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Untargeted metabolic analysis in dried blood spots reveals
metabolic signature in 22q11.2 deletion syndrome
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The 22q11.2 deletion syndrome (22q11.2DS) is characterized by a well-defined microdeletion and is associated with increased risk
of neurodevelopmental phenotypes including autism spectrum disorders (ASD) and intellectual impairment. The typically deleted
region in 22q11.2DS contains multiple genes with the potential of altering metabolism. Deficits in metabolic processes during early
brain development may help explain the increased prevalence of neurodevelopmental phenotypes seen in 22q11.2DS. However,
relatively little is known about the metabolic impact of the 22q11.2 deletion, while such insight may lead to increased
understanding of the etiology. We performed untargeted metabolic analysis in a large sample of dried blood spots derived from 49
22q11.2DS patients and 87 controls, to identify a metabolic signature for 22q11.2DS. We also examined trait-specific metabolomic
patterns within 22q11.2DS patients, focusing on intelligence (intelligence quotient, IQ) and ASD. We used the Boruta algorithm to
select metabolites distinguishing patients from controls, patients with ASD from patients without, and patients with an IQ score in
the lowest range from patients with an IQ score in the highest range. The relevance of the selected metabolites was visualized with
principal component score plots, after which random forest analysis and logistic regression were used to measure predictive
performance of the selected metabolites. Analysis yielded a distinct metabolic signature for 22q11.2DS as compared to controls,
and trait-specific (IQ and ASD) metabolomic patterns within 22q11.2DS patients. The metabolic characteristics of 22q11.2DS
provide insights in biological mechanisms underlying the neurodevelopmental phenotype and may ultimately aid in identifying
novel therapeutic targets for patients with developmental disorders.
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INTRODUCTION
Over the last few decades an increasing proportion of develop-
mental disorders have been connected to a known genetic
etiology [1, 2]. However, the mechanisms relating genetic
mutation to phenotypic manifestation are oftentimes poorly
understood. Knowledge about these mechanisms would be
valuable as this may provide novel therapeutic targets and might
aid in symptom prediction and disease stratification. Various
genetic disorders may function as a window into the underlying
neurobiological pathways that result in the manifestation of
developmental disorders. The 22q11.2 deletion syndrome
(22q11.2DS) is one such pathogenic genetic variant.
22q11.2DS results from a hemizygous deletion of the long arm

of chromosome 22 [3]. The 22q11.2 deletion has an estimated
prevalence of 1 in ~2000 live births [4] and is associated with a
highly variable clinical presentation, affecting multiple organs and
tissues. The clinical phenotype may include heart anomalies,
palatal abnormalities, facial dysmorphisms, T-cell abnormalities and
endocrine gastrointestinal problems [5, 6]. Furthermore, 22q11.2DS

is associated with cognitive deficits and neurodevelopmental
symptoms [3]. Most of the genes that are typically deleted in
22q11.2DS are expressed in the brain [7]. Patients with 22q11.2DS
have an increased risk of developing brain-related phenotypes,
including language impairment, anxiety disorders, attention-deficit
hyperactivity disorder and autism spectrum disorder (ASD) in early
life, as well as schizophrenia and early onset Parkinson’s disease
later in life [6, 8–12].
Intellectual disability is common in people with 22q11.2DS, with

an estimated prevalence of 45–50% [9]. The mean Intelligence
Quotient (IQ) in individuals with 22q11.2DS is ~70, with
approximately two-third of the population having an IQ in the
range of 55–85 [13], as opposed to a mean IQ of 100 in the general
population. Furthermore, ASD is highly prevalent among indivi-
duals with 22q11.2DS. The prevalence of ASD in 22q11.2DS
patients has been estimated to be around 35% [9, 14].
Over the last few decades, 22q11.2DS has been well character-

