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All tumor imaging modalities have resolution limits below which deeply sit-

uated small metastatic foci may not be identified. Moreover, incomplete

lesion excision will affect the outcomes of the patients. Scintigraphy is

adept in locating lesions, and second near-infrared window (NIR-II) imag-

ing may allow precise real-time tumor delineation. To achieve complete

excision of all lesions, multimodality imaging is a promising method for

tumor identification and management. Here, a NIR-II thiopyrylium salt,

XB1034, was first synthesized and bound to cetuximab and trans-cy-

clooctene (TCO) to produce XB1034-cetuximab-TCO. This probe provides

excellent sensitivity and high temporal resolution NIR-II imaging in mice

bearing tumors developed from human breast cancer cells MDA-MB-231.

To enable PET imaging, 68Ga-NETA-tetrazine is subsequently injected into

the mice to undergo a bio-orthogonal reaction with the preinjected

XB1034-cetuximab-TCO. PET images achieved in the tumor models using

the pretargeting strategy are of much higher quality than those obtained

using the direct radiolabeling method. Moreover, real-time NIR-II imaging

allows accurate tumor excision and sentinel lymph node mapping. In con-

clusion, XB1034 is a promising molecular imaging probe for tumor diagno-

sis and treatment.
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1. Introduction

Molecular imaging provides a noninvasive method for

effectively monitoring biomolecules at the cellular or

subcellular level (Tahara et al., 2014). Each modality,

including radiopharmaceutical, magnetic resonance,

targeted ultrasound, and optical imaging, has its

advantages and disadvantages. Multimodal imaging

integrates the advantages of various modalities and

minimizes their shortcomings (Sheng et al., 2018;

Weissman et al., 2013). PET imaging is outstanding in

locating lesions and detecting metastasis with nearly

unlimited tissue penetration depth and excellent sensi-

tivity (Lee et al., 2014), but PET is not practical for

real-time and continuous observation (Hernandez

et al., 2016). Fluorescence imaging has attracted

increasing attention due to its high temporal resolu-

tion, spatial resolution, and real-time tumor delin-

eation (Li et al., 2014; Zhang et al., 2020). It is

therefore an ideal modality to pair with PET.

However, most traditional optical imaging methods

have some shortcomings in in vivo studies. Autofluo-

rescence caused by the fur and normal tissues of exper-

imental animals and background noise could result in

a low signal-to-noise ratio (SNR) (Hong et al., 2012).

The penetration depth of most fluorescence wave-

lengths is also limited (Shou et al., 2018). To overcome

these limitations, probes with emissions in the second

near-infrared window (NIR-II, 1000–1700 nm) for

multimodal imaging are being developed (Cheng et al.,

2017; He et al., 2018; Shou et al., 2017) and gaining

increasing attention in the application of optical imag-

ing (Feng et al., 2017; Li et al., 2018b; Wan et al.,

2018; Yang et al., 2018a,b; Zhu et al., 2018a). The

penetration depth of NIR-II fluorescence could reach

up to 10 mm (Benhao et al., 2018; Shao et al., 2016;

Wang et al., 2019). And organic dyes have low toxicity

with good biocompatibility and pharmacokinetics,

which makes them appealing imaging agents in clinical

applications (Antaris et al., 2016, 2017; Lei et al.,

2019; Zhang et al., 2016). The polymethine thiopy-

rylium salt derivates are becoming one of the most

important NIR-II small-molecule dyes for their high

molar absorption coefficient and both long absorption

and emission wavelength up to 1300 nm (Li et al.,

2018a; Wang et al., 2019). While applied in biological

imaging, these dyes are tended to form into nanoparti-

cles or used directly without specific-targeted modifica-

tion (Cosco et al., 2017; Tao et al., 2013; Xie et al.,

2019; Yufu et al., 2018). Our previously reported poly-

methine thiopyrylium salt 5H5 has achieved excellent

specific-targeted tumor imaging after conjugated with

an RGD-based peptide (Ding et al., 2019).

