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Abstract 
Risk adjustment models for intensive care outcomes have yet to realize the full potential of data unlocked 
by the increasing adoption of EHRs. In particular, they fail to fully leverage the information present in 
longitudinal, structured clinical data – including laboratory test results and vital signs – nor can they infer 
patient state from unstructured clinical narratives without lengthy manual abstraction. A fully electronic 
ICU risk model fusing these two types of data sources may yield improved accuracy and more personalized 
risk estimates, and in obviating manual abstraction, could also be used for real-time decision-making. As a 
first step towards fully “electronic” ICU models based on fused data, we present results of generalized 
additive modeling applied to a sample of over 36,000 ICU patients. Our approach outperforms those based 
on the SAPS and OASIS systems (AUC: 0.908 vs. 0.794 and 0.874), and appears to yield more granular 
and easily visualized risk estimates. 
 
1. Introduction 
  
Intensive care in the United States consumes nearly 1% of the country’s GDP annually and accounts for 
13% of all hospital costs, as of 2010.1 The human toll of ICU care in the U.S. also presents a large burden: 
nearly 6 million patients are admitted to the ICU annually,2 and mortality rates in ICUs are estimated to be 
about 12%, on average.3 In addition, large variations in the quality of ICU care are also observed between 
hospitals, and much of this variation remains even after adjusting for disparities in case mix.4–6 Taken 
together, these findings underscore the critical need for performance measurement and benchmarking of 
ICU outcomes, chiefly of mortality and length of stay. Such initiatives are driven by the application of 
accurate ICU risk adjustment models, including the Acute Physiology and Chronic Health Evaluation 
(APACHE),7 the Simplified Acute Physiology Score (SAPS),8 and the Mortality Probability Model 
(MPM).9 In addition, these models have also been used to adjust for case mix in observational studies,3 to 
compare treatment arms in RCTs,10 and to inform ICU decision-making, triage, and resource allocation.11 
 
However, existing ICU models exhibit a series of limitations. As the increasing adoption of EHRs in the 
United States and elsewhere promises to make a wider variety of data available for these models to ingest, 
recent work in this area has focused on merely adapting existing models, including, for example, SAPS12 
and APACHE13 to the EHR. However, in doing so, such approaches centered around adaptation neglect the 
wealth of information available in the form of unstructured, free-text clinical narratives, as well as trends in 
longitudinal laboratory test results and vital signs, possibly limiting predictive accuracy. If not EHR-
adapted, these models then require manual chart abstraction by trained staff; one study estimated this 
abstraction process to take 37 and 20 min per chart, on average, for APACHE and SAPS, respectively.6 The 
time and cost burden associated with chart abstraction limits these models’ utility for real-time ICU 
decision-making, and makes it a nontrivial task to compute these risk scores retrospectively; in one study, 
the cost to abstract the data required to compute APACHE scores for a 60,000-patient ICU cohort was 
estimated to approach $2 million.12 
 
In this work, we present steps towards “fully electronic” ICU risk adjustment based on generalized additive 
models (GAMs) utilizing features built from fused clinical data to predict in-hospital mortality. By fused 
clinical data, we denote data which combines both structured and unstructured data sources; here, the 
former are derived from longitudinal laboratory test results and vital sign measurements from ICU 
flowsheets, while the latter derive from the free text of clinical narratives. Fused data of this form have 
previously been used to predict code status14 and colorectal surgical complications,15 but have yet to be 
used to predict ICU mortality or to estimate risk in the clinical setting more generally, aside from one 

166



instance where topics derived from latent Dirichlet allocation were used in conjunction with SAPS for this 
task.16 Indeed, the use of fused data in clinical predictive modeling more generally appears to be rare, with 
nearly all published models leveraging either only structured or unstructured data sources, but not both in a 
single model.17 Such an approach, especially when combined with a flexible and interpretable method such 
as GAMs, could yield a richer model giving more personalized risk estimates obtained by the interaction of 
features derived from both types of sources. For example, trends in a patient’s Glasgow Coma Score (GCS) 
during their first 24 hours in the ICU could be interacted with mentions of postoperative status in provider 
notes to personalize their risk estimate to an extent not possible if relying on changes in GCS alone. 
 