ized genetically [3]. However, despite the fact that 90% of people
with 22q11.2DS carry an identical mutation [3], the clinical
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phenotype is highly heterogeneous. The reasons for this
phenotypic variability remain largely unclear and may include
epigenetic mechanisms, genetic risk variants outside the 22q11.2
locus and environmental factors. Recently, progress has been
made towards elucidating the mechanisms behind this pheno-
typic variability, illustrating the role of common genetic variation
and parental phenotypes [15, 16].
One relevant but understudied mechanism behind phenotypic

variability in 22q11.2DS is metabolic functioning [3, 17]. Out of the
~90 genes involved in 22q11.2 DS, nine genes are implicated in key
metabolic processes: Catechol-O-Methyltransferase (COMT), Ubi-
quitin Recognition Factor In ER-Associated Degradation 1 (UFD1L),
DiGeorge Syndrome Critical Region 8 (DGCR8), Mitochondrial
Ribosomal Protein L40 (MRPL40), proline dehydrogenase (PRODH),
Solute Carrier Family 25 Member 1 (SLC25A1), Thioredoxin
Reductase 2 (TXNRD2), T10, and Zinc Finger DHHC-Type Palmitoyl-
transferase 8 (ZDHHC8) [18]. Of these nine, the first three are
believed to have an indirect effect on mitochondrial functioning,
whereas the remaining six are directly involved in mitochondrial
functioning. These six are maximally expressed shortly after birth,
when forebrain synaptogenesis peaks [19]. Reduced gene dosage
of genes involved in metabolism may lead to disrupted neuronal
connectivity, synaptic signaling and neuronal metabolism [17, 18].
This, in turn, could lead to altered neurocognitive development,
contributing to the various 22q11.2DS-associated cognitive and
neurodevelopmental phenotypes.
Thus, studying the metabolome of the 22q11.2DS might allow

for a deeper understanding of the underlying neurobiological
pathways, which could also lead to better understanding of
developmental disorders in general. Furthermore, studying the
metabolome of individuals with 22q11.2DS may reveal how
genotype and phenotype are connected in this genetic syndrome
and provide insight into mechanisms underlying atypical
neurodevelopment.
Here, we report and discuss results of untargeted metabolic

analysis of dried blood spots derived from 22q11.2DS patients and
controls, aiming to identify a metabolic “signature” for 22q11.2DS.
In addition, we analyze associations between 22q11.2DS-related
metabolomic patterns and two highly prevalent neurodevelop-
mental expressions in 22q11DS: low intellectual functioning
(defined as lowest third of IQ-scores measured in sample) and
autism spectrum disorder (ASD).

MATERIALS AND METHODS
Samples and procedures
This study was part of a large ongoing clinical cohort study at the
University Medical Center Utrecht, the Netherlands, aiming to describe
trajectories of cognitive and behavioral phenotypes in children and
adolescents with 22q11.2DS [14]. All of the subjects had a molecularly
confirmed 22q11.2 deletion. As part of the clinical assessments, all patients
undergo routine laboratory assessment including metabolic parameters, as
hyperprolinemia is highly prevalent in 22q11.2DS [20]. As part of the
metabolic analyses, a dried blood spot is generated and stored as reported
previously [21]. Subjects were asked to refrain from food and drinks
(except water, and black tea/coffee without added sugar) 10 h before the
blood test.
IQ, including parameters of full scale IQ, verbal IQ, and performance IQ,

was assessed according to an age-appropriate version of the Wechsler [22].
For this study, only full scale IQ measures were used (from now on called
“IQ”). ASD diagnosis was based on clinical assessment, which included the
ADI-R [23] and direct clinical observation, and consistent with DSM-IV-TR
diagnostic criteria [24]. Clinical assessments were conducted by a team of
experienced psychiatrists and psychologists at the University Medical
Center Utrecht, Department of Psychiatry.
The control group consisted of 87 individuals without 22q11.2DS from

whom a dried blood spot was available. For these individuals, aged
between 0 and 18 years, a routine metabolic analysis had been requested
as part of a general pediatric assessment; no phenotypic or behavioral data

were available for this control group. Therefore, it cannot be ensured that
the control group was age- and sex-matched.
Ethical approval was obtained from the local Ethics Board (METC

Utrecht, The Netherlands, 08/345) and informed consent was obtained
from all participants and legal guardians prior to research procedures.