Unfortunately, the pursuit of long emission wavelength

sacrifices the fluorescence quantum yield (QY) and

chemical stability. Herein, a new small-molecule

organic dye, namely XB1034, was achieved with

improved molar absorption coefficient and QY after

shortening the polymethine chain. Surprisingly, as the

polymethine chain shortened, XB1034 can afford more

modification strategies, such as click chemistry and

amide condensation reactions, attributing to the

improvement of chemical stabilities. To perform high-

efficiency targeted biological imaging, XB1034 was

introduced into monoclonal antibody cetuximab

(~ 150 kDa) to construct a probe XB1034-cetuximab

targeting epidermal growth factor receptor (EGFR).

To achieve NIR-II/PET dual-modal imaging, the

fluorescence dye and radiotracer are usually combined

into an integrated whole (Sun et al., 2018; Zhang

et al., 2019). However, they are limited to get ideal

radionuclide imaging for the nuclides with short half-

life time (Zhang et al., 2018). Recently, a pretargeting

technique using bio-orthogonal reactions was reported

to afford higher image quality and reduced nontar-

geted radiation dosed to patients and surgeons (Lutje

et al., 2014; van Duijnhoven et al., 2015). Specifically,

the strategy uses an inverse-electron-demand Diels–
Alder reaction between trans-cyclooctene (TCO) and

tetrazine (Tz) (Meyer et al., 2018; Zeglis et al., 2013).

Inspired by that, our strategy is to modify XB1034-ce-

tuximab with TCO to afford XB1034-cetuximab-TCO

and get the NIR-II tumor imaging (Adumeau et al.,

2016; Zeglis et al., 2015). The subsequent injection of

radiolabeled Tz-(2,20-((6-amino-1-(4,7-bis(car-

boxymethyl)-1,4,7-triazonan-1-yl)hexan-2-yl)azanediyl)-

diacetic acid (L-NETA, a metal chelating agent,

Ludwig et al., 2017) enables click conjugation of TCO

and Tz, accompanied by rapid renal clearance of

unbound 68Ga-NETA-Tz. After ten half-lives of

radioisotope (half-life of 68Ga: 68 min), NIR-II imag-

ing-guided surgery would be performed (Scheme 1).

2. Materials and methods

2.1. Synthesis of XB1034

The preparations of probes are listed in Scheme S1.

The synthesis of thiopyrylium a is described before

(Ding et al., 2019). Thiopyrylium a (0.2 mmol,

86.0 mg), N,N’-Diphenylformamidine b (0.1 mmol,

19.62 mg), and anhydrous sodium acetate (0.1 mmol,

8.0 mg) were stirred in acetic anhydride (10 mL) for

120 min at 70 °C. The mixture was washed with ethyl

ether and then desiccated. Finally, XB1034 (58 mg)
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was obtained after purified by high-performance liquid

chromatography (HPLC) eluted with acetonitrile/water

(containing 0.1% TFA). Yield: 74%; 1H NMR

(400 MHz, Acetonitrile-d3) d 7.70 (d, J = 8.8 Hz, 4H),

7.52 (s, 1H), 7.50 (10H), 7.41 (s, 2H), 7.06 (d,

J = 8.9 Hz, 4H), 4.78 (d, J = 2.3 Hz, 4H), 3.02 (8H),

2.88 (t, J = 2.3 Hz, 2H); 13C NMR (101 MHz, CD3CN)

d 161.6, 161.0, 147.5, 146.9, 146.7, 139.2, 138.0, 130.7,

129.9, 129.2, 129.1, 129.1, 128.9, 127.1, 116.7, 79.0,

77.5, 56.9, 31.6, 30.7; MALDI-TOF mass: m/z calcd for

C47H35O2S2
+, 695.21 [M-BF4]

+; found: 695.11.

The theoretical characteristics of XB1034 were eval-

uated by commercial software (GAUSSIAN 09�; Gaus-

sian Inc., Wallingford, CT, USA). The optimized

geometries of ground state (S0) and first excited state

(S1), and highest and lowest unoccupied molecular

orbitals (HOMOs and LUMOs) were acquired for pre-

dicting optical properties using time-dependent density

functional theory calculations. The fluorescence emis-

sion wavelength of XB1034 was obtained using the

TD OPT B3LYP/6-31G(d) cpcm = solvent = acetoni-

trile method.

