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Dominantly-inherited Alzheimer’s disease is widely hoped to hold the key to developing interventions for sporadic late onset

Alzheimer’s disease. We use emerging techniques in generative data-driven disease progression modelling to characterize domin-

antly-inherited Alzheimer’s disease progression with unprecedented resolution, and without relying upon familial estimates of years

until symptom onset. We retrospectively analysed biomarker data from the sixth data freeze of the Dominantly Inherited Alzheimer

Network observational study, including measures of amyloid proteins and neurofibrillary tangles in the brain, regional brain

volumes and cortical thicknesses, brain glucose hypometabolism, and cognitive performance from the Mini-Mental State

Examination (all adjusted for age, years of education, sex, and head size, as appropriate). Data included 338 participants

with known mutation status (211 mutation carriers in three subtypes: 163 PSEN1, 17 PSEN2, and 31 APP) and a baseline

visit (age 19–66; up to four visits each, 1.1 � 1.9 years in duration; spanning 30 years before, to 21 years after, parental age

of symptom onset). We used an event-based model to estimate sequences of biomarker changes from baseline data across disease

subtypes (mutation groups), and a differential equation model to estimate biomarker trajectories from longitudinal data (up to 66

mutation carriers, all subtypes combined). The two models concur that biomarker abnormality proceeds as follows: amyloid

deposition in cortical then subcortical regions (�24 � 11 years before onset); phosphorylated tau (17 � 8 years), tau and amyl-

oid-b changes in cerebrospinal fluid; neurodegeneration first in the putamen and nucleus accumbens (up to 6 � 2 years); then

cognitive decline (7 � 6 years), cerebral hypometabolism (4 � 4 years), and further regional neurodegeneration. Our models pre-

dicted symptom onset more accurately than predictions that used familial estimates: root mean squared error of 1.35 years versus

5.54 years. The models reveal hidden detail on dominantly-inherited Alzheimer’s disease progression, as well as providing data-

driven systems for fine-grained patient staging and prediction of symptom onset with great potential utility in clinical trials.
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Introduction
Understanding and identifying the earliest pathological

changes of Alzheimer’s disease is key to realizing disease-

modifying treatments, which are likely to be most effica-

cious when given early. However, identifying individuals in

the presymptomatic stage of typical, sporadic, late onset

Alzheimer’s disease is challenging. Therefore, there is con-

siderable interest in investigating dominantly-inherited

Alzheimer’s disease, which is caused by mutations in the

amyloid precursor protein (APP), presenilin 1 (PSEN1),

and presenilin 2 (PSEN2) genes, and which provides the

opportunity to identify asymptomatic ‘at risk’ individuals

prior to the onset of cognitive decline for observational

studies and clinical trials. Although considerably rarer

than sporadic Alzheimer’s disease, dominantly-inherited

Alzheimer’s disease has broadly similar clinical presentation

(Ryan et al., 2016; Tang et al., 2016), i.e. episodic memory

followed by further cognitive deficits, and both display het-

erogeneity in terms of symptoms and progression, much of

which is unexplained (Bateman et al., 2011). An important

question when attempting to extrapolate biomarker dy-

namics (and in due course clinical trials results) between

dominantly-inherited Alzheimer’s disease and sporadic

Alzheimer’s disease, is whether presymptomatic changes

in dominantly-inherited Alzheimer’s disease mirror those

in sporadic Alzheimer’s disease, as might be expected

given the broad similarities in pathological features across

both diseases (Bateman et al., 2011; Morris et al., 2012;

Weiner et al., 2012; Cairns et al., 2015).

Most previous investigations into dominantly-inherited

Alzheimer’s disease progression used traditional regression

models to explore the time course of Alzheimer’s disease

markers as a function of familial estimates of years to onset

of clinical symptoms, based on age of onset (Ryman et al.,

2014) in affected first-degree relatives. In 2012, this type of

cross-sectional analysis of biomarker trajectories in the

Dominantly Inherited Alzheimer Network (DIAN) observa-

tional study estimated the following sequence of presymp-

tomatic biomarker changes (Bateman et al., 2012):

measures of amyloid-b in CSF and in standardized uptake

value ratio (SUVR) from amyloid imaging using Pittsburgh

compound B PET (PiB-PET); CSF levels of tau; regional

brain atrophy; SUVR for cortical glucose hypometabolism

in fluorodeoxyglucose PET (FDG-PET); episodic memory;

Mini-Mental State Examination (MMSE) score (Folstein

et al., 1975); and Clinical Dementia Rating (CDR) Sum

of Boxes score (Berg, 1988). Results of a more recent

model-based analysis (Fleisher et al., 2015) showed a simi-

lar progression sequence in the Alzheimer’s Prevention

Initiative Colombian cohort, all of whom carry the same

mutation (E280A PSEN1). A more detailed investigation of

imaging biomarkers (Benzinger et al., 2013) observed re-

gional variability in the cross-sectional sequence of bio-

marker changes: some grey matter structures having

amyloid plaques may not later lose metabolic function,

and others may not atrophy. Various other studies of dom-

inantly-inherited Alzheimer’s disease have reported early

behavioural changes (Ringman et al., 2015) and presymp-

tomatic within-individual atrophy (Cash et al., 2013) in

brain regions commonly associated with sporadic

Alzheimer’s disease, and additionally in the putamen and

thalamus. The key feature in each of these studies of dom-

inantly-inherited Alzheimer’s disease progression is the re-

liance upon familial estimates of years to onset, which is

typically based upon the estimated age at which an indi-

vidual’s affected parent first shows progressive cognitive

decline (Bateman et al., 2011), or upon the average age

of onset for a mutation type (Ryman et al., 2014). The

parental estimate of familial age of onset is generated by

a semi-structured interview and is known to be inherently

uncertain both because of uncertainties in estimating when

an individual is deemed to be affected, and because there

can be substantial within-family and within-mutation dif-

ferences in actual age of onset (Ryman et al., 2014). This

uncertainty in familial age of onset limits its utility for

estimating disease progression in presymptomatic individ-

uals who carry a dominantly-inherited Alzheimer’s disease

mutation: reducing confidence in predicting onset; and

when staging patients—at best reducing the resolution in

which biomarker ordering can be inferred, at worst biasing

the ordering.

Here we take a different approach: generative, data-

driven, disease progression modelling. Data-driven progres-

sion models have emerged in recent years as a family of

computational approaches for analysing progressive dis-

eases. Instead of regressing against predefined disease

stages (Scahill et al., 2002; Ridha et al., 2006; Yang

et al., 2011; Bateman et al., 2012), or learning to classify

cases from a labelled training database (Klöppel et al.,

2008; Mattila et al., 2011; Young et al., 2013), generative

data-driven progression models construct an explicit quan-

titative disease signature without the need for a priori sta-

ging. Mostly applied to neurodegenerative conditions like

Alzheimer’s disease, results include discrete models of bio-

marker changes (Fonteijn et al., 2012; Young et al., 2014;

Venkatraghavan et al., 2017), continuous models of bio-

marker dynamics (Jedynak et al., 2012; Villemagne et al.,

2013; Donohue et al., 2014; Oxtoby et al., 2014), spatio-

temporal models of brain image dynamics (Durrleman

et al., 2013; Lorenzi et al., 2015; Schiratti et al., 2015;

Huizinga et al., 2016), and models of disease propagation
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mechanisms (Seeley et al., 2009; Raj et al., 2012; Zhou

et al., 2012; Iturria-Medina et al., 2014, 2017). For a

recent review of the field of data-driven disease progression

modelling, see Oxtoby et al. (2017).