Metabolic profiling
Sample preparation, direct infusion high-resolution mass spectrometry (DI-
HRMS) and data processing was performed as previously described
[25, 26]. Mass peak intensities were composed of summed intensities of
isomers, as DI-HRMS cannot separate these. To compare the metabolic
profiles of controls and 22q11.2DS patients, mass peak intensities were
converted to Z-scores to normalize measurements across samples.

Data analysis
R-software (v4.0.3) [27] was used to conduct data analysis. A flow chart for
the data analysis is available in the Supplementary Materials (Supplemen-
tary Fig. 1). R code is available upon request.
Boruta as implemented in the Boruta package (v7.0.0) [28] was used to

determine metabolic features informative about metabolic differences
between individuals with and without 22q11.2DS. To ensure no
interference of metabolites by psychotropic medication, individuals taking
psychotropic medication (n= 12) were excluded from this step. Boruta is a
wrapper around random forest (RF) analysis that selects the features that
are more relevant than random probes. Tentative attributes were removed
from selected variables, as these did not perform significantly better than
random probes.
To visualize the extent to which 22q11.2DS patients could be

distinguished from controls based on the features selected by Boruta,
principal component analysis (PCA), RF analysis and logistic regression (LR)
were performed. For the PCA we used the pca function from the MixOmics
package (v6.14.0) [29]. RF analysis was performed using the method “rf”
from the function train from the package caret (v6.0.86) [30], implemented
with a 10-fold cross validation. LR was executed using the method “glm”
from the train function belonging to the package caret (v6.0.86) [30]. The
function roc from the package pROC was used to calculate the area under
the receiver operating characteristic (AUROC) for LR (v1.17.0.1) [31].
Additionally, the Pearson correlations between the age of the patients

and the first 5 principal components (PCs) of the whole metabolomics
dataset available for patients were calculated to explore the potential
confounding effect of the age of the patients.
The sequence of analyses described was repeated for within-patients

analysis. To explore metabolic patterns associated with ASD co-occurring
with 22q11.2DS, features distinguishing patients with ASD from patients
without were selected. Additionally, features that significantly distin-
guished the third of the patients with the lowest IQ score (IQ < 62) from
the third of patients with the highest IQ score (IQ > 69) were selected to
explore metabolic patterns associated with IQ for 22q11.2DS. We choose to
split the data into three categories instead of two, as this leads to a smaller
loss of efficiency when analyzing [32].

RESULTS
Dried blood spots were available for 49 individuals with a
confirmed 22q11.2 deletion (21 male, 42.8%). Of this group, 12
individuals used psychotropic medication (Supplementary Table
1). Subjects were aged between 11 and 27, with a mean of 16.8
(SD ± 3.3). No strong correlations (r < 0.4) between the age of the
patients and the first 5 PCs of the whole metabolomics dataset
were present (Supplementary Table 2).
The distribution of IQ scores, subdivided in full scale IQ (mean=

66.1, SD ± 10.4), verbal IQ (mean= 72.3, SD ± 12.4) and perfor-
mance IQ (mean= 68.5, SD ± 11.2) was slightly skewed to the left
compared to the normal distribution representative of
22q11.2DS patients as a whole [33, 34] (Supplementary Fig. 2).
Out of the 49 individuals with 22q11.2DS included in this study,
22 individuals (44.8%) were diagnosed with ASD. A detailed
overview of the clinical phenotype of this cohort can be found in
the supplementary materials (Supplementary Table 3). A total of
1867 metabolites, and their respective isomers, were available
for this analysis.
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Case–control analysis
Boruta identified 50 metabolites distinguishing controls and
patients (Table 1; Supplementary Table 4). The PCA score plot
visualizing the features selected by Boruta showed a good
separation (Fig. 1). PCA contribution plots are presented in the
supplementary materials (Supplementary Figs. 3–4).
To measure the relevance of the features selected by Boruta, we

performed RF analysis, resulting in an out-of-bag error (a method
of estimating the prediction error for RF) of 8.4% (AUROC= 0.98,
sensitivity= 0.77, specificity= 0.98), whereas logistic regression
resulted in an AUROC of 0.86 (sensitivity= 0.89, specificity= 0.83).