2. Methods  
 
The data used in this study were drawn from the Medical Information Mart for Intensive Care-III (MIMIC-
III) ICU database, developed from EHR, telemetry, and other data routinely collected for patients admitted 
between 2001 and 2012 at Beth Israel Deaconess Medical Center in Boston, Massachusetts, a tertiary care 
and teaching hospital.18 For this study, we identified the first ICU stay lasting > 4 h for each patient and 
selected all data that were collected up to 24 hours following ICU admission representing the laboratory 
tests and vital sign measurements listed in Table 1. This is in line with other ICU models, including 
APACHE IV and SAPS II, which look up to 24 hours following ICU admission; however, these models use 
only the ‘worst’ value, i.e., either the highest or lowest value within this window, depending on the 
variable. We also selected all provider notes, including physician progress notes, nursing notes, 
postoperative notes, and radiology reports written within this window, and did not differentiate on the basis 
of the author. The outcome used was in-hospital mortality. 
 
To model the relationships between these features and mortality, we relied on an approach using 
generalized additive models (GAMs).19–21 GAMs represent an extension of generalized linear models 
(GLMs), where the predictors are related to the outcome via smooth, and possibly nonlinear, functions. The 
parametric forms of these functions can be prespecified before fitting the GAM and then the parameters 
estimated from the data, or otherwise be taken to be nonparametric and having arbitrary shape, with the 
latter approach being more common. Classes of functions commonly used in GAMs include locally 
weighted regression (LOESS) smoothers, smoothing splines, and regression splines. Here, we use 
smoothing splines, which afford greater flexibility than regression splines or LOESS smoothers, but tend to 
be more computationally expensive. 
 
The GAM was compared to a series of models run against the fused dataset as described above, specifically 
L2-regularized (or ridge) logistic regression, linear support vector machines (SVMs), and gradient boosted 
trees implemented using xgboost.22 We also obtained performance estimates for a logistic regression 
models based on both the SAPS and Oxford Acute Severity of Illness Score (OASIS)23 systems, which can 
easily be computed from data elements in MIMIC-3. We used the area under the receiver operating 
characteristic curve (AUC) was used a metric to compare models. Estimates of and 95% confidence 
intervals for the AUC for each model were obtained by 10 repetitions of 10-fold cross-validation (CV). All 
models and related procedures were implemented in R (version 3.3.3) using the caret and gam packages.  
 
The physiologic data, comprising laboratory tests and vital sign measurements, were collected sequentially 
at varying sampling rates, and so each test or vital sign were initially represented by a time series. For 
example, heart rate was recorded hourly, while laboratory tests were taken less regularly. For each time 
series, in order to capture gross temporal variation, we engineered a set of derived features based on 
summary statistics, namely the mean value, standard deviation, maximum and minimum, last minus first 
value recorded as well as the absolute value of this difference,, and the slope of the linear trend fit to the 
data. The full list of data elements and derived features used in our experiments is given in Table 1. We fit 
a GAM model using only these features derived from structured data as a baseline for the fused-data model. 
 
For all fused-data models, prior to each fold of CV, and owing to computational considerations, we also 
separately fit a LASSO-based classifier, as in [24], to the free text narratives in the training set in order to 
prune the set of unstructured term mentions that eventually served as input to GAM, together with the 
features derived from structured data elements. On the order of 105 unique terms were present across all the 
notes in our corpus, and this step resulted in roughly 500 unique terms being selected over each CV fold. 
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Without such a step, our GAM would have had to scale to accommodate on the order of O([105+100]2) 
possible interactions, a model fit which would have proved infeasible to compute. Throughout this process, 
each document comprising all the notes associated with a patient was represented as a bag of words without 
normalization, meaning that ontology mapping, negation detection, or other similar techniques were not 
used. Finally, the per-document frequencies associated with each term were then transformed into term 
frequency-inverse document frequency (tf-idf)25 features which served as input to the GAM. We also 
performed a sensitivity analysis using the sublinear term frequency, i.e., log (1+tf), in place of the raw term 
frequency in order to adjust for note length, which we hypothesized could be associated with mortality. 
 
Table 1. List of structured data sources and the types of derived features engineered from each source. All 
derived features are with respect to a window of maximum length 24 hours following ICU admission. 

Laboratory tests Vital signs Derived feature types 
Blood urea nitrogen Heart rate Mean 

Bilirubin Respiratory rate Standard deviation 
Creatinine Temperature Maximum 

Lactate Mean arterial pressure Minimum 
Glucose   SaO2 (oxygen saturation) Last value minus first value 

(Δfeaturename) 
Sodium FiO2 Absolute value of difference 

between last and first values 
Potassium Glasgow Coma Score (GCS) – total Slope of linear trend fit to data 

using least squares 
Bicarbonate GCS – eye response  
Hematocrit GCS – motor response  

White blood cell count GCS – verbal response  
Platelet count   
Arterial PaCO2   

 
As the data used in this study were de-identified, this study was deemed to be exempt from review by the 
Institutional Review Board of the Stanford University School of Medicine. 
 