In this study we use two generative data-driven disease

progression models to extract patterns of observable bio-

marker changes in dominantly-inherited Alzheimer’s dis-

ease. We estimate ordered sequences of biomarker

abnormality in disease subtypes (mutation groups) from

cross-sectional data using an event-based model (Fonteijn

et al., 2012; Young et al., 2014), and we estimate long-

term biomarker trajectories from short-interval longitudinal

data using a non-parametric differential equation model

similar to previous parametric work (Villemagne et al.,

2013; Oxtoby et al., 2014). Our data-driven generative

models have several potential advantages over previous

models. First, they are generalizable to non-familial forms

of progressive diseases because they do not rely on familial

age of onset. Second, they generate a uniquely detailed se-

quence of biomarker changes and trajectories. Third, they

support a fine-grained staging system of potential direct

application to clinical trials and clinical practice. We dem-

onstrate the prognostic utility by predicting actual symptom

onset in unseen data more accurately than using estimates

based on familial age of onset.

Materials and methods
We used data-driven models to analyse biomarker data (MRI,
PET, CSF, cognitive test scores) from the DIAN study. From
cross-sectional (baseline) data we estimated disease progression
sequences using an event-based model (Fonteijn et al., 2012;
Young et al., 2014). For explicit quantification of disease pro-
gression time, we estimated long-term biomarker trajectories
from short-term longitudinal data by using covariate-adjusted,
non-parametric differential equation models, which offer two
key advantages over previous approaches in (Villemagne et al.,
2013; Oxtoby et al., 2014): replacing parametric model selec-
tion with a data-driven approach, and explicitly estimating
population variance in a Bayesian manner. See ‘Statistical ana-
lysis’ section for more details.

Participants

At the sixth data freeze, the DIAN cohort included 338 indi-
vidual participants (192 females, 57%) with known mutation
status and a baseline visit, aged 19–66 years at baseline
(39 � 10 years), with up to four visits each (1.1 � 1.9 years
in duration, total of 535 visits), spanning 30 years before and
21 years after parental age of symptom onset. For detailed
descriptive summaries of the cohort, we refer the reader to
Morris et al. (2012).

Data selection and preparation

Table 1 summarizes the demographics of DIAN participants
analysed in this work.

We selected 24 Alzheimer’s disease biomarkers based on

specificity to the disease, or if disease ‘signal’ is present, i.e.
quantifiable distinction between mutation carriers and non-car-
riers (see ‘Statistical analysis’ section). The biomarkers include
CSF measures of molecular pathology (amyloid proteins and

neurofibrillary tangles); a cognitive test score (MMSE); re-
gional brain volumetry from MRI, e.g. hippocampus, middle-
temporal region, temporo-parietal cortex; PiB-PET imaging
SUVR measures of amyloid accumulation; and FDG-PET ima-
ging SUVR measures of glucose hypometabolism. We excluded

imaging data (21 structural scans from 10 participants) having
artefacts or non-Alzheimer’s disease pathology such as a brain
tumour. Of the included participants, 211 (117 females, 55%)
were dominantly-inherited Alzheimer’s disease mutation

carriers: 163 PSEN1, 17 PSEN2, and 31 APP; 120 were
non-carriers. Baseline data for the mutation carriers and
non-carriers was used to fit event-based models. The full set
of biomarkers included in the event-based model is listed on

the vertical axis of Fig. 1.
Of the 211 included mutation carriers, 66 had longitudinal

data necessary for fitting differential equation models. To
reduce the influence of undue measurement noise we excluded

biomarker data with a large coefficient of variation within in-
dividuals, e.g. as done for CSF biomarkers in Bateman et al.
(2012). Following Villemagne et al. (2013), we also excluded
differential data that were both normal (beyond a threshold

determined by clustering), and non-progressing (rate of change
has a contradictory sign to disease progression, e.g. reverse
atrophy or improved cognition). Finally, we identified six cog-
nitively normal mutation carriers who developed symptoms

during the study (global CDR becoming nonzero after base-
line). Since we use our differential equation models to predict
symptom onset for these participants, we excluded them from
the model fits to avoid circularity (including them does not

alter our results considerably). This left data from up to 51
mutation carriers (41 PSEN1, one PSEN2, nine APP; 28 fe-
males) available for analysis using differential equation models.
Subsets had data for structural imaging (46; 26 females), CSF
(31; 16 females), PiB PET (30; 16 females), and FDG PET (38;

22 females) biomarkers (Table 1). The number of data points
included (and excluded) per biomarker were: MMSE n = 51
(8); tau n = 26 (9) and phosphorylated tau n = 31 (4) in CSF;
amyloid SUVR in the caudate n = 28 (2), putamen n = 29 (1),

nucleus accumbens n = 26 (4), and the cortical mean n = 30 (0)
from PiB-PET images; glucose hypometabolism SUVR in the
posterior cingulate n = 37 (1), hippocampus n = 35 (3), and the
cortical mean n = 35 (3) from FDG-PET images; regional brain

volumes from structural MRI in the nucleus accumbens n = 40
(6), caudate n = 41 (5), entorhinal area n = 45 (1), fusiform
gyrus n = 42 (4), hippocampus n = 44 (2), middle-temporal
gyrus n = 45 (1), precuneus n = 44 (2), putamen n = 42 (4),

thalamus n = 41 (5), ventricles n = 44 (2), and whole brain
n = 43 (3); and average cortical thickness of the precuneus
n = 46 (0), posterior cingulate n = 43 (3), entorhinal cortex
n = 44 (2), fusiform gyrus n = 45 (1), and middle-temporal

gyrus n = 45 (1). All regional biomarkers in the brain are
bilateral.

We used stepwise regression to remove the influence of
age, years of education, sex, and head size (total

intracranial volume, MRI volumes only) prior to fitting our
models.
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Table 1 Demographics for DIAN participants at Data Freeze 6

Demographic Non-carriers Mutation carriers, n [PSEN1, PSEN2,

APP (%)]

Cross-sectional (event-based models), n analysed 127 211 [163, 17, 31 (77, 8, 15)]

Cog: 121 Cog: 194 [150, 15, 29 (77, 8, 15)]

MRI: 104 MRI: 159 [124, 11, 24 (78, 7, 15)]

CSF: 94 CSF: 162 [126, 14, 22 (78, 9, 13)]

PiB: 98 PiB: 139 [107, 11, 21 (77, 8, 15)]

FDG: 98 FDG: 148 [113, 11, 24 (76, 8, 16)]

Female, n (%) 75 (59%) 117 (55) [92, 5, 20 (79, 4, 17)]

APOE "4-positive 37 (29%) 61 (29) [47, 7, 7 (77, 11.5, 11.5)]

Cog: 35 Cog: 59 [45, 7, 7 (76, 12, 12)]

MRI: 29 MRI: 46 [34, 5, 7 (74, 11, 15)]

CSF: 31 CSF: 50 [37, 7, 6 (74, 14, 12)]

PiB: 29 PiB: 42 [30, 5, 7 (71, 12, 17)]

FDG: 27 FDG: 44 [32, 5, 7 (73, 11, 16)]

APOE "4-negative 90 (71%) 150 (71) [116, 10, 24 (77, 7, 16)]

Cog: 86 Cog: 135 [105, 8, 22 (78, 6, 16)]

MRI: 75 MRI: 113 [90, 6, 17 (80, 5, 15)]

CSF: 64 CSF: 112 [89, 7, 16 (80, 6, 14)]

PiB: 69 PiB: 97 [77, 6, 14 (79, 6, 15)]

FDG: 71 FDG: 104 [81, 6, 17 (78, 6, 16)]

Age at baseline � SD, years 39 � 10 39 � 10 [39 � 10, 39 � 10, 43 � 10]

Education at baseline � SD, years 15 � 3 14 � 3 [14 � 3, 15 � 3, 14 � 3]