Within-patients analysis
Boruta analysis revealed 13 metabolites that significantly
distinguished patients with ASD from those without ASD
(Table 1 and Supplementary Table 5), and revealed 8
metabolites that significantly distinguished 22q11.2DS
patients with a lower IQ (IQ < 62) from 22q11.2DS patients
with a higher IQ (IQ > 69) (Table 1 and Supplementary Table 6).
The PCA score plots of both within-analyses revealed relatively
clear clustering (Fig. 2 and Fig. 3). PCA contribution plots can
be found in the Supplementary Materials (Supplementary
Figs. 5–8).

Table 1. The metabolites that are found to be relevant, as calculated by Boruta analysis, for distinguishing 22q11.2DS patients from controls,
distinguishing 22q11.2DS patients with ASD from 22q11.2DS patients without ASD and distinguishing 22q11.2DS patients with an IQ score in the
lowest range (IQ < 62) from 22q11.2DS patients with an IQ score in the highest range (IQ > 69).

Metabolites distinguishing 22q11.2DS patients from controls,
according to Boruta analysis.

Metabolites
distinguishing
22q11.2DS patients with
ASD from 22q11.2DS
patients without ASD,
according to Boruta
analysis.

Metabolites distinguishing 22q11.2DS
patients with an IQ < 62 from 22q11.2DS
patients with an IQ > 69, according to
Boruta analysis.

(beta-1-O-[N-(2-hydroxymethyl-3-
chlorophenyl)anthraniloyl]-D-
glucupyranuronic acid)

Glutamyl-Tryptophan 11′-Carboxy-alpha-
tocotrienol

3-Methoxybenzenepropanoic acid

12-Ketodeoxycholic acid Glutamyl-Tyrosine 2-Hexaprenyl-3-methyl-6-
methoxy-1,4
benzoquinone

DG(14:0/14:0/0:0)

1-Methylguanosine Glycocholic acid 4-Methylcatechol Diethylthiophosphate

2′-Deoxyinosine triphosphate Histamine Bisnorbiotin Hydroquinone

3,5-Diiodothyronine Hydroxyphenylacetylglycine Cer(d18:0/16:0) Hydroxyprolyl-Isoleucine

3b,12a-Dihydroxy-5a-cholanoic acid Hydroxyprolyl-Isoleucine dTDP Imidazoleacetic acid riboside

3-Hydroxyhexadecanoylcarnitine L-Proline Eicosapentaenoyl
Ethanolamide

Se-Methylselenocysteine

3-Methoxytyrosine LysoPE(0:0/18:2(9Z,12Z)) Estrone sulfate Tyramine

4-Hydroxy-5-(dihydroxyphenyl)-
valeric acid-O-sulfate

LysoPE(0:0/20:2(11Z,14Z)) Galactaric acid

4-Hydroxybenzoic acid N-(2-formyl-3-chlorophenyl)
anthranilic acid

Hydroquinone

5,10-Methenyltetrahydrofolic acid N(6)-(Octanoyl)lysine Leukotriene B4
dimethylamide