3. Results 
 
The characteristics of the dataset are presented in Table 2. The data reflect a rich case mix, with at least six 
different types of ICUs represented, including coronary care and cardiac surgery recovery units, medical 
ICUs, surgical ICUs, and a combined trauma/surgical ICU.  
 
Table 2. Characteristics of the dataset. 
Patients, total number 36,043 
Deaths (%) 3,895 (10.8%) 
Age, mean (IQR) 61.9 (51-76) 
Of which male (%) 20,836 (57.8%) 
Type of ICU  
Coronary care 5,255 (14.6%) 
Cardiac surgery recovery unit 7,394 (20.5%) 
Medical (including Neuro ICU) 12,549 (34.8%) 
Surgical 5,963 (16.5%) 
Trauma/Surgical 4,882 (13.6%) 
 
The results of various models are presented in Table 3. The GAM outperformed a logistic regression model 
based on SAPS, with 10-fold cross-validated estimates of AUCs of 0.908 for the GAM versus 0.794 for 
logistic regression on SAPS, and 0.874 for logistic regression on OASIS. In addition, the performance of 
the GAM compares well to those of other models tested on the fused dataset; while an AUC of 0.910 was 
estimated for the gradient boosting machine (GBM) – the best-performing model in terms of raw AUC -- 
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this difference was not statistically significant at the 0.05 confidence level, as the 95% CI for the estimate 
of the AUC obtained for the GBM failed to exclude 0.908. Furthermore, in a sensitivity analysis, using the 
a normalized tfidf metric incorporating a sublinear term frequency did not improve performance compared 
to the raw tfidf metric for each unstructured input, and so all performance estimates presented are based on 
the use of the latter metric. Finally, a GAM fit on fused data appears to yield statistically significantly 
better performance compared to a GAM fit on features derived from structured data alone. 
 
Table 3. Model performance comparison.   
Model AUC (95% CI) 
Logistic regression on SAPS score only 0.794 (0.790-0.798) 
Logistic regression on OASIS score only 0.874 (0.864-0.881) 
Logistic regression on fused dataset (FUSED) 0.857 (0.841-0.872) 
Gradient boosting machine on FUSED 0.910 (0.901-0.920) 
Support vector machine on FUSED 0.873 (0.855-0.893) 
Generalized additive model on structured features 0.853 (0.840-0.866) 
Generalized additive model on FUSED 0.908 (0.898-0.917) 
 
Examples of univariate risk curves estimated by the GAM for single features are presented in Figure 1. 
Bivariate risk surfaces estimated for pairs of features, where both derive from unstructured data are 
presented in Figure 2, while those estimated for pairs where one feature derives from structured data and 
the other from unstructured data are presented in Figure 3. The univariate risk surfaces in Figure 1 appear 
to more accurately recapitulate the nonlinear nature of the relationships between these features and 
mortality. While the GAM does not provide summary estimates of the relative influence of each feature as 
a GLM would by estimating a single coefficient, some of the most influential features, as given by the p-
value for the significance of the smooth term, were the features derived from GCS scores, particularly the 
mean GCS over 24 hours, the difference in GCS (ΔGCS) over this window, and the slope of the linear 
trend fit to these scores. Other influential features included patient age, and their mean sodium, potassium, 
and lactate levels, the smooths of which are shown in Figure 1. Some of the most influential unstructured 
features, again selected on the basis of their p-value, included “expired”, “CMO”, “midline shift”, 
“posturing”, and “BMT” (bone marrow transplant). 
 
The bivariate plots presented in Figures 2 and 3 exhibit some interesting properties. First, these plots can be 
used to assess linear dependence between the features, as can be seen in the plots in Figure 2, as well as in 
Figure 3A. Second, a “phase transition” can be observed in Figure 3B, where the relationship between the 
windowed mean of the mean arterial pressure (MAP) and a term mention related to vasopressor 
medication, here “pressors”, begins to exhibit linear dependence for mean MAPs below 65 mm Hg. Similar 
patterns were observed for other related term mentions, including “levophed”, and “dopamine”, among 
others. 
 