EYO at baseline � SD, years �7 � 12 �7 � 10 [�7 � 10, �12 � 10, �6 � 9]

Longitudinal (differential equation models) n analysed n/a Cog: 51 [41, 1, 9 (80, 2, 18)]

MRI: 46 [36, 2, 8 (78, 4.5, 17.5)]

CSF: 31 [27, 1, 3 (87, 3, 10)]

PiB: 30 [23, 2, 5 (77, 7, 16)]

FDG: 38 [30, 2, 6 (79, 5, 16)]

Female n/a Cog: 28 (55) [21, 1, 6 (75, 4, 21)]

MRI: 26 (56) [19, 1, 6 (73, 4, 23)]

CSF: 16 (52) [13, 0, 3 (81, 0, 19)]

PiB: 16 (53) [11, 1, 4 (69, 6, 25)]

FDG: 22 (58) [16, 1, 5 (73, 5, 23)]

APOE "4-positive n/a Cog: 17 (33) [13, 0, 4 (76, 0, 24)]

MRI: 16 (35) [11, 1, 4 (69, 6, 25)]

CSF: 8 (26) [6, 1, 1 (75, 12.5, 12.5)]

PiB: 13 (43) [9, 1, 3 (69, 8, 23)]

FDG: 14 (37) [10, 1, 3 (71, 7, 21)]

APOE "4-negative n/a Cog: 34 (67) [28, 1, 5 (82, 3, 15)]

MRI: 30 (65) [25, 1, 4 (84, 3, 13)]

CSF: 23 (74) [21, 0, 2 (91, 0, 9)]

PiB: 17 (57) [14, 1, 2 (82, 6, 12)]

FDG: 24 (63) [20, 1, 3 (83, 4, 13)]

Age at baseline � SD, years n/a Cog: 41 � 10 [40 � 10, 32 � 0, 48 � 7]
MRI: 42 � 10 [40 � 10, 45 � 18, 50 � 6]

CSF: 43 � 9 [41 � 9, 57 � 0, 48 � 8]

PiB: 42 � 10 [41 � 10, 45 � 18, 49 � 4]

FDG: 42 � 10 [41 � 10, 45 � 18, 48 � 5]

Education at baseline � SD, years n/a Cog: 14 � 2 [14 � 2, 18 � 0, 15 � 2]

MRI: 14 � 2 [14 � 2, 15 � 4, 15 � 2]

CSF: 14 � 3 [14 � 3, 12 � 0, 14 � 3]

PiB: 14 � 3 [14 � 2, 15 � 4, 15 � 3]

FDG: 14 � 2 [14 � 2, 15 � 4, 15 � 2]

EYO at baseline � SD, years n/a Cog: �3 � 7 [�3 � 7, �19 � 0, �2 � 8]

MRI: �3 � 7 [�3 � 7, �6 � 18, 0 � 6]

CSF: �1 � 7 [�1 � 7, 7 � 0, �3 � 7]

PiB: �3 � 6 [�3 � 6, �6 � 18, 0 � 3]

FDG: �4 � 7 [�4 � 7, �6 � 18, �2 � 5]

Top: Cross-sectional data used to build event-based models of dominantly-inherited Alzheimer’s disease progression.

Bottom: Longitudinal data used to build differential equation models of dominantly-inherited Alzheimer’s disease progression. See main text for further details. Percentages given to within 1%.

Cog = cognitive test scores; EYO = estimated years to onset based on parental age of symptom onset; FDG = fludeoxyglucose hypometabolism PET data; SD = standard deviation.
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Models

Cross-sectional: event-based models

The event-based model infers a sequence in which biomarkers
show abnormality, together with uncertainty in that sequence,
from cross-sectional data (Fonteijn et al., 2012). This longitu-
dinal picture of disease progression is estimable using this ap-
proach because, across the spectrum of DIAN study
participants from cognitively normal controls (non-carriers of
dominantly-inherited Alzheimer’s disease mutations), to pre-
symptomatic mutation carriers, and symptomatic patients,
more individuals will show higher likelihood of abnormality
in biomarkers that change early in the progression. Thus, with

sufficient representation across combinations of abnormal and
normal observations, the likelihood of any full ordered se-
quence can be estimated to reveal the most likely sequences.
The probabilistic sequence of events estimated by the event-
based model is useful for fine-grained staging of individuals by
calculating the likelihood of their data (biomarker observa-
tions) arising from each stage of the sequence (Young et al.,
2014).

We fit an event-based model to determine the most probable
sequence of biomarker abnormality events and the uncertainty
in this sequence for all but 3 of 24 biomarkers described pre-
viously: measurements of entorhinal cortex, thalamus, and
caudate volume were excluded on the basis that they did not
show significant differences (see ‘Statistical analysis’ section)
between non-carriers and symptomatic mutation carriers
after correction for age, sex, education and total intracranial
volume. Each event represents the transition of a biomarker

from a normal level (as seen in non-carriers) to an abnormal
level (as seen in symptomatic patients). The probability a bio-
marker measurement is normal is modelled as a Gaussian dis-
tribution, and estimated using data from non-carriers.

The distribution of abnormal measurements is also modelled
as a Gaussian distribution, but estimated by fitting a mixture
of two Gaussians (Fonteijn et al., 2012) to data from all mu-
tation carriers: the first Gaussian models the distribution of
normal measurements, and is kept fixed to the values estimated
from non-carriers; the second Gaussian models the distribution
of abnormal measurements, and is optimized using data from
mutation carriers. The sequence of events was estimated in
various population subgroups: all 211 mutation carriers; 163
PSEN1 mutation carriers; 17 PSEN2 mutation carriers; and
31 APP mutation carriers. We also considered separate event-
based models specific to APOE "4 status: 61 mutation carriers
who were APOE "4-positive (with one or more APOE "4
alleles), and 150 mutation carriers who were APOE "4-nega-
tive. For further details of the model fitting procedures, see the
‘Statistical analysis’ section. We assigned participants to pa-
tient stages based on their most probable position along the
most probable event sequence (Young et al., 2014) for all mu-
tation carriers combined. We assessed the efficacy of the pa-
tient staging system using only participants with longitudinal
data available for all biomarkers (n = 30, total of 42 follow-up
visits), as missing entries cause uncertainty in a participant’s
model stage.

Longitudinal: differential equation models

Reconstruction of biomarker trajectories ideally requires dense
longitudinal data collected over the full time course of the
disease. Such data are not yet available due to the prohibitive
expense and complexity of collection, which means that we
must resort to alternative methods. In dominantly-inherited
Alzheimer’s disease and other neurodegenerative diseases, the
availability of short-term longitudinal data of a few years per-
mits estimation of an individual’s rate of change over that time
span, e.g. via linear regression. These short-interval longitu-
dinal observations are interpreted as noisy samples (segments)

Figure 1 Event-based model of dominantly-inherited Alzheimer’s disease progression. Positional variance diagrams. Left: Event-

based model estimated on all mutation carriers in the DIAN dataset. Right: Cross-validation through bootstrapping. The vertical ordering (top to

bottom) is given by the maximum likelihood sequence estimated by the model. Greyscale intensity represents posterior confidence in each event’s

position (each row), from Markov chain Monte Carlo samples of the posterior (left) or from bootstrapping (right). AB = amyloid-b;

Postcng = posterior cingulate; ptau = phosphorylated tau.
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from an average biomarker trajectory. Instead of attempting to
align the raw data segments (Donohue et al., 2014), the dif-
ferential equation modelling approach (Villemagne et al.,
2013; Oxtoby et al., 2014) generates a cross-section of differ-
ential data and a model fit: biomarker rate-of-change as a
function of biomarker value, i.e. a differential equation. For
sufficient coverage across a range of biomarker values tracking
disease progression, the fitted function can be integrated to
produce a trajectory. We fit each biomarker in turn using a
non-parametric Bayesian approach, and we aligned partici-
pants to a disease stage (time to onset) based on their bio-
marker measurements and the estimated probabilistic
trajectories (see ‘Statistical analysis’ section).