2.2. Synthesis of XB1034 NHS ester, XB1034-

cetuximab, and XB1034-cetuximab-TCO

XB1034 (3.9 mg, 5 lmol) was added to a solution of

azido-PEG8-NHS (3.4 mg, 6 lmol) in DMF (0.5 mL),

followed by stirring with copper sulfate (0.08 mg,

0.5 lmol) and sodium ascorbate (0.1 mg, 0.5 lmol)

for 2 h. And diethyl ether was subsequently added to

the mixture. Finally, XB1034-NHS was collected and

purified by HPLC. MALDI-TOF mass m/z: [M]+ calcd

for C93H115N8O26S2
+, 1823.74; found, 1823.60. To test

the photostability of XB1034-NHS, the sample was

exposed to continuous 808-nm laser irradiation for 2 h

and the fluorescence intensity was measured.

XB1034 NHS ester (200 µg in 20 µL DMSO) was

added to cetuximab solution (870 µg, purified by Zeba

column) and stirred for 3 h. We used 3K MWCO filter

to purify XB1034-cetuximab and further identify with

HPLC. XB1034-cetuximab-trans-TCO was synthesized

by stirring XB1034-cetuximab and TCO-PEG4-NHS

ester (60 µg) for 3 h (purified by 3K MWCO filter).

2.3. Preparation of 68Ga-NETA-Tz and 68Ga-

NETA-XB1034-cetuximab

We used 0.05 M HCl to elute 68Ga (222 MBq,

500 µL), and sodium acetate buffer (1.25 M, 150 µL)
was added to regulate pH to 4.0. Followed by the

addition of 6 nmol NETA-Tz, the mixture was stirred

at 90 °C for 12 min to obtain 68Ga-NETA-Tz. For the

direct imaging, XB1034-cetuximab-trans-TCO was

mixed with 68Ga-NETA-Tz for 20 min to prepare
68Ga-NETA-cetuximab-XB1034 (purified by PD-10 gel

column).

2.4. Cell culture and identification

Human breast cancer cell lines MDA-MB-231 and

MCF-7, and NIH 3T3 fibroblasts were maintained in

DMEM containing 10% FBS at 37 °C. The expression

of EGFR in MDA-MB-231 and MCF-7 cells was

identified by western blot. Cell uptake assay was mea-

sured to test the binding affinity of XB1034-cetux-

imab-TCO. The experiment was carried out in 4 9 106

cells and then incubated with serum-free DMEM con-

taining XB1034-cetuximab-TCO (50 nM) with/without

excessive cetuximab (2.5 lM) for 4 h, respectively. The

Scheme 1. The schematics of multimodal PET and NIR-II imaging.
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cells were washed three times with PBS and further

digested with pancreatic enzyme to get fluorescence

intensities of digestions. A quantity of 1 9 104 3T3

fibroblasts per well were planted into 96-well plates,

followed by various concentration (1, 2, 5, 10, 25, 50,

and 100 µg�mL�1, n = 5 each concentration) of

XB1034-NHS incubation overnight. And the samples

were treated with 1 mM methyl thiazolyl tetrazolium

(MTT) for an additional 4 h. The formazan crystals

were dissolved in 150 µL DMSO per well, and the

absorbance of the samples was tested at 490 nm to cal-

culate cell viability.

2.5. Animal models

The animal studies were approved by the Animal Care

Committee of Tongji Medical College, Huazhong

University of Science and Technology. The mice were

purchased from Beijing HFK Bioscience Co. Ltd (Bei-

jing, China). A total of 27 nude mice (4–6 weeks) were

received a subcutaneous injection of MDA-MB-231

cells (21 mice) or MCF-7 (3 mice) in the shoulder. The

mice were used for in vivo studies after injections for

three weeks.

2.6. In vivo NIR-II imaging

XB1034-cetuximab-TCO (each 150 µg, 150 µL) were

injected into the mice bearing MDA-MB-231 (n = 12)

or MCF-7 (n = 3) tumors via the tail vein under 2.5%

isoflurane in oxygen for anesthetization. NIR-II imag-

ing was performed in a home-built NIR-II imaging

system using a 1000-nm long-pass (LP) filter under

808-nm excitation. Blood pool imaging was immedi-

ately acquired when the probe was injected into the

mice. The vessel diameters were calculated from the

corresponding full width at half maximum of the

peaks. Blocking study was performed with unlabeled

cetuximab (1.5 mg in 200 lL PBS) coinjection (n = 3).

