
Received: 24 August 2021 Revised: 18 May 2022 Accepted: 31 May 2022

DOI: 10.1002/acm2.13704

R A D I AT I O N O N C O L O G Y P H Y S I C S

Assessing the practicality of using a single
knowledge-based planning model for multiple
linac vendors

Raphael J. Douglas1 Adenike Olanrewaju1 Lifei Zhang1 Beth M. Beadle2

Laurence E. Court1

1Department of Radiation Physics, The
University of Texas MD Anderson Cancer
Center, Houston, Texas, USA

2Department of Radiation Oncology, Stanford
University, Palo Alto, California, USA

Correspondence
Raphael Douglas, Department of Radiation
Physics, The University of Texas MD
Anderson Cancer Center, 1400 Pressler
Street, Houston, TX 77030, USA.
Emaul: rjdouglas3@mdanderson.org

Funding information
National Cancer Institute, Grant/Award
Number: NIH CA-202665; Varian Medical
Systems

Abstract
Purpose: Knowledge-based planning (KBP) has been shown to be an effec-
tive tool in quality control for intensity-modulated radiation therapy treatment
planning and generating high-quality plans. Previous studies have evaluated its
ability to create consistent plans across institutions and between planners within
the same institution as well as its use as teaching tool for inexperienced plan-
ners. This study evaluates whether planning quality is consistent when using a
KBP model to plan across different treatment machines.
Materials and methods: This study used a RapidPlan model (Varian Medi-
cal Systems) provided by the vendor, to which we added additional planning
objectives, maximum dose limits, and planning structures, such that a clinically
acceptable plan is achieved in a single optimization. This model was used to
generate and optimize volumetric-modulated arc therapy plans for a cohort
of 50 patients treated for head-neck cancer. Plans were generated using the
following treatment machines: Varian 2100, Elekta Versa HD, and Varian Hal-
cyon. A noninferiority testing methodology was used to evaluate the hypothesis
that normal and target metrics in our autoplans were no worse than a set of
clinically-acceptable baseline plans by a margin of 1.8 Gy or 3% dose-volume.
The quality of these plans were also compared through the use of common
clinical dose-volume histogram criteria.
Results: The Versa HD met our noninferiority criteria for 23 of 34 normal and tar-
get metrics; while the Halcyon and Varian 2100 machines met our criteria for 24
of 34 and 26 of 34 metrics, respectively. The experimental plans tended to have
less volume coverage for prescription dose planning target volume and larger
hotspot volumes. However, comparable plans were generated across different
treatment machines.
Conclusions: These results support the use of a head-neck RapidPlan mod-
els in centralized planning workflows that support clinics with different linac
models/vendors, although some fine-tuning for targets may be necessary.
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1 INTRODUCTION

Intensity-modulated radiation therapy treatment plan-
ning is a challenging and time-consuming process
that can vary in quality between planners across
institutions1,2 and even within the same institution.3

Knowledge-based planning (KBP) has been shown to
be effective in creating high-quality treatment plans,4–9

reducing variability between planners,9 and evaluat-
ing plan consistency and quality.2,3,11–14 These factors
make KBP models ideal for centralized planning sys-
tems, such as the radiation planning assistant (RPA).

The RPA is a web-based automated treatment plan-
ning system that is being developed to provide high-
quality contours and treatment planning to clinics with
limited resources around the world. The RPA’s devel-
opment has been described in previous works.5,15–22

Through the Eclipse application programming interface,
the RPA uses RapidPlan (Varian Medical Systems, Palo
Alto, CA), a commercial KBP system, to generate and
optimize treatment plans for various cancer sites.

Since we aim to provide plans generated by the RPA
to multiple clinics around the world, we needed to evalu-
ate how plan quality is affected when a single RapidPlan
model is used to generate plans with different treat-
ment machines that have different beam qualities and
multileaf collimator (MLC) characteristics. In this study,
we started with a KBP approach that was developed
for head and neck treatment on a Varian 2100 series
linac, with plan quality validated by radiation oncolo-
gists from multiple institutions. We then used the same
approach to create volumetric-modulated arc therapy
(VMAT) plans for treatment on Versa HD (Elekta) and
Halcyon (Varian) treatment devices.The plans were then
dosimetrically evaluated for quality by comparing them
to our baseline, physician-reviewed autoplans. Previous
studies have shown the robustness of KBP models to
tumor location, treatment modalities, and institutional
protocols,23,24 but to our knowledge, this is the first
study to evaluate a RapidPlan model across different
treatment machines. This comparison is important for
centers (or treatment planning services) where there is
a need to accommodate different models and vendors.