Statistical analysis

For fitting the event-based model we followed the same pro-
cedures as in Young et al. (2014). Briefly, the characteristic
sequence and its uncertainty are estimated through a Markov
chain Monte Carlo sampling procedure with greedy-ascent ini-
tialization for maximizing the data likelihood (Fonteijn et al.,
2012). We used a non-informative uniform prior on the se-
quence. When fitting an event-based model, it is important to
select a set of biomarkers specific to the disease. That is, where
disease ‘signal’ is present: a quantifiable distinction between
normal and abnormal. For this procedure we used a paired
t-test, and thresholded significance at P5 0.01/24, Bonferroni-
corrected for multiple comparisons. We accounted for missing
data as in Young et al. (2015) by imputing biomarker values
such that missing measurements had an equal probability of
being normal or abnormal. This ensures that the imputed data
do not influence the characteristic sequence, while simultan-
eously allowing the subsets of available (non-missing) data to
aid in elucidating the ordering among those subsets of bio-
markers (c.f. Fig. 1 and Supplementary Fig. 16, with and with-
out imputation of missing data). The maximum amount of
missing data per biomarker that were imputed this way was
30% (PiB-PET), and the minimum was 7% (MMSE) (Table 1).
We performed cross-validation of the event-based model by re-
estimating the event distributions and maximum likelihood se-
quence for 100 bootstrap samples. The positional variance
diagrams for the cross-validation results show the proportion
of bootstrap samples in which event i (vertical axis) appears at
position k (horizontal axis) of the maximum likelihood
sequence.

For fitting differential equation models, we use a non-
parametric approach known as Gaussian process regression
(Rasmussen and Williams, 2006) to produce a probabilistic
fit (a distribution of curves) that is determined by the data.
The fitting was implemented within the probabilistic program-
ming language Stan (Carpenter et al., 2017), which performs
full Bayesian statistical inference using Markov chain Monte
Carlo sampling and penalized maximum likelihood estimation.
We used a vanilla squared-exponential kernel (Rasmussen and
Williams, 2006) for the Gaussian process prior covariance:

ki;j xð Þ ¼ �2exp ��2 xi � xj

� �2h i
þ �i;j�

2 ð1Þ

with hyperparameters �, �, �, and Kronecker delta function �.
The Gaussian process prior hyperparameters guide the shape
of the regression function, and were also estimated from the
data. Here we used weakly-informative broad half-Cauchy

hyperparameter priors, and diffuse initial conditions to aid
model identifiability. We performed 10-fold cross-validation
(Supplementary material), and various posterior predictive
checks to assess model quality and numerical convergence
(Gelman et al., 2014; Vehtari et al., 2016). We used out-of-
sample validation for the model-based prediction of symptom
onset in participants whose data were not used to build the
models.

In dominantly-inherited Alzheimer’s disease, biomarker tra-
jectories are usually investigated as a function of estimated
years to onset. This is an approximate proxy for disease pro-
gression time where zero is the estimated point of onset of
clinical symptoms, based on familial age of onset such as
that of an affected parent. Here we defined t = 0 at a data-
driven canonical abnormal level: the median biomarker value
for symptomatic participants in the DIAN cohort (first symp-
tomatic visit only).

A quantity of clinical interest is the interval of time between
normal and abnormal biomarker levels, which we refer to as
the ‘abnormality transition time’, and define in a data-driven
manner via median values for asymptomatic (canonically
normal) and symptomatic (canonically abnormal as above)
participants in the DIAN dataset. Our probabilistic approach
produces an abnormality transition time distribution per bio-
marker. The cumulative probability of abnormality produces
data-driven sigmoid-like curves, which we combine across bio-
markers to estimate a temporal pattern of disease progression.

We estimated time to onset (disease stage) for each individ-
ual using a weighted average across biomarkers. Aligning each
biomarker measurement to each biomarker trajectory produces
a set of biomarker-specific times, each with a data-driven cred-
ible interval given by the horizontal spread of the probabilistic
trajectory. We weighted by the inverse width of the credible
interval, to assign lower influence to estimates with large un-
certainty. Incomplete data were used, with missing values
omitted from the weighted average.

Results
First, we present our cross-sectional multimodal modelling

of the fine-grained ordering of dominantly-inherited

Alzheimer’s disease biomarker abnormality using an

event-based model. We then present our longitudinal mod-

elling of dominantly-inherited Alzheimer’s disease bio-

marker trajectories using differential equation models.

Cross-sectional results: event-based
models of biomarker abnormality
sequences

Figure 1 is a positional variance diagram of the maximum

likelihood sequence of biomarker abnormality events (top

to bottom), and its uncertainty (left to right), across all

available 211 mutation carriers in the DIAN dataset.

Greyscale intensity represents confidence in each event’s

position within the sequence, and is calculated from

Markov chain Monte Carlo samples from the event-based

model (Young et al., 2014). The closer this diagram is to a
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black diagonal, the more confidence there is in the disease

progression sequence.

The event-based model reveals a distinct sequence of bio-

marker abnormality in dominantly-inherited Alzheimer’s

disease: regional (cortical then striatal) amyloid deposition

on PiB-PET scans; CSF measures of neuronal injury (total

tau), neurofibrillary tangles (phosphorylated tau), and

amyloid plaques (amyloid-b42 and amyloid-b40/amyloid-

b42 ratio); MRI measures of volume loss in the putamen

and nucleus accumbens. Thereafter the ordering in which

global cognition (MMSE score), FDG-PET hypometabo-

lism, and other MRI measures become abnormal is less

certain. We found relatively high uncertainty early in the

ordering of these biomarkers (as reflected by the more dif-

fuse grey blocks straying from the diagonal), with a return

to lower uncertainty later in the ordering of regional vol-

umes (more solid dark blocks along the diagonal). This

pattern (Fig. 1, left) persists under cross-validation

(Fig. 1, right). Supplementary Fig. 16 shows an event-

based model estimated without imputation of missing

data, which qualitatively supports that our missing data

imputation method does not bias the estimated sequence

of abnormality (see ‘Statistical analysis’ section).

We also fit the event-based model to APOE "4 subgroups

of the mutation carriers in the dataset. Figure 2 shows pos-

itional variance diagrams of the biomarker abnormality

event sequence in APOE "4-positive and APOE "4-nega-

tive participants (those with and without an apolipopro-

tein-4 allele). For ease of comparison, the sequence

ordering on the vertical axes of each plot was chosen to

A

B

Figure 2 Event-based models of dominantly-inherited Alzheimer’s disease: APOE "4 groups. Data-driven sequences of biomarker

abnormality shown as positional variance diagrams for mutation carriers in the DIAN dataset who are: (A) APOE "4-positive (n = 61); (B) APOE

"4-negative (n = 150). C.f. Fig. 1 (all groups combined): similar ordering, with a notable difference: APOE "4-positive participants showed earlier

CSF amyloid-b42 abnormality. AB = amyloid-b; Postcng = posterior cingulate; ptau = phosphorylated tau.
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be the most probable ordering from Fig. 1 (the result for all

mutation carriers). Cross validation results are shown on

the right of Fig. 2, as in Fig. 1.

Qualitatively, we see good agreement of the event se-

quences across APOE "4 subgroups in Fig. 2, with notably

earlier CSF amyloid-b42 and amyloid-b40/amyloid-b42 ratio

in the APOE "4-positive group.