Third, in Figure 3C, the contour lines appear to recapitulate the shape of the univariate curve estimated for 
ΔGCS in Figure 1C, but rotated clockwise by 90 degrees, and we also observe that the risk estimates for 
ΔGCS are further stratified on the basis of postoperative status, as measured by mentions of “POD” (post-
op day) in notes. Similarly, patients can be stratified both on the basis of their mean GCS during their first 
ICU day and also of their having experienced an overdose (Figure 3D), and the relationship between the 
two features also appears to exhibit linear dependence, in that post overdose status appears to confer a 
protective effect and vice versa. The highest-risk region lies in the bottom left of the plot, corresponding to 
other ICU patients with low mean GCSs who were not post overdose status. We cover some of these points 
in more depth in the Discussion section.  
 
Figure 1. Bivariate risk curves for four features derived from physiologic measurements common in 
existing ICU risk models: serum sodium, potassium, and lactate, as well as the Glasgow Coma Score 
(GCS). However, for sodium and potassium levels, we have taken the 24-hour windowed mean, and for 
lactate and GCS, we have taken the windowed 24-hour difference. The grey regions denote 95% 
confidence intervals estimated by the GAM, and a rugplot lies at the bottom of each figure, giving the 
distribution of the feature among all patients in the dataset.  
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Figure 2. Examples of bivariate risk surfaces estimated for pairs of features derived from unstructured data. 
Risk estimates are represented by a red (low risk) to white (high) spectrum; the green lines denote contours 
joining areas of the plot having equal risk. 
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Figure 3. Bivariate risk surfaces for pairs of features, where one derives from unstructured data (x-axis) 
and the other from structured data sources (y-axis). 

  

  
 
  
4. Discussion 
 
Here, we contribute a risk adjustment model for ICU outcomes based on generalized additive modeling 
applied to fused clinical data, which comprises features derived from both structured and unstructured data 
sources. Our work highlights the utility of GAMs for predicting ICU mortality: not only did GAMs appear 
to significantly outperform existing ICU risk modeling methodologies – SAPS and OASIS – they also 
appeared to perform just as well as the current “gold standard” of predictive modeling – gradient boosting 
machines (GBMs) – applied to fused datasets. GAMs also appear capable of robustly estimating complex 
risk surfaces in order to produce more personalized risk estimates for ICU patients, and to a granularity not 
possible with other classifiers, including GBMs. In particular, our work demonstrates the utility of features 
derived from unstructured text, especially in conjunction with more traditional structured features via an 
interaction. However, further work remains to be done in order to be able to fully integrate features derived 
from text into ICU models, specifically with regard to normalization, which could possibly include 
mapping the terms onto an ontology and applying negation detection, among other methods, and also with 
regard to minimizing possible biases introduced by some of these terms, including, e.g., by “expired,” and 
to a lesser extent, by “DNR” (do not resuscitate) and “CMO” (comfort measures only). Nevertheless, it 
appears clear that in this setting that these features provide additional value beyond that yielded by features 
derived from structured data elements, which should motivate their use in such models. 
 
Overall, the GAM approach appears to provide more easily interpretable estimates of risk for both the 
univariate and bivariate cases. The estimated risk curves agree more readily with clinical intuition, 
compared to those that would be obtained via other models: a GLM, for example, would estimate a straight 
line through each plot in Figure 1, which would fail to capture the true shape of the nonlinear relationship 

0.0 0.1 0.2 0.3 0.4

20

30

40

50

60

70

80

90

"dnr" (do not resuscitate), tf−idf value

Pa
tie

nt
 a

ge
, y

ea
rs

A

0.0 0.1 0.2 0.3 0.4

50

100

150

"pressor", tf−idf value

W
in

do
w

ed
 2

4-
ho

ur
 m

ea
n 

M
AP

, m
m

H
g

B

0.0 0.1 0.2 0.3 0.4 0.5

−10

−5

0

5

10

"pod" (post−op day), tf−idf value

W
in

do
w

ed
 2

4-
ho

ur
 ∆

G
C

S

C

0.0 0.2 0.4 0.6 0.8

4

6

8

10

12

14

"overdose", tf−idf value

W
in

do
w

ed
 2

4-
ho

ur
 m

ea
n 

G
C

S D

171



between these features and mortality. In addition, these risk curves superficially resemble those used by the 
Rothman Index (RI),26 but are distinct in that the RI curves rely on polynomial regression and were 
estimated separately for each feature before fitting the model, while our approach uses more flexible 
smoothing splines and estimates all curves and surfaces together in a single model, potentially facilitating 
scalability and portability. Furthermore, and more generally, the RI also relies on the use of a customized 
data collection instrument separate from the main patient record, while our approach leverages only those 
data routinely collected during the process of care. 
 