2 METHODS

2.1 Patient data

For this analysis, a cohort of 50 patients with head
and neck cancer was retrospectively collected and de-
identified. This study was approved by the institutional
review board. All patients were previously treated using
VMAT. The patients’ original, physician-drawn targets,
and normal tissue contours, along with the original CT
scan and dose prescription, were used in autoplan gen-
eration. The patients had primary tumors from various

TABLE 1 Breakdown of the patient cohort by site and high-dose
planning target volume (PTV1) range

Primary site
Number
of patients

Range of PTV1
dose, Gy

Oropharynx 21 60–70

Oral cavity 8 60–70

Larynx 3 70

Hypopharynx 8 60-68

Nasopharynx 10 60-70

subsites such as the nasopharynx,oropharynx,and oral
cavity (Table 1).

2.2 Plan optimization

The RPA uses a RapidPlan model to optimize HN plans
in Eclipse Treatment Planning System (Varian Medi-
cal Systems, Palo Alto, CA). This model was developed
using the vendor-provided Washington University HN
RapidPlan model as a starting point.Additional planning
objectives, maximum dose limits, and additional plan-
ning structures were added to the model. The model
was refined through iterative testing and physician feed-
back using a set of validation patients that were not
included in this study. The full planning strategy is out-
lined in a previous publication by our group.5 The model
was optimized for a Varian 2100 linac.

2.3 Baseline plans

In a previous study by our group, a set of Varian 2100
plans was generated for our patient cohort using Eclipse
version 15.5—in which the autoplans were compared
to the original, clinically-approved plan in a blinded
review by physicians—and scored for clinical acceptabil-
ity based on contour quality and dose coverage.5 From
this study,49/50 of the autoplans were deemed clinically
acceptable by the reviewers. These physician-reviewed
autoplans were dubbed our baseline plans and were
used as a basis for our comparison.

2.4 Plan generation

Since the creation of our baseline plans, we upgraded
Eclipse to version 15.6. Three plans were generated
per patient in our cohort using the following machines:
Varian 2100, Elekta Versa HD, and Varian Halcyon. We
decided to re-plan the Varian 2100 cases in Eclipse
v15.6 in order to verify that any dose differences seen
were not the result of the difference in Eclipse versions.
The plans generated in Eclipse v15.6 were dubbed our
experimental plans.
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The Varian 2100 (both baseline and experimental)
and Versa HD plans consisted of three 360◦ coplanar
treatment arcs with collimator angles of 15◦, 345◦, and
90◦. The Halcyon plans consisted of four treatment arcs
with collimator angles of 0◦,45◦,90◦,and 315◦.Three of
the 50 patients had two planning target volume (PTV)
dose levels, while the other 47 had three PTV dose
levels.

2.5 Evaluation process

To determine the quality of our experimental plans, we
used a one-sided Mann-Whitney U test at 95% con-
fidence to determine whether the experimental doses
were noninferior to the baseline doses by a margin, δ,
we determined based on clinical judgement.25–27 For a
given dose-volume histogram (DVH) metric, let MB be
the median value for the baseline plans, and ME be
the median value for the experimental plans. For DVH
metrics in which lower values are better, we have the
following hypotheses:

H0 : ME ≥ MB + 𝛿

Ha : ME < MB + 𝛿

For metrics in which higher values are better, we have
the following hypothesis:

H0 : ME ≤ MB + 𝛿

Ha : ME > MB + 𝛿

Experimental plans are considered noninferior if the
null hypothesis is rejected (i.e., p < 0.05). A 95% con-
fidence interval for ME-MB was calculated in order to
conclude noninferiority. For DVH metrics in which lower
values were better, the upper limit of the 95% confi-
dence interval needed to be less than the margin in
order to conclude noninferiority. For metrics in which
higher values were better, the lower limit of the confi-
dence interval needed to be greater than the margin.For
normal structures, D95%, and D98%, δ = 1.8 Gy (i.e.,
3% of the lowest dose prescription in our dataset); for
V95%,V100%,V105%,and V110%,δ= 3%.The number
of plans that met established clinically accepted dosi-
metric criteria outlined in Radiation Therapy Oncology
Group protocol 101628 was also calculated and com-
pared in order to assess the clinical acceptability of the
autoplans.