We also performed an exploratory analysis of event-based

models for mutation subtypes: Supplementary Fig. 1 shows

positional variance diagrams of biomarker abnormality

sequences in PSEN1, PSEN2, and APP mutation groups.

While the numbers of participants in these groups may be

too small to draw concrete conclusions about subtype

differences (and the uncertainty is high in the orderings),

we note some subtle differences: the APP subgroup

shows earlier CSF amyloid-b abnormality; and the PSEN2

subgroup shows earlier abnormality in the fusiform gyrus

volume.

Figure 3 demonstrates the fine-grained staging capabil-

ities of the event-based model. Using the model for all mu-

tation types (Fig. 1), each participant in the DIAN dataset

was assigned a disease stage that best reflects their meas-

urements (see ‘Materials and methods’ section, and Young

et al., 2014). The staging proportions are shown in Fig. 3A,

differentiated by broad diagnostic groups defined using

global CDR (CN: cognitively normal, global CDR = 0;

MCI: very mild dementia consistent with mild cognitive

impairment, global CDR = 0.5; AD: probable dementia

due to Alzheimer’s disease, global CDR4 0.5).

Longitudinal consistency of staging is shown in Fig. 3B

where each participant’s baseline stage is plotted against

available follow-up stages between baseline and months

12/24/36.

The baseline staging in Fig. 3A shows good separation of

diagnostic groups: all of the non-carriers are assigned to

stage 0 (black), presymptomatic mutation carriers (green)

are predominantly at early model stages (with a notable

exception—see ‘Discussion’ section), mutation carriers diag-

nosed with probable Alzheimer’s disease dementia are

nearly all at late model stages, and mutation carriers with

mild symptoms (CDR of 0.5) are more spread out across

the stages. Within carriers, the model shows high classifi-

cation accuracy for separating those who are cognitively

normal from those with probable dementia: a balanced ac-

curacy of 99% is achieved by classifying participants above

stage 15 (MMSE abnormality) as having probable

Alzheimer’s disease dementia. This shows that our genera-

tive model can also be used for discriminative applications

with performance comparable to state-of-the-art multi-

modal binary classifiers (Willette et al., 2014). Further,

Supplementary Fig. 15A shows positive associations be-

tween familial estimates of years to onset and event-based

model stage, by diagnostic group.

The follow-up staging in Fig. 3B shows good longitudinal

consistency: at 33 of 36 (92%) follow-up time points the

model stage is the same or it increased; at 35 of 36 (97%)

follow-up time points the stage was either unchanged, it

increased, or it decreased within the uncertainty of the

ordering. This included the clinical converter shown with

a blue triangle, whose CDR was 0 at baseline, and 0.5 at

month 24. The follow-up time point at which the model

stage decreased (green circle in Fig. 3B; a PSEN1 mutation

carrier) had inconsistent amyloid levels between CSF and

regional PiB-PET, potentially due to discord between these

biomarkers as has been observed in some individuals

(Landau et al., 2013; Schroeter et al., 2015).

A B

Figure 3 Event-based model staging results for dominantly-inherited Alzheimer’s disease. (A) Staging by diagnostic group: all non-

carriers are at stage zero (black), and advancing disease stage is correlated strongly with cognitive impairment (green to blue to red). (B) Staging

consistency across visits within 3 years of baseline for the n = 30 participants having complete longitudinal data (18 mutation carriers; 16 PSEN1,

two APP). Most participants advance to a later stage (disease progresses towards the right). The green circle shows the single participant (a PSEN1

mutation carrier) who regressed from event-based model stage 9 to stage 1, which arose due to discordant amyloid measurements between CSF

and PiB-PET at baseline. The blue triangle indicates clinical progression from cognitively normal to MCI. AD = probable dementia due to

dominantly-inherited Alzheimer’s disease (global CDR 4 0.5); BL = baseline; CN = cognitively normal (global CDR = 0); M = month; MCI = very

mild dementia consistent with mild cognitive impairment (global CDR = 0.5).
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Longitudinal results: biomarker
trajectories from differential
equation models

Figure 4 shows a selection of dominantly-inherited

Alzheimer’s disease biomarker trajectories estimated from

the DIAN dataset using our approach. Each average trajec-

tory is shown as a heavy dashed black line, with uncer-

tainty indicated by thin grey trajectories sampled from the

posterior distribution. The time axis is defined such that

t = 0 corresponds to the median biomarker value for symp-

tomatic mutation carriers in the dataset, which we define as

the canonical abnormal level. This is marked in Fig. 4 by a

red horizontal line for each biomarker, with the corres-

ponding distribution of biomarker values for symptomatic

mutation carriers shown to the left of each trajectory as a

red quartile box plot. The green quartile box plots show

the biomarker distributions for asymptomatic mutation car-

riers, with the median value for each biomarker defining

our canonical normal level and shown by a green horizon-

tal line. Importantly, the canonical normal and abnormal

levels are not required to estimate the biomarker trajec-

tories, but are used to define the abnormality transition

time for each biomarker as a data-driven estimate of the

duration of the transition between these levels. Our

Bayesian approach estimates an abnormality transition

time density (probability distribution) for each biomarker,

which is shown in blue in Fig. 4 (vertical axis on the right

of each plot). For comparison, linear mixed model fits to

baseline data from the same cohort in (Bateman et al.,

2012) are shown Fig. 4B–E (others not available).

Most trajectories in Fig. 4 (and in the Supplementary ma-

terial) show acceleration from normal to abnormal levels,

with little evidence for post-onset deceleration/plateauing

that would be consistent with the sigmoidal behaviour

hypothesized for sporadic Alzheimer’s disease in e.g. Jack

et al. (2010). Biomarkers with trajectories that do not plat-

eau, but remain dynamic into the symptomatic phase of the

disease, offer potential utility for monitoring progression later

in the disease. The grey curves capture uncertainty in the

biomarker dynamics, which arises both from fitting the

differential equation models to discrete data, and from

heterogeneity in the population. For comparison with our

data-driven approach, the magenta trajectories in Fig. 4B–E

are from Bateman et al. (2012), which used regression of

baseline data against estimated years to onset based on fa-

milial age of onset. Qualitatively, they broadly agree with our

A B C

D E F

Figure 4 Differential equation models: dominantly-inherited Alzheimer’s disease biomarker trajectories. Shown are fits for

selected biomarkers (see ‘Models’ section). Fits for other biomarkers are provided in the Supplementary material. Heavy black dashed lines show

the average trajectory, with grey lines showing trajectories sampled from the posterior distribution. Time is expressed relative to the median

biomarker value (red line) for symptomatic mutation carriers in the DIAN dataset (first visit with a non-zero CDR score), so that negative time

suggests the average presymptomatic phase of dominantly-inherited Alzheimer’s disease. Box plots show biomarker distributions for asymp-

tomatic (green, left, canonical normal) and symptomatic (red, right, canonical abnormal) mutation carriers (denoted aMC and sMC, respectively),

with the distribution for estimated time between canonical normal and canonical abnormal (abnormality transition time) shown in blue. Details

of included participants are given in Table 1. For comparison, the magenta fits in B–E are those from the linear mixed models of baseline

DIAN data against estimated year of onset (EYO) from Bateman et al. (2012). SUVR = standardized uptake value ratio (relative to the cerebellum);

p-tau = phosphorylated tau.
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trajectories for PiB-PET (cortical average amyloid deposition),

MMSE, hippocampus volume, and FDG-PET (cortical aver-

age hypometabolism), although, around symptom onset and

beyond, our steeper hippocampus volume trajectory implies a

more aggressive progression than estimated cross-sectionally

in Bateman et al. (2012).