5-Dodecenoic acid N-Acetyl-L-phenylalanine Leukotriene F4

5-Hydroxyindoleacetic acid PA(20:4(5Z,8Z,11Z,14Z)e/2:0) L-Kynurenine

5-Hydroxykynurenamine Pantetheine

6-Phosphonoglucono-D-lactone Phosphoribosyl
pyrophosphate

7,8-Dihydropteroic acid Pimelylcarnitine

Alpha-CEHC Propinol adenylate

Ceramide (d18:1/12:0) Putreanine

cis-2-Methylaconitate Pyronaridine

Citric acid Quinaprilat

Cortolone-3-glucuronide Retinoyl b-glucuronide

DG(15:0/16:1(9Z)/0:0) S-Adenosylmethionine

D-Glucuronic acid 1-phosphate Sphingosine

Dihydrolipoamide Sulfate

Glucosylsphingosine Thymidine 3′,5′-cyclic
monophosphate

The names of the metabolites are shown in alphabetical order. The isobars of these metabolites can be found in the supplemental materials (Supplemental
Tables 4–6).
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RF analysis performed to evaluate the relevance of the features
selected by Boruta in distinguishing patients with ASD from those
without, resulted in an out-of-bag error of 10.0% (AUROC= 0.94,
sensitivity= 0.95, specificity= 0.81). The relevance of the features
selected by Boruta measured with LR resulted in an AUROC of 0.73
(sensitivity= 0.67, specificity= 0.80).
RF analysis measuring the relevance of the features selected by

Boruta in distinguishing patients with a lower IQ (IQ < 62) from
patients with a higher IQ (IQ > 69) resulted in an out-of-bag error
of 10.0% (AUROC= 0.98, sensitivity= 0.91, specificity= 0.83). LR
measuring the relevance of these features selected by Boruta
resulted in an AUROC of 0.75 (sensitivity= 0.67, specificity= 0.83).

DISCUSSION
This study performed untargeted metabolomics in dried blood
spots and identified a metabolic signature for 22q11.2DS and
related phenotypic expressions of ASD and IQ. The results point to
potential biological mechanisms associated with 22q11.2DS and
related neurodevelopmental phenotypes. This facilitates a deeper
understanding of the etiology of the syndrome as well as the
connection between genotype and phenotype in the context of
22q11.2DS. However, more research is required to fully interpret
the broader implications of this metabolic signature.
Metabolomics is a powerful study method as metabolites and their

concentrations often directly reflect biochemical activity as well as
pathogenic mechanisms [35, 36]. Metabolomics allows for extensive
characterization of metabolic alterations that may underlie disease
etiology. Only one previous study has investigated metabolomics in a
small sample of patients with 22q11.2DS (n= 11) [18]. This pilot study
reported significant differences between the metabolome of children
with 22q11.2DS (aged 8–15) and controls (aged 6–13). To our
knowledge, our study included the largest sample size to date for any
metabolomics analysis in 22q11.2DS and is the first study to report on
metabolomics in adolescents and young adults with 22q11.2DS. The
results reveal relevant metabolites that may guide future studies

investigating pathogenic mechanisms underpinning 22q11.2DS-
related phenotypes.

Proline
Plasma proline levels are commonly increased (hyperprolinemia)
in 22q11.2DS patients, occurring in 30–50% of this population
[20, 37]. Therefore, it is not surprising that proline is a prominent
feature of the metabolic signature. The conversion of proline to
glutamate is catalyzed by the mitochondrial enzyme proline
dehydrogenase [38]. This enzyme is encoded by the PRODH gene,
which is one of the ~90 genes implicated in 22q11.2DS. Proline
showed to be a significant influence in the metabolic signature
distinguishing between 22q11.2DS patients and controls (Table 1
and Supplementary Fig. 3). In accordance with our findings, Napoli
et al. (2015) found the metabolite proline to be significantly
increased in 22q11.2DS patients compared to controls [18]. This is
consistent with previous studies reporting on hyperprolinemia in
patients with 22q11.2DS [20, 37]. Our secondary analyses within
the 22q11.2DS patients revealed no significant differences
between 22q11.2DS patients with and without ASD; or between
IQ groups. This too is in line with currently available evidence
demonstrating that there is no direct association between high
proline levels and specific psychiatric expressions, and that
additional genomic and environmental factors may be needed
to produce clinical symptoms [39]. High proline levels may lower
the threshold for developing neuropsychiatric disorders by
indirectly affecting neuronal connectivity, synaptic signaling and
neuronal metabolism [39].