3 RESULTS

3.1 Noninferiority

Table 2 shows the confidence interval and p-values from
our statistical test for each DVH criteria. The Versa HD

was noninferior (p < 0.05) for 23 of 34 DVH metrics
evaluated; Halcyon was noninferior for 24 of 34 met-
rics; the Varian 2100 re-plan was noninferior for 26 of
34 metrics. We were not able to conclude noninferior-
ity for brain, brainstem, both cochleae, ipsilateral parotid,
brainstem with 5 mm margins, and spinal cord with 5-
mm margins. For some DVH metrics, we were able to
conclude noninferiority for some experimental machines
(Versa, Halcyon, 2100 v15.6), but not all. This can be
seen in intermediate-dose V100%, V105%, and low-
dose V105% PTVs, where the p-values for Versa and
Halcyon were above 0.05, but for 2100 v15.6, it was less
than 0.05. Figure 1 shows the distribution of planned
dose to the normal structures for the brainstem, right
cochlea, ipsilateral parotid, and low-dose PTV target
coverage at 100%, 105%, and 110% of the prescription
dose. The distributions for the brainstem, right cochlea,
ipsilateral parotid, and low-dose PTV target coverage at
105% and 110% show that there was very good agree-
ment between the experimental and baseline plans,with
r-squared values greater than 0.82 for all experimental
machines. However, there was not very good agree-
ment (R2 < 0.50) for low-dose target coverage at 100%,
due to an outlier. Figure 2 shows a DVH for one of the
patients, comparing brainstem, both parotids, and PTVs
for the baseline and experimental autoplans. All four
plans showed good agreement for those structures.

3.2 Dosimetric criteria

The number of autoplans that met established clini-
cal dosimetric criteria are listed in Table 3, along with
the original clinical plans for comparison. All autoplans
met clinical recommendations for the spinal cord, brain-
stem, optic chiasm, optic nerves, PTV1 (V1cc < 117%
and V95% > 95%), PTV2 (V95% > 80%), and PTV3
(V95% > 80%).

4 DISCUSSION

The goal of this study was to evaluate the ability of a
single RapidPlan model to generate comparable plans
across different treatment machines that have differ-
ent beam and MLC characteristics. Using a RapidPlan
model that was optimized for a Varian 2100 linac, we
were able to generate plans that were noninferior to our
baseline in at least 68% of the DVH metrics evaluated
for each set of experimental plans. For the metrics in
which we were not able to conclude noninferiority, we
conducted an investigation into the reason why the non-
inferiority criteria was not met. We noticed that there
were outliers for the Halcyon and Varian 2100 (v.15.6)
machines in the following normal structures:brain,brain-
stem, right cochlea, left cochlea, and brainstem (with
5-mm margins). These outliers came from the same two
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TABLE 2 95% confidence interval (CI) and p-value of the one-sided Mann-Whitney test