Figure 5 shows the cumulative probability for each bio-

marker in Fig. 4. That is, the empirical distribution func-

tion for the abnormality transition time densities in Fig. 4,

using the same time axis but on a logarithmic scale to ease

visualization. From Fig. 5 we can infer an ordering of ab-

normality by comparing the times at which each curve

reaches an abnormality probability of 0.5.

The cumulative probability curves in Fig. 5 give a sense of

both the average temporal ordering of biomarker abnormal-

ity (relative location of the curves at probability = 0.5), and

the rate of progression (curve steepness) in the presympto-

matic phase of dominantly-inherited Alzheimer’s disease.

Whereas the event-based model approach is explicitly de-

signed to infer an ordered sequence, our differential equa-

tion model approach is not. Nonetheless, the curves bear

some resemblance to the hypothetical model in Jack et al.

(2010), with the earliest phase of preclinical disease showing

dynamic molecular pathology (CSF p-tau, and PiB-PET),

and other biomarkers becoming dynamic as onset

approaches: global cognitive decline (MMSE), neurodegen-

eration (MRI volumes), and hypometabolism (FDG-PET).

Predicting time to symptom onset
for unseen data

The models such as in Fig. 4 further support an estimated

time from onset (together with uncertainty) for each

biomarker—by aligning baseline biomarker measurement

to the average trajectory. Uncertainty in each data-driven

estimate of onset is given by the corresponding probabilistic

trajectory distribution (grey curves in Fig. 4). A single esti-

mate for each participant’s personal estimated time from

onset, combining information from all biomarkers, then

comes from averaging the estimates from each biomarker,

weighted by inverse uncertainty. For validation, we com-

pare our estimated time from onset to known actual years

from onset for the six mutation carriers in the DIAN data-

set who developed symptoms during the study (global CDR

score becoming non-zero after baseline). These participants

were omitted from the original differential equation model

fits to avoid circularity.

Figure 6A plots estimated years from onset against actual

years from onset for our model-derived estimated time

from onset (red asterisks; dashed line fit), and for familial

estimates of years to onset (blue triangles; solid line fit),

based on familial age of onset reported for an affected

parent. A light grey line of reference shows perfect corres-

pondence. Figure 6B shows quartile boxplots of the actual

errors in predicting years to onset using our model-based

approach and using familial age of onset, at the visit where

progression occurred.

The linear fits in Fig. 6A and boxplots in Fig. 6B show

that our data-driven estimated time from onset is a good

predictor of actual years to onset with a root mean squared

error of 1.34 years and a coefficient of determination of

R2
� 0.49. Familial age of onset is not as good: root mean

squared error of 5.54 years and R2
� 0.37 (based on par-

ental age of onset); root mean squared error of 8.61 years

and R2
�0.33 (based on mutation type). This poor per-

formance is primarily because of very poor prediction for

the participant at 3 years from onset (green circles, PSEN1

mutation carrier). It is apparent from Fig. 6 that our esti-

mated time from onset may tend to overestimate when

onset will occur (predicting earlier onset), and familial

age of onset tends to underestimate it (predicting later

onset). This warrants further investigation with more

data, but since onset may occur between visits to the

clinic (interval censoring), it is likely more accurate to pre-

dict earlier onset, as our approach does.

Overview of results

Figure 7 visualizes consistency across our two data-driven

biomarker modelling approaches by showing patterns of

dominantly-inherited Alzheimer’s disease progression ob-

tained from each method on the DIAN dataset. The

event-based model infers a probabilistic ordering of bio-

marker abnormality events through comparison of a

cross-section of multi-modal observations, as shown for

all mutation carriers in Fig. 7A (reproduced from Fig. 1).

In contrast, each differential equation model works on an

individual biomarker to estimate the biomarker trajectory.

Figure 7B shows an alternative visualization of data-driven

sigmoids for all included biomarkers, with the ordering

Figure 5 Differential equation models: selected data-driven

sigmoids for dominantly-inherited Alzheimer’s disease

biomarker progression. Cumulative probability of abnormality

(vertical axis) is the empirical distribution of the abnormality transition

time in years prior to canonical abnormality (horizontal axis) as per Fig.

4, calculated from each biomarker trajectory in Fig. 4. The horizontal

axis shows years prior to canonical abnormality. The order of

biomarkers in the legend follows the order in which they reach a

cumulative probability of abnormality of 0.5 (horizontal dotted grey

line). Green–blue–yellow colour scale (viridis) with alternating solid/

dashed lines in order of cumulative abnormality probability reaching

0.5 (legend). p-tau = phosphorylated tau.
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A B

Figure 6 Predicting onset of clinical symptoms. For the six DIAN participants for whom global CDR became non-zero during the study

(as of Data Freeze 6): (A) Estimated versus actual years to onset at baseline using our model-based approach and using familial age of onset (EYO)

and mutation type age of onset (Mutation EYO). Mutation EYO is calculated from the average age of onset within the three mutation types, using

data from Table e-1 in Ryman et al. (2014), with the average weighted by the number of affected individuals per mutation. The light grey line shows

perfect correlation as a reference and participants’ data points are connected by dotted grey vertical lines. Our model-derived ETO (red asterisks

and dashed line fit) correlates with actual years to onset better than familial EYO (blue triangles and solid line fits), as shown by the adjusted

coefficient of determination (R2). The green circle highlights an individual for whom our approach (ETO) is superior to the traditional approach

(EYO) for predicting years to onset. (B) Quartile boxplots of the error in predicting onset using each estimate: ETO (left) has a superior root-

mean-squared error (RMSE) to both EYO (middle) and Mutation EYO (right), and predicts symptom onset to occur sooner rather than later, which

is likely to be more accurate due to interval censoring (symptom onset occurring between visits to the clinic). ETO = estimated time from onset;

EYO = estimated years from onset; RMSE = root mean squared error.

A B

Figure 7 Summary: data-driven models of dominantly-inherited Alzheimer’s disease progression. (A) Event-based model for all

mutation carriers in the DIAN, from Fig. 1. Biomarkers (imaging, molecular, cognitive) along the vertical axis are ordered by the maximum

likelihood disease progression sequence (from top to bottom). The horizontal axis shows variance in the posterior sequence sampled using Markov

chain Monte Carlo, with positional likelihood given by greyscale intensity. (B) Differential equation models. Each model-estimated biomarker

trajectory (Fig. 4 and Supplementary Figs 5–7) estimates a probabilistic Abnormality Transition Time (years from canonical normal to canonical

abnormal) and corresponding cumulative/empirical probability of abnormality (Fig. 5). Biomarkers along the vertical axis are ordered by the

estimated sequence in which they reach 50% cumulative probability of abnormality (black asterisks). The viridis colour scale shows cumulative

probability of abnormality increasing from the left (normal, yellow) to the right (abnormal, blue) as a function of years prior to canonical

abnormality. White horizontal bars show the interquartile range of the abnormality transition time density, which visualizes the rate and duration

of biomarker progression. p-tau = phosphorylated tau.
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determined as in Fig. 5 by cumulative abnormality prob-

ability reaching 0.5 (black asterisks; white bars indicate the

speed of biomarker change—see Fig. 7 for details).

Qualitatively, Fig. 7 shows that the different approaches

estimate similar patterns of dominantly-inherited

Alzheimer’s disease progression: accumulation of molecular

pathology (amyloid, and tau where measured) followed by

a blurring of cognitive abnormalities, brain hypometabo-

lism, and regional changes to brain volume and cortical

thickness. The combination of both models enables both

a principled estimate of the sequence of biomarker abnor-

mality, and temporal estimates of years to symptom onset.