Examining the estimated risk curves for mean serum sodium and serum potassium over the up to 24 hour 
window following to ICU admission yielded by the GAM, we observe that they are U-shaped, with the 
minimum risk lying within common reference ranges for these tests, as would be expected. Similarly, the 
estimated risk curve for ΔGCS, or the difference between last and first Glasgow Coma Scores (GCSs) 
within this up to 24 hour window, again agrees with clinical intuition – that steeper declines in a patient’s 
level of consciousness are associated with a poorer prognosis. However, due to the lack of extreme-valued 
data, the risk estimates in these cases may not be reliable, and this is reflected by the width of the 
confidence intervals estimated in these ranges. For example, the relationship between extremely high or 
low sodium values and mortality, as suggested by the univariate plot in Figure 1A, would almost certainly 
not be borne out in reality; more data would be required to be able to obtain more accurate estimates of the 
true relationship.  
 
Of particular interest are the bivariate risk surfaces for pairs of features estimated by the GAM in Figure 2. 
In order to gain some intuition, we first examine the risk surfaces estimated for pairs of terms taken from 
unstructured clinical narratives that we would almost certainly expect a priori to occur together in notes, 
and hence to exhibit interaction in a GAM. Here, these pairs are ‘CABG’ (coronary artery bypass graft) and 
‘CSRU’ (cardiac surgery recovery unit), as well as ‘POD’ (post-operative day) and ‘dilaudid’ (an opioid 
analgesic commonly given after surgery). The plots of each risk surface are given in Figure 2. Again, 
whiter colors represent higher risk, while redder colors correspond to lower risk, and the green contour 
lines join points having equal risk.  
 
The gradients of the contours in each plot in Figure 2 are diagonal, indicating an linear interaction between 
the terms in each pair, as would be expected. A diagonal gradient implies such an interaction as it shows 
that the risk contributions of an increase of a certain magnitude in the value of either feature are both 
approximately equal. In addition, the estimated risk decreases smoothly from the lower left to the upper 
right of each plot, which agrees with existing knowledge that patients admitted to ICUs postoperatively 
generally are at lower risk of in-hospital mortality.7 The significance of these interactions lies in that they 
can characterize the extent to which one feature acts as a proxy for the other in such models, allowing 
sources of redundancy as well as novelty to be identified – which may potentially prove significant when 
working with features derived from heterogeneous data sources. 
 
Furthermore, in Figure 2, the bivariate risk surface estimated for “mannitol” (a medication used to reduce 
cerebral edema) and “midline shift” also implies a linear interaction between these features, though not 
over the whole range of each, as can be observed in the other two plots in Figure 2. Here, the risk increases 
superlinearly along the diagonal region of the plot, and suggests a synergistic relationship between the two 
features, as can be observed from the steepness of the risk surface in this region, as implied by the 
increased widths between the contours. This observation suggests that patients experiencing cerebral edema 
to an extent requiring osmotic therapies, such as mannitol, are indeed at much higher risk than would be 
suggested by the presence in a provider note of either “midline shift” or “mannitol” alone (mannitol has 
other uses, e.g., as a laxative). 
 
In particular, bivariate risk surfaces can be estimated for pairs of features where one derives from structured 
data and the other from unstructured data, as in Figure 3. The risk surface estimated for “DNR” (do not 
resuscitate) and patient age is presented in Figure 3A. It is known that increasing patient age is associated 
with use of DNR orders, and this is borne out here, as the diagonal gradients again suggest the presence of 
an interaction. In addition, risk also increases as both the number of DNR mentions and age increase. 
Moreover, Figure 3B also illustrates an interesting property captured by these GAMs: below a windowed 
mean value of mean arterial pressure (MAP) of 65 mm Hg, a “phase transition” is observed. At this point, 
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the risk surface appears to abruptly shift from a regime where little to no interaction exists between these 
features, to one which exhibits robust linear interaction: the lower the value of mean MAP, the more 
frequently mentions of “pressor” appear, and the mortality risk increases concomitantly. A similar pattern 
with the same “phase transition” is also observed for other terms relating to vasopressors, including 
“levophed” and “dopamine”, among others. The existence of such a “phase transition” within these 
estimated risk surfaces is significant in that it delineates specific regions of the feature space where one 
feature can act as a proxy for the other and further informs the use of these features in risk models. 
 