Noninferiority test
Versa Halcyon 2100 v15.6

Structure, metric 95% CI p-Value 95% CI p-Value 95% CI p-Value

Brain, max Dose (−3.9, 5.0) 0.299 (−2.3, 6.7) 0.516 (−2.9, 6.5) 0.421

BrainStem, max Dose (−0.7, 2.6) 0.195 (−1.3, 2.2) 0.100 (−1.3, 2.0) 0.072

Chiasm, max Dose (−0.1, 0.7) <0.001 (−0.1, 0.6) <0.001 (−0.3, 0.5) <0.001

Cochlea_L, max dose (−3.7, 2.9) 0.123 (−3.3, 3.5) 0.175 (−3.0, 4.3) 0.267

Cochlea_R, max dose (−3.4, 2.6) 0.099 (−2.9, 3.8) 0.161 (−2.2, 4.8) 0.272

Con_Parotid, mean dose (−1.3, 2.3) 0.093 (−2.3, 1.3) 0.020 (−1.6, 2.0) 0.064

Eye_L, max dose (−0.2, 0.6) <0.001 (−0.4, 0.4) <0.001 (−0.4, 0.5) <0.001

Eye_R, max dose (−0.2, 0.6) <0.001 (−0.4, 0.5) <0.001 (−0.4, 0.6) <0.001

Ips_Parotid, mean dose (−2.2, 3.4) 0.202 (−3.1, 2.5) 0.099 (−2.5, 3.0) 0.147

Lens_L, max dose (0.0, 0.6) <0.001 (−0.1, 0.4) <0.001 (−0.2, 0.3) <0.001

Lens_R, max dose (0.1, 0.6) <0.001 (−0.1, 0.3) <0.001 (−0.2, 0.3) <0.001

Mandible, max dose (−1.7, 1.3) 0.023 (−1.6, 1.2) 0.025 (−1.5, 1.5) 0.034

OpticNrv_L, max dose (−0.2, 0.7) <0.001 (−0.2, 0.6) <0.001 (−0.4, 0.5) <0.001

OpticNrv_R, max dose (−0.2, 0.7) <0.001 (−0.2, 0.6) <0.001 (−0.3, 0.5) <0.001

SpinalCord, max dose (0.0, 1.5) 0.014 (−0.9, 0.7) <0.001 (−0.6, 0.8) <0.001

zBrainStem_05, max dosea (−1.0, 3.1) 0.303 (−0.5, 3.8) 0.477 (−1.0, 3.2) 0.349

zPTV1, D95% (−1.0, 0.2) 0.003 (−0.8, 0.3) 0.002 (−0.5, 0.5) 0.001

zPTV1, D98% (−1.3, 0.2) 0.011 (−1.1, 0.3) 0.005 (−0.7, 0.6) 0.002

zPTV1, V100% (−3.0, -1.0) 0.024 (−3.0, 0.0) 0.021 (−1.0, 1.0) <0.001

zPTV1, V105% (1.0, 1.0) <0.001 (1.0, 1.0) <0.001 (0.0, 0.0) <0.001

zPTV1, V95% (0.0, 0.0) <0.001 (0.0, 0.0) <0.001 (0.0, 0.0) <0.001

zPTV2, D95% (−1.2, 0.3) 0.006 (−1.3, 0.3) 0.007 (−0.7, 0.9) 0.001

zPTV2, D98% (−1.3, 0.3) 0.008 (−1.4, 0.2) 0.009 (−0.7, 0.8) <0.001

zPTV2, V100% (−4.0, -1.0) 0.312 (−5.0,−1.0) 0.440 (−1.0, 2.0) <0.001

zPTV2, V105% (2.0, 8.0) 0.864 (1.0, 8.0) 0.813 (−5.0, 2.0) 0.030

zPTV2, V110% (0.0, 1.0) 0.002 (0.0, 2.0) 0.003 (−1.0, 1.0) <0.001

zPTV2, V95% (−1.0, 0.0) <0.001 (−1.0, 0.0) <0.001 (0.0, 0.0) <0.001

zPTV3, D95% (−0.4, -0.1) <0.001 (−0.5,−0.2) <0.001 (−0.2, 0.0) <0.001

zPTV3, D98% (−0.5, -0.2) <0.001 (−0.6,−0.3) <0.001 (−0.2, 0.1) <0.001

zPTV3, V100% (−2.0, -1.0) <0.001 (−2.0,−1.0) 0.002 (−1.0, 0.0) <0.001

zPTV3, V105% (5.0, 8.0) 0.978 (7.0, 9.0) 0.997 (−2.0, 0.0) 0.018

zPTV3, V110% (0.0, 1.0) <0.001 (1.0, 2.0) 0.018 (0.0, 0.0) <0.001

zPTV3, V95% (0.0, 0.0) <0.001 (−1.0, 0.0) <0.001 (0.0, 0.0) <0.001

zSpinalCord_05, max dosea (−0.2, 1.7) 0.133 (−0.9, 1.2) 0.054 (−0.4, 1.5) 0.099

Abbreviations:DX%,doses at the given percent of target coverage;Dmax,maximum dose;Dmean,mean dose;VX%,percent of the target receiving the prescribed dose.
aStructure with a 5 mm margin.

patients, one of them being the patient in which the
clinically unacceptable baseline plan was generated for
in the aforementioned previous study.5 Both of these
patients were planned with two PTVs. The Halcyon and
Varian 2100 plans for these patients had large dose gra-
dients around the cochleae, and one had a target close
to the brain, which led to a large dose gradient around
the brain/brainstem. We also noticed that, for these two
patients, the Halcyon and Varian 2100 (v.15.6) plans

were more comparable to the original plans used treat
in the clinic than to our baseline autoplans. The experi-
mental Varian 2100 plans that were generated in Eclipse
v15.6 were noninferior in the most DVH criteria. Overall,
these plans were noninferior for all 17 DVH criteria for
target structures.