Discussion
In this section we discuss our results further and highlight

new findings that warrant further investigation. To sum-

marize, we report data-driven estimates of dominantly-in-

herited Alzheimer’s disease progression using two

modelling approaches without reliance upon familial age

of onset as a proxy for disease progression. The models

reveal probabilistic sequences of biomarker abnormality

from cross-sectional data across mutation groups, and

probabilistic estimates of biomarker trajectories from a

cross-section of short-term longitudinal data. The sequences

and timescales broadly agree with current understanding of

dominantly-inherited Alzheimer’s disease, while producing

superior detail and predictive utility than previous work.

We take this opportunity to point out to the reader a

caveat for any biomarker-based in vivo investigation of

disease, model-based or otherwise: it is inherently limited

by the precision and specificity of each biomarker. For ex-

ample, our use of MMSE score as a cognitive biomarker

limits us to making inferences about global cognitive de-

cline, and not specific cognitive domains.

Cross-sectional: event-based models

The event-based model finds a distinct ordering of bio-

marker abnormality events in mutation carriers (Fig. 1):

amyloid deposition measured by PiB-PET, neurofibrillary

tangles and amyloid plaques in CSF, followed by a pattern

of regional volume loss on MRI that is characteristic of

Alzheimer’s disease, which is interspersed with declining

cognitive test scores and hypometabolism measured by

FDG-PET. Although the sequence shows qualitative agree-

ment across different mutation types (PSEN1, PSEN2,

APP: Supplementary Fig. 1), and APOE "4 carrier groups

(positive and negative: Fig. 2), we found some small, subtle

differences that warrant further investigation. For example,

there was earlier abnormality in CSF amyloid-b42 (than

CSF tau) in the APP and APOE "4-positive groups, but

the reverse was found in other groups. The latter could

be explained by non-monotonic dynamics of CSF amyl-

oid-b42 markers in dominantly-inherited Alzheimer’s dis-

ease (an increase followed by a decrease) as suggested by

results in previous investigations (Reiman et al., 2012;

Fagan et al., 2014), and consistent with our own differen-

tial equation modelling investigation (see below and

Supplementary material). Previous multimodal biomarker

studies of dominantly-inherited Alzheimer’s disease

(Bateman et al., 2012; Benzinger et al., 2013; Fleisher

et al., 2015) are in general agreement with the event-

based model sequence: amyloidosis precedes hypometabo-

lism, neurodegeneration, and cognitive decline. Note that

we considered cross-sectional volumes of brain regions, not

direct measures of atrophy, which can explain why cogni-

tive decline appears earlier than might be expected (Young

et al., 2014). Importantly, all previous approaches relied

upon a familial age of symptom onset as a proxy for dis-

ease progression, which intrinsically limits the accuracy of

predictions due to the known imprecision in such estimates

(Ryman et al., 2014). Further, such models cannot be easily

generalized to sporadic forms of disease where no such

proxy for disease progression exists, whereas ours can,

e.g. event-based models of sporadic Alzheimer’s disease in

Young et al. (2014). Having said that, we do not advocate

quantitative application of models of familial disease dir-

ectly on sporadic disease cases due to differences such as

those seen in amyloid imaging between sporadic and famil-

ial Alzheimer’s disease (Bateman et al., 2011).

The similarity of the event-based model sequence for

dominantly-inherited Alzheimer’s disease with that for

sporadic Alzheimer’s disease in previous work (Young

et al., 2014) supports the notion that these two forms of

Alzheimer’s disease have similar underlying disease mech-

anisms, and therefore that drugs developed on dominantly-

inherited Alzheimer’s disease may be efficacious in sporadic

Alzheimer’s disease. We note some slight deviations of the

dominantly-inherited Alzheimer’s disease sequence here

from the sporadic Alzheimer’s disease sequence in Young

et al. (2014): the involvement of the putamen, nucleus

accumbens, precuneus and posterior cingulate. Other dom-

inantly-inherited Alzheimer’s disease investigations have

observed involvement of the precuneus and cingulate re-

gions (Scahill et al., 2002; Benzinger et al., 2013; Cash

et al., 2013). Our earlier study of sporadic Alzheimer’s dis-

ease did not include these regions in the analysis, so further

work will be required to determine their involvement in

sporadic Alzheimer’s disease event-based models.

Moreover, the nature of the biomarkers we use here

means that we cannot determine whether sporadic

Alzheimer’s disease and dominantly-inherited Alzheimer’s

disease are similar on the microscopic scale.

The staging system provided by the event-based model

has potential practical utility. In particular, it provides

high classification accuracy for discriminating between pre-

symptomatic and genuinely symptomatic (global CDR5 1)

dominantly-inherited Alzheimer’s disease mutation carriers.

Although further work is necessary to determine whether

model-based discrimination of subtle cognitive decline

(CDR of 0.5 versus 0) is sufficiently accurate to have prac-

tical utility. Our staging system correctly assigned all
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non-carriers to the ‘completely normal’ category (stage 0),

and shows good longitudinal consistency, with event-based

model stage generally increasing or remaining stable at pa-

tient follow-up. This encourages us to suggest that the sta-

ging system has utility in future clinical trials, both for

screening of potential participants and for defining end-

points. For example, recruiting individuals at event-based

model stages 1–5 (Fig. 1: PiB-PET abnormality only), and

defining an end-point as reaching stage 8 (addition of CSF

abnormality). The same approach could work for persona-

lized treatment assignment. For example, an anti-amyloid

agent might only be appropriate for APOE "4-positive in-

dividuals at event-based model stages 1 and 2 (Fig. 2A).

We found the event-based model stages to correlate
strongly with cognitive status (Fig. 3A): cognitively
normal participants were assigned early model stages,
symptomatic dominantly-inherited Alzheimer’s disease par-
ticipants were assigned late model stages, and participants
with mild symptoms were more spread out across the
stages. The mildly symptomatic group in dominantly-in-
herited Alzheimer’s disease were the most heterogeneous,
which is in agreement with our results in sporadic
Alzheimer’s disease (Young et al., 2014), but possibly for
different reasons. One contributing factor in dominantly-
inherited Alzheimer’s disease is that the mildly symptomatic
group may include unaffected mutation carriers whose anx-
iety about their mutation status manifested as apparent
cognitive abnormality and contributed to their diagnosis
(global CDR of 0.5). Another possibility is that cognitive
reserve may play a role, given the younger age of the
cohort than is typical of sporadic Alzheimer’s disease. In
any case, the fine-grained disease staging offered by the
event-based model can shed light upon the heterogeneity
contained within a prodromal disease stage. Separate
work will consider explicitly modelling prodromal disease
phases within the event-based model. The most notable
outlier in our staging analysis was an asymptomatic indi-
vidual (green bar at stage 20 in Fig. 3A), who was assigned
an advanced model stage of 20 (maximum 21) at baseline.
This individual had 17 of 21 biomarkers with abnormal
measurements, but no apparent symptoms (global CDR
of 0) until 24 months later when their global CDR was
0.5 and model stage was 21 (blue triangle in Fig. 3B).
Supplementary Fig. 15A shows that event-based model
stage correlates with familial age of onset, although further
follow-up will be required to ascertain the predictive utility
of event-based model stage compared to familial age of
onset by looking at a large number of individuals who
develop clinical Alzheimer’s disease dementia during a
study of dominantly-inherited Alzheimer’s disease.

Longitudinal: differential equation
models

Our non-parametric fits to differential biomarker data are

data-driven probabilistic estimates of an underlying differ-

ential equation driving the disease biomarker evolution.