The whole-body imaging in the NIR-II window was

acquired at different time points: 0.5, 1, 2, 4, 8, 12,

and 48 h postinjection. The excitation intensity of the

irradiation was kept below 100 mW�cm�2.

2.7. Small-animal PET scanner imaging and

biodistribution studies

Forty-eight hours after XB1034-cetuximab-TCO injec-

tion, the mice were injected intravenously with 68Ga-

NETA-Tz (14.8–22.2 MBq, 150 µL), and PET images

were acquired under 2.5% isoflurane in oxygen for

anesthetization. The biodistribution studies were car-

ried out at 0.5, 1, and 2 h after 68Ga-NETA-Tz

injection in MDA-MB-231 (n = 3 per group) and 2 h

in MCF-7 tumor-bearing mice (n = 3). The interested

tissues were collected, weighed, and measured with an

automated c counter to calculate the percentage of

injected dose per gram of tissue (%ID�g�1). 68Ga-

NETA-cetuximab-XB1034 (14.8–22.2 MBq, 150 lL)
was also injected into MDA-MB-231 models to get the

direct EGFR-specific PET images (n = 3).

2.8. NIR-II image-guided surgery of tumors

We used NIR-II to guide surgical resection of the

tumor tissue. The mice were anesthetized at 60 h

postinjection of antibody-modified compounds and

nearly 10 h after PET imaging. Tumor resection was

performed under NIR-II image guidance. Tumor-to-

background ratios (n = 3) were calculated using IMAGEJ

software (Bethesda, MD, USA) before and after

removal. The removed tumors and surrounding tissues

were stained with hematoxylin and eosin (H&E).

2.9. NIR-II imaging-guided lymph node mapping

Before imaging, the mice (n = 3) were anesthetized with

2.5% isoflurane inhalation. A total of 50 µL XB1034-

cetuximab-TCO (30 µg) was injected into the right foot

pad to visualize the lymphatic drainage and lymph

nodes. To pattern the standard sentinel lymph node

(SLN) biopsy process of clinical use, nude mice with

MDA-MB-231 tumors (n = 3) were applied. To trace

the lymphatic pathway in real time, XB1034-cetuximab-

TCO (30 µg) was injected intradermally near the tumor.

At 10 min postinjection, the SLNs were excised with the

aid of NIR-II imaging and identified by H&E staining.

2.10. Statistical analysis

Quantitative data were expressed as mean � standard

deviation (SD), and differences between two groups

were calculated using Student’s t-test (two-tailed) by

GRAPHPAD PRISM version 7.00 (San Diego, CA, USA).

The statistical significances were at P values < 0.05.

3. Results

3.1. XB1034, XB1034-NHS, and XB1034-

cetuximab-TCO

The optimized geometries of S0 and S1, HOMOs, and

LUMOs of XB1034 are shown in Fig. 1A. The band

gap of HOMOs and LUMOs is 1.72 eV, and the cal-

culated emission wavelength was approximately
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1000 nm. These calculated properties showed XB1034

an ideal dye for NIR-II imaging. XB1034 was success-

fully synthesized and characterized by nuclear mag-

netic resonance (Figs S1 and S2) and MALDI-TOF

mass spectrometry (Fig. S3). The maximum absorption

and emission wavelengths of XB1034 were 957 and

1034 nm in dichloroethane (DCE; Fig. 1B), respec-

tively, which was consistent with GAUSSIAN 09 calcula-

tions. The molecular absorption coefficient was

3.71 9 104 M
�1�cm�1 in dichloroethane. The fluores-

cence QY was 3.2% in DCE with IR26 (QY = 0.5%)

as a reference. The fluorescence intensities of XB1034

(10 lM in DCE) were identified with sequential LP fil-

ters (1000–1300 nm). The fluorescence signals of

XB1034 had been slightly weaker at 1050-nm long-

pass filter and decreased sharply after 1100 nm

(Fig. 1C).