Effect of medication use
Some of the metabolites present in the metabolic signatures are
associated with certain types of medication. Examples are the
metabolite pyronaridine, which is used to treat malaria [40], and
the metabolite quinaprilat, which is an angiotensin-converting
enzyme inhibitor [41]. According to the available data, none of the
participants were taking these drugs at the moment of sampling.

Fig. 1 Principal component analysis score plot serving as visualization of the features selected by Boruta analysis for distinguishing
22q11.2DS patients (cases) and controls. Ellipses with a 95% confidence level serve to indicate clusters. Two patients are plotted outside of
this ellipse and are labeled. More information about these patients can be found in Supplementary Table 3. No phenotypic or behavioral data
were available for the control group.
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Fig. 2 Principal component analysis score plot serving as visualization of the features selected by Boruta analysis for distinguishing
22q11.2DS patients with autism spectrum disorder (ASD) from 22q11.2DS patients without autism spectrum disorder (No ASD). Ellipses
with a 95% confidence level serve to indicate clusters. One patient without ASD is plotted outside of this ellipse and is labeled. More
information about this patient can be found in Supplementary Table 3.

Fig. 3 Principal component analysis score plot serving as visualization of the features selected by Boruta analysis for 22q11.2DS patients
with an IQ score in the lowest range (IQ < 62) from 22q11.2DS patients with an IQ score in the highest range (IQ > 69). Ellipses with a 95%
confidence level serve to indicate clusters. Two patients with an IQ score in the lowest range are plotted outside of this ellipse and are labeled.
More information about these patients can be found in Supplementary Table 3.
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Existing literature has not clarified this finding. It should also be
noted that one of the patients took the psychotropic drug
olanzapine at the moment of sampling (Supplementary Tables 1
and 3). The data of this patient, indicated by the number 30 in this
study, was plotted outside of the ellipse (95% confidence level) in
the PCA graphs of the observed metabolic signature of ASD and
the observed metabolic signature of IQ (Figs. 2 and 3). Olanzapine
has been shown to significantly alter metabolic patterns [42, 43],
which may explain the observed separation of patient 30 in both
Figs. 2 and 3.

Strengths and limitations
Strengths of this study are the large sample size and thorough
psychiatric phenotyping. A limitation of the study is that
interpretation of results may be hampered by the fact that
22q11.2DS subjects had a fasting blood sample taken whereas for
controls this was not the case. However, a 10 h fast is considered
brief and insufficient to activate a full fasting response. We
checked the metabolites present in the metabolic signatures for
relevance to fasting pathways but none were identified. Another
limitation is that the age of 22q11.2DS patients ranged from 11–27
years. However, as no correlations between age and metabolic
data were identified, the influence of age is likely to be small
(Supplementary Table 2).
Another limitation is that phenotypic data about the control

group were unavailable. Ideally, future studies would include
healthy controls for whom phenotypic data are available, in order
to allow for better interpretation of between-group comparisons.
Furthermore, longitudinal designs are needed to investigate risk of
psychiatric illness over time. The 22q11.2DS is associated with an
increased risk of psychotic disorders up to 25% [9]. A longitudinal
study design would enable identification of metabolic features
associated with psychosis risk. Ultimately, metabolic data jointly
with clinical and other data may be used for predictive modeling
of disease risk and stratification.

CONCLUSION
In conclusion, this study used untargeted metabolomics in dried
blood spots to identify a metabolic signature for 22q11.2DS and
related neurodevelopmental expressions, ASD and low intellectual
functioning. By examining metabolic characteristics of 22q11.2DS
we aim to detect biological mechanisms underlying these
neurodevelopmental traits. Increasing our understanding of
metabolic mechanisms underlying phenotypic expressions of
22q11.2DS facilitates identification of novel therapeutic targets
that may ultimately lead to improved treatment strategies for
patients with neurodevelopmental disorders.
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