There are several limitations associated with our study. First, even though the data reflect a rich case mix 
and were collected over a 11-year-long period, they are representative of only one institution, and the 
relative portability of ICU risk models based on GAMs, compared to other classifiers, to other sites is 
unknown. Indeed, owing to their flexibility, and hence propensity to overfit, it is certainly possible that 
GAMs may not prove as portable as other classifiers,. Second, we did not apply normalization in the 
preprocessing pipeline, and so did not perform negation detection or mapping terms onto an ontology, nor  
were the computed tfidf metrics normalized to account for note length, but our sensitivity analysis found 
that the latter modification did not change performance significantly. However, we felt that the 
development and validation of a such a pipeline was outside the scope of this study, which aimed to 
principally establish the feasibility of fully electronic ICU risk models based on fused data, and to 
demonstrate the value of these unstructured features in such models. Finally, the only comparators 
representing existing ICU risk modeling methodology available to us were the SAPS-I and OASIS systems, 
which may offer somewhat limited performance compared to the state-of-art in scoring systems, including 
APACHE IV, that rely on a broader range of features and so capture more information about a patient’s 
physiological state, but currently require costly manual chart abstraction. Ideally, a model based on the 
APACHE IV score would have been used as a comparator, but the estimated costs of data collection for 
this cohort – upwards of $1 million, based on other studies6,12 – precluded us from doing so. 
 
Moreover, the full extent of the utility of using features derived from clinical narratives to predict ICU and 
other outcomes is currently unknown. Several examples exist in the literature where features derived from 
nursing notes have been used to predict ICU mortality,16,24 but to the best of our knowledge, no models 
currently deployed for this task rely on features derived from unstructured text data. While including these 
features in models could, as we have shown, potentially improve the predictive performance and facilitate 
interpretability of such models, their use also presents several unique challenges, given that documentation 
patterns may vary substantially between institutions. First, the mention of certain terms associated with 
documentation of patient death, including, e.g., “expired,” proves sufficient to predict the outcome with 
certainty, and as such, may suppress the contribution of other predictors and introduce at least one source of 
bias, owing to variability in documentation patterns.  
 
To a lesser degree, this phenomenon also occurs with other terms such as “DNR” (do not resuscitate) and 
“CMO” (comfort measures only); indeed, it is known that DNRs are associated with mortality.27 Other 
similarly influential terms include “sepsis”, and those associated with neurological exams indicative of 
comatose status, e.g., “corneals” (as in “corneals absent”) and “posturing”. While there may not exist 
substantial variation in documentation patterns with regard to patient death, several studies have 
demonstrated institutional and regional variation in DNR ordering patterns,28,29 and such variation could 
present a potential source of bias -- one which could act in concert with variation in documentation 
patterns, although the full extent of the latter type of variation is presently unknown. Second, with the 
knowledge of the high influence of certain terms in these models, providers may then bias their 
documentation behaviors in such a way to “game” a model, e.g., by repeating terms associated with high 
risk while writing notes so as to inflate estimated mortality risks for their patients, thus improving the 
apparent risk-adjusted performance of their ICUs. However, these implementation challenges could be 
mitigated with new informatics methods built into the preprocessing pipelines that ingest the data for use 
by these models. Mitigation strategies could involve intelligently filtering potentially biased term mentions 
in unstructured narratives, as well as methods to characterize variation between providers’ lexical styles in 
notes, or to clamp the contributions of such a subset of features in these models. 
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5. Conclusion 
 
In this paper, we demonstrated the utility of an approach based on generalized additive models for ICU 
mortality prediction on fused clinical data which combines features derived from both structured and 
unstructured data sources. The GAM approach offers an unified framework which outperforms an existing 
modeling paradigm based on SAPS, and in fact yields performance comparable to gradient boosting 
machines, and which allows for the estimation of complex – yet easily interpreted risk surfaces for pairs of 
features. In particular, our approach demonstrates the value added by the inclusion of features derived from 
unstructured narratives to further stratify mortality risk, particularly in concert with features derived from 
structured data sources and engineered so as to capture temporal variation. This approach may hold value 
for models estimated and deployed in other settings beyond the ICU to produce more personalized risk 
estimates for patients. However, there remain implementation challenges in utilizing unstructured data 
sources to their fullest extent in such models, but these could be mitigated with the development of 
adjunctive informatics methods.  
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