XB1034 was modified with short-chain polyethylene

glycol to achieve water solubility using a high-perfor-

mance copper-catalyzed azide/alkyne cycloaddition

reaction, along with a highly reactive NHS ester

group. The MALDI-TOF result of XB1034-NHS is

shown in Fig. S4. After continuous laser excitation for

2 h, the fluorescence intensity of XB1034-NHS

remained > 85% of initial in PBS (Fig. 1D), indicating

good photostability in vitro. Besides, different concen-

trations of XB1034-NHS showed no obvious cytotoxi-

city in NIH 3T3 fibroblasts (Fig. 1G), implying good

biocompatibility. The maximum absorption and emis-

sion wavelengths of XB1034-cetuximab-TCO are

shown in Fig. S6. The fluorescence signals of XB1034-

cetuximab-TCO in MDA-MB-231 cells were higher

than MCF-7 and blocking cells (Fig. 1F), showing the

affinity and specificity of XB1034-cetuximab-TCO

in vitro.

3.2. NIR-II fluorescence in vivo imaging

When the probe (XB1034-cetuximab-TCO) was

injected into the mice, we immediately acquired images

of the blood pool phase (Fig. 1H). The vessel width

across the red line is 207 µm, which was calculated

from the fluorescence intensity profiles (Fig. 1I), sug-

gesting that NIR-II imaging shows high spatial resolu-

tion for vascular imaging. The MDA-MB-231 tumor

was clearly seen (Fig. 2A) with rising tumor-to-liver

(up to 1.79 � 0.07, n = 3; Fig. 2E) and tumor-to-back-

ground (up to 7.15 � 0.17) ratios over time. Mean-

while, signals of MCF-7 tumors (Fig. S10A) were

barely detected, and the intensity of MDA-MB-231

tumors was reduced sharply in the blocking study

(Fig. S10A and Fig. 2B).

3.3. PET imaging

After 68Ga-NETA-Tz injected into the pretargeted

MDA-MB-231 mice, the tumors were visualized at

0.5 h through the reaction between 68Ga-NETA-Tz

and XB1034-cetuximab-TCO (Fig. 2C). Low back-

grounds in liver and spleen can also be seen in the pic-

tures at 2 h. The signals in MCF-7 tumors and

blocked tumors were weak (Fig. S10B and Fig. 2D).

Using 68Ga-NETA-cetuximab-XB1034 to get the direct

EGFR-specific PET images, the radioactivity of blood

pool and background signals were constantly high in

non-pretargeted mice (Fig. S11). In the biodistribution

studies, 68Ga-NETA-Tz uptake by kidneys was the

highest in all models, indicating that renal excretion is

the main clearance pathway (Fig. S12). The concentra-

tion of 68Ga-NETA-Tz in blood was 1.49 � 0.21-

% ID�g�1 at 0.5 h and rapidly decreased to

0.77 � 0.05% ID�g�1 (n = 3 per group) at 2 h postin-

jection, suggesting a relatively rapid clearance in

blood.

3.4. NIR-II image-guided surgery of tumors

After XB1034-cetuximab-TCO injection for 60 h

(68Ga-NETA-Tz decayed for 12 h), the delineation of

MDA-MB-231 tumors was still clear (Fig. 3A). And

we performed the resection under dynamic imaging of

the mice. During the surgery, the fluorescence enabled

the detection and resection of deep and small foci

(Fig. 3B,C), which turned out to be metastatic lesions

by H&E staining (Fig. 3H). The tumor-to-normal ratio

reached 6.26 � 0.40 (n = 3), and tumor bed-to-normal

ratio dropped to 1.74 � 0.16, which manifests the

thorough resection of the tumor using targeted NIR-II

imaging. Histology revealed no malignant cells in the

tumor bed (Fig. 3I), indicating an R0 resection.

3.5. Sentinel lymph node mapping and imaging-

guided biopsy

After XB1034-cetuximab-TCO injection into the left

hind paw, the lymphatics were visualized in NIR-II

window (Fig. 4A–C). At 3 min postinjection, a popli-

teal lymph node was identified, and at 20 min postin-

jection, a sacral lymph node was identified. The

diameters of the lymphatics were 488 and 520 µm
(Fig. 4D), respectively. In the supine position, inguinal

and retroperitoneal lymph nodes were visualized

(Fig. 4E,F), which showed improved penetration into

deeper tissue in NIR-II window. Upon injection at the

margin of the tumor (Fig. 4H,I), the lymphatics and

the axillary lymph nodes became visible (Fig. 4J,K).
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Fig. 1. (A) The optimized geometries of S0 and S1, HOMOs, and LUMOs were calculated with GAUSSIAN 09 software. (B) The absorbance

and emission spectra of XB1034 in dichloromethane. (C) Fluorescence signals of XB1034 in sequential long-pass filters (1000–1300 nm). (D)

The photostability of XB1034-NHS within 2 h. (E, F) The binding ability of XB1034-cetuximab-TCO to MDA-MB-231 was higher than that to

MCF-7 cells, which is in accordance with the western blot results. (G) The NIH 3T3 cell viability of XB1034-NHS, error bars indicate � SD.