Since there is no ground truth disease stage (e.g. time to

symptom onset), the differential equation approach as-

sumes a one-to-one mapping of biomarker value to disease

progression in order to infer disease stage, which limits the

approach to estimating only monotonic biomarker trajec-

tories. Further, the use of a single differential data point per

participant precludes modelling within-individual dynamics

using this approach. The consequence is that if enough in-

dividuals display contrary dynamics to the average, perhaps

due to measurement noise for example, then a sensible tra-

jectory cannot be inferred. This happened for CSF markers

of tau, amyloid-b42, and the amyloid-b40/amyloid-b42 ratio,

as shown in Supplementary Fig. 14. Otherwise, we ob-

tained trajectory estimates for the same set of biomarkers

in the event-based model results (Fig. 4 and Supplementary

material). Most differential equation model-estimated bio-

marker trajectories showed accelerating dynamics, with

little or no apparent deceleration, which may arise from

under-sampling of later disease stages (for example because

recruitment in this cohort was focused on presymptomatic

dominantly-inherited Alzheimer’s disease). The magenta fits

in Fig. 4 correspond to those in Bateman et al. (2012)

(taken directly from the Supplementary material in that

paper), which was a cross-sectional regression of biomarker

trends as a function of familial estimates of years to onset,

in the DIAN dataset. It is apparent from Fig. 4 that the

most noteworthy difference between the differential equa-

tion model trajectories and familial age of onset regression

trajectories are the slower post-onset dynamics estimated

for hippocampal volume when using the latter. The cross-

sectional approach, such as in Bateman et al. (2012) and

Benzinger et al. (2013), is less able to capture speed of

progression than the differential equation modelling ap-

proach, which utilizes short-duration longitudinal data,

within subjects. This is supported by the longitudinal ana-

lysis in the familial age-of-onset-based regional imaging

biomarker investigation in Benzinger et al. (2013), which

found that the cross-sectional biomarker trajectory tended

to underestimate the slope of individual trajectories, post-

onset.

We did not model biomarker measurement noise. Such

noise can lead to regression dilution, which, in a differential

equation modelling approach, would produce an elongated

(slower) biomarker trajectory. Thus, temporal quantities we

have estimated, such as abnormality transition times, may

represent overestimates—particularly for biomarkers with

large measurement noise. However, no regression dilution

was apparent, as evidenced by our ability to accurately

predict actual symptom onset (discussed below).

Our longitudinal analysis includes a step whereby non-pro-

gressing, normal biomarker measurements are excluded, as

done in Villemagne et al. (2013). It could be argued that

this approach might potentially lead to an overemphasis on

change by removing some data points that are on the trajec-

tory, but that appear stable (due perhaps to measurement

noise). We feel that our results did not show this, as sup-

ported by our ability to predict symptom onset in unseen

data.
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Recently, Ryman et al. (2014) performed a meta-analysis

of actual symptom onset in multiple studies of dominantly-

inherited Alzheimer’s disease including the DIAN, and con-

sidered prediction of age at symptom onset using ages of

onset for parents, family average, and group-wise averages

by mutation type, as well as APOE "4 genotype and sex.

They argued that mutation type and family history should

be used to estimate onset in clinical research. This conclu-

sion was reached by analysing the proportion of variance in

actual age of onset that could be explained by these factors

in a linear regression scenario, quantified by adjusted R2.

Specifically, they found R2 = 0.3838 (parental), R2 = 0.4906

(family average) and R2 = 0.5225 (mutation type). For clin-

ical utility we argue that a model’s predictive accuracy

should be quantified, such as by using root mean squared

error in prediction of unseen data. We quantified predictive

accuracy for six participants in the DIAN dataset with

observed symptom onset (at Data Freeze 6) in Fig. 6—we

found root mean-squared error of 5.54 years with R2 = 0.37

(parental), and root mean squared error of 8.61 years with

R2 = 0.33 (mutation type), whereas our data-driven model-

based approach performed considerably better: root mean

squared error of 1.35 years with R2 = 0.44.

Conclusion
Dominantly-inherited Alzheimer’s disease progression occurs

over multiple decades. Our two data-driven approaches have

estimated dominantly-inherited Alzheimer’s disease progres-

sion models by combining shorter cross-sections of data.

This was made possible in part by assuming a single progres-

sion pattern across individuals. Despite this, our models are

able to predict probabilistic outcomes for individuals by com-

paring them to the average pattern. With increased availabil-

ity of data, especially actual symptom onset, an important

future aim is to incorporate multilevel modelling to improve

the specificity of predictions across mutation types, families,

and individuals, and to hopefully understand more of the

heterogeneity observed in dominantly-inherited Alzheimer’s

disease.

Our probabilistic, data-driven computational models of

dominantly-inherited Alzheimer’s disease reveal evidence-

based patterns in the progression of this relatively rare

disease. The similarities with sporadic Alzheimer’s disease

progression provides encouragement for ongoing trials into

anti-amyloid therapies such as the ones currently underway

by the DIAN Trials Unit. We have also demonstrated abilities

of the data-driven models for fine-grained patient staging and

prognosis, which promises utility for recruitment, stratifica-

tion, and surrogate outcome measures in clinical trials.
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KT, Barthel H, et al. Dissociation of amyloid biomarkers in PET and

CSF in Alzheimer’s disease: a case report. BMC Neurol 2015; 15:
152.

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD.

Neurodegenerative diseases target large-scale human brain networks.
Neuron 2009; 62: 42–52.

Tang M, Ryman DC, McDade E, Jasielec MS, Buckles VD, Cairns NJ,

et al. Neurological manifestations of autosomal dominant familial

Alzheimer’s disease: a comparison of the published literature with

the Dominantly Inherited Alzheimer Network observational study

(DIAN-OBS). Lancet Neurol 2016; 15: 1317–25.

Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation

using leave-one-out cross-validation and WAIC. Stat Comput 2016;

27: 1413–32.

Venkatraghavan V, Bron E, Niessen W, Klein S. A discriminative event

based model for Alzheimer’s disease progression modeling. In:

Information Processing in Medical Imaging. IPMI 2017. Lecture

Notes in Computer Science. Vol. 10265. Cham: Springer; 2017.

Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado

O, et al. Amyloid b deposition, neurodegeneration, and cognitive

decline in sporadic Alzheimer’s disease: a prospective cohort study.

Lancet Neurol 2013; 12: 357–67.

Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC,

et al. The Alzheimer’s Disease Neuroimaging Initiative: a review of

papers published since its inception. Alzheimers Dement 2012; 8:

S1–68.

Willette AA, Calhoun VD, Egan JM, Kapogiannis D; Alzheimer’s

Disease Neuroimaging Initiative. Prognostic classification of mild

cognitive impairment and Alzheimer’s disease: MRI independent

component analysis. Psychiatry Res 2014; 224: 81–8.

Yang E, Farnum M, Lobanov V, Schultz T, Raghavan N, Samtani

MN, et al. Quantifying the pathophysiological timeline of

Alzheimer’s disease. J Alzheimers Dis 2011; 26: 745–53.

Young AL, Oxtoby NP, Daga P, Cash DM, Fox NC, Ourselin S, et al.

A data-driven model of biomarker changes in sporadic Alzheimer’s

disease. Brain 2014; 137: 2564–77.

Young AL, Oxtoby NP, Huang J, Marinescu RV, Daga P, Cash DM,

et al. Multiple orderings of events in disease progression. In:

Ourselin S, Alexander DC, Westin CF, Cardoso MJ, editors.

Information processing in medical imaging. Switzerland: Springer;

2015. p. 711–22.
Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S.

Accurate multimodal probabilistic prediction of conversion to

Alzheimer’s disease in patients with mild cognitive impairment.

Neuroimage Clin 2013; 2: 735–45.
Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW. Predicting

regional neurodegeneration from the healthy brain functional con-

nectome. Neuron 2012; 73: 1216–27.

1544 | BRAIN 2018: Page 1544 of 1544 N. P. Oxtoby et al.

http://www.gaussianprocess.org/gpml/

