et al. (2003) Introduction to Mathematical Programming. Vol.

1. Thomson/Brooks/Cole Duxbury, Pacific Grove, CA.

Xie,M. et al. (2016) H-PoP and H-PoPG: heuristic partitioning algorithms for

single individual haplotyping of polyploids. Bioinformatics, 32,

3735–3744.

3286 E.Siragusa et al.

	btz060-TF1