(H) The vascular imaging of XB1034 in nude mice. (I) The fluorescence intensity profiles (black line) and Gaussian fit across a red line

marked in H.
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The histology of the cut tissues was confirmed to be

lymph nodes by H&E staining (Fig. 4L).

4. Discussion

XB1034 was made water-soluble with a click reaction.

Using XB1034, we constructed a pretargeted PET and

NIR-II imaging probe, XB1034-cetuximab-TCO,

achieving excellent sensitivity, temporal resolution, and

visible tumor delineation during NIR-II imaging and

of PET imaging through a bio-orthogonal reaction.

In this work, compared with other NIR-II thiopy-

rylium salt dyes (Ding et al., 2019), XB1034 had a

high molar absorption coefficient, promising quantum

yield, low toxicity, and improved stability. Through

high-performance copper-catalyzed azide/alkyne

cycloaddition, XB1034 was bound to NHS ester, the

resulting XB1034-NHS having good water solubility,

high fluorescence photostability, and excellent modifia-

bility. This is an alternative to using micelles as

nanoparticles (Tao et al., 2013), giving an easy conju-

gation with a target group to perform high-efficiency

targeted biological imaging (Ding et al., 2019). EGFR-

targeted antibodies were chosen to modify a high

specificity to XB1034-NHS along with TCO. Small

vessels were clearly visualized in the blood pool images

upon the injection of XB1034-cetuximab-TCO, dis-

playing high spatial resolution in NIR-II window. In

EGFR-targeted tumor imaging, the positive tumors

were clearly located with a high SNR (up to 7.15). In

contrast to conventional NIR-I imaging, the NIR-II

probe holds excellent promise for supporting deeper

tissue penetration and higher spatial resolution and

SNR (Shou et al., 2017; Zhu et al., 2018b).

Fig. 2. NIR-II fluorescence imaging taken at 1, 8, 12, and 48 h after an intravenous injection of XB1034-cetuximab-TCO of (A) MDA-MB-231

and (B) blocked MDA-MB-231 (with excessive cetuximab blocking) xenografted models; the PET images of (C) MDA-MB-231, and (D)

blocked MDA-MB-231 tumor-bearing mice were acquired at 0.5, 1, and 2 h after 68Ga-NETA-Tz injection. (E) The tumor-to-background and

tumor-to-liver contrasts of the three models at different time points (n = 3 per group), which were calculated from the lateral position of the

mice. (F) The tumor/blood ratio of MDA-MB-231 models at different time points and the tumor uptake of three tumor models at 2 h (n = 3

per group). The tumors are indicated by the white arrows. Error bars indicate � SD. Statistical analysis was performed using Student’s t-

test (n = 3). *P < 0.05 and **P < 0.01.
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To overcome the tough issues of antibody-linked

modified probes with high uptake in blood and liver,

and improve the clearance of radionuclide in PET imag-

ing, an in vivo pretargeting strategy is important (Shi

et al., 2018). The biotin/streptavidin system has been

used in pretargeting, while it has been damped by the

interference of host biotin and biotin enzyme. Recently,

the click chemistry between TCO and Tz has displayed

the advantages of a rapid reaction, producing a stable

product with high selectivity and affinity, and may

become a new choice in the application of pretargeting

technology in molecular imaging. 68Gallium is an ideal

and easy-available positron-emitting radionuclide for

radiopharmaceutical synthesis (Zhang et al., 2018).