The target volumes in our study were less homoge-
neous for the Versa HD and Halcyon plans than for the
baseline plans. In general, these experimental plans had
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F IGURE 1 Scatterplots compare the distribution of planned dose to the normal structures for (from top left) the brainstem (a), right cochlea
(b), ipsilateral parotid (c), and low-dose PTV target coverage at 100% (d), 105% (e), and 110% (f) of the prescription dose. The y-axis represents
the planned dose in the experimental plan; the x-axis represents the planned dose in the baseline plan. The blue triangles represent the Versa
planned dose/coverage for a given patient; orange dots represent the Halcyon planned dose/coverage; green squares represent the Varian
2100 (v15.6) planned dose/coverage. Points that lie on the blue line represent patients in which both the experimental and baseline plans gave
the same value

F IGURE 2 Example dose-volume histogram (DVH) for one of the patients comparing brainstem, parotids, and target volume
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TABLE 3 Number of plans that met clinical dose criteria based on RTOG 1016 for the original clinical plans and the autoplans evaluated in
this study

Number of clinical/autoplans that met clinical dose recommendations
Structure Constraint Clinic Baseline Versa HD Halcyon 2100 v15.6

Spinal cord Dmax < 45 Gy 50 50 50 50 50

Brainstem Dmax < 54 Gy 48 50 50 50 50

Ipisilateral parotid Dmean < 26 Gy 29 24 21 25 24

V30Gy < 50% 40 42 40 41 42

Contralateral parotid Dmean < 26 Gy 44 41 41 40 40

V30Gy < 50% 48 47 46 46 46

Cochleae Dmax < 35 Gy 45 40 40 39 40

Optic chiasm Dmax < 54 Gy 49 50 50 50 50

Optic nerves Dmax < 54 Gy 49 50 50 50 50

Lenses Dmax < 7 Gy 44 45 46 47 45

Eyes Dmax < 35 Gy 45 45 45 45 45

Brain Dmax < 54 Gy 34 36 37 37 36

High-dose PTV V1cc < 110% 48 49 50 48 50

V1cc < 117% 50 50 50 50 50

V95% > 95% 50 50 50 50 50

Intermediate-dose PTV V95% > 100% 34 16 9 10 13

V95% > 80% 50 50 50 50 50

Low-dose PTV* V95% > 100% 30 30 15 15 21

V95% > 80% 47 47 47 47 47

Abbreviations: Dmax, maximum dose; Dmean, mean dose; PTV, planning target volume; RTOG, Radiation Therapy Oncology Group.
*Three patients were treated with only two PTVs.

reduced coverage of the prescription dose (V95% and
V100%) and larger hotspots (V105% and V110%) at
all dose levels. This indicates that some additional fine-
tuning of the plans may be needed when applying the
standard RapidPlan approach to different machines with
different beam qualities and MLC characteristics. This
sort of fine-tuning, however, has been shown to require
minimal effort.29

This study has some limitations. The sample size for
this study is a limiting factor of our test. This is appar-
ent when looking at the mean dose to the parotids. The
treatment machines that we were not able to confirm
noninferiority for the parotids each had only one plan
with a dose above the 1.8 Gy margin. Additionally, the
parotid dose in these plans were less than 1 Gy above
the margin. Prior to reproducing this study, we would
need to increase the power of our tests by increasing
our sample size. While the baseline plans were deter-
mined to be clinically acceptable, we are not able to
conclude that the same for the experimental plans gen-
erated for this study.Furthermore,an inherent weakness
with this study is that we can only confirm noninferior-
ity for the model under investigation. However, we can
confirm that it is possible to create noninferior plans
with a KBP model across different treatment machines.
We have also established a methodology for evaluating
other KBP models across different treatment machines.

Evaluating the effects of applying a single Rapid-
Plan model to linacs developed by various vendors is
important as more automation tools, such as the RPA,
are being developed that will allow for centralized plan-
ning. It will be important to understand the strengths
and weakness of these models as they will be used
on multiple linac models and vendors around the world.
We have shown in this study there is very good agree-
ment between plans generated with different linac types,
although some fine-tuning of models may be needed to
improve target coverage and minimize hotspots.
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