NETA, a metal chelating agent (Chong et al., 2011;

Kang et al., 2012), was selected to coordinate with 68Ga

for an easy and quick procedure with high labeling

yield. Thus, 68Ga-NETA-Tz was used in pretargeted

tumor for PET imaging and the MDA-MB-231 tumors

were clearly distinguished from other tissues. Because of

its small molecule size, 68Ga-NETA-Tz was quickly

cleared by the kidneys and blood. In non-pretargeted

mice, the radioactivity of blood pool was sustained high

during the entire imaging. Due to the internalization of

some XB1034-cetuximab-TCO in 48 h, the uptake value

of 68Ga-NETA-Tz in MDA-MB-231 tumors was less

than ideal but was much higher than MCF-7 and

blocked tumors at 2 h, identifying the affinity and speci-

ficity of pretargeting the probe in vivo.

In virtue of the high temporal and spatial resolution,

optical imaging is a powerful tool for image-guided

surgery, which allows dynamic feedback for accurate

excision of tumors (Sun et al., 2018). Importantly, tar-

geted surgery is especially meaningful for lesions that

A

C

E

H I

F G

B

D

Fig. 3. (A–C) With real-time NIR-II imaging, MDA-MB-231 tumors were delineated and resected thoroughly. (D–G) The histology of the

resected tumor was confirmed by H&E staining. (H, I) H&E staining of the metastatic lesions and surrounding tissue. Scale bar (A–C):

5 mm.
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are hard to differentiate from the surrounding normal

tissue. Applying XB1034-cetuximab-TCO in NIR-II

image-guided surgery could provide rapid and accurate

feedback to surgeons. During the operation, small

lesions and incomplete lesion excision could be identi-

fied with NIR-II real-time imaging, demonstrating the

promise of targeted molecules in NIR-II fluorescence

imaging for precise surgery guidance. The signals

dropped sharply after tumor excision, which manifests

the thorough resection of the tumor using targeted

NIR-II imaging. SLN mapping has been a gold stan-

dard in clinical application in predicting metastasis

(Mamounas et al., 2017). Indocyanine green (ICG) is a

fluorescence agent, which has been approved by the

FDA for 61 years (Hong et al., 2017). Unfortunately,

enthusiasm about quantitative lymphatic imaging of

ICG is dampened by its poor stability (Rossi et al.,

2012). We successfully used XB1034-cetuximab-TCO

in the normal LN mapping, and the borders of the

LNs were figured out clearly and quickly with advan-

tageous temporal and spatial resolution. When using

NIR-II imaging, SLNs were visualized and excised

rapidly. And the secondary lymph nodes could be

identified and resected by another injection if the his-

tology of SLNs showed positive.

Our study has some drawbacks. The emission wave-

length of XB1034 is still limiting for NIR-II optical

imaging due to photon scattering at around 1000 nm.

To achieve a higher SNR, redshift of its emission

wavelength should be implemented. Moreover, further

modification is needed to improve the quantum yield

and reduce the imaging dose for better biosafety. This

is preliminary research on XB1034, and further study

may include the following strategies. First, XB1034

has wide applications, such as vascular imaging, it

should be applied in vascular diseases. Second, to fur-

ther verify the target ability of XB1034-cetuximab-

TCO in deep metastatic foci, we need to do more

investigations with metastatic tumor models, for exam-

ple, lung and liver metastasis. Because cetuximab is an

internalizing antibody, further studies are required to

apply noninternalizing antibodies for pretargeting

strategy to get better pretargeting PET imaging.

5. Conclusion

Overall, we have synthesized an organic NIR-II dye,

XB1034, and constructed a pretargeted PET and NIR-

II imaging methodology. XB1034 manifested promis-

ing NIR-II imaging activity, and the follow-up injected

A

D

LH I J K

B

E F G

C

Fig. 4. (A–C) Lymph node mapping was performed after subcutaneous injection of the probe into the right foot pad. (D) The fluorescence

intensity profiles (black line) and Gaussian function fit (blue and red line) across a white line in C. (E–G) The inguinal and retroperitoneal

lymph nodes (IG and RT) could be seen in the supine position. (H–K) Sentinel lymph node mapping of MDA-MB-231 tumor-bearing mice. (L)

The biopsy was examined by H&E staining. Red and cyan arrows refered to the injection point. PO, popliteal lymph nodes; SC, sacral lymph

nodes. Scale bar: 5 mm.
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68Ga probe showed an encourage function on quantifi-

cation. This targeted dual-modality probe demon-

strated the feasibility of clinical image-guided

operation in real time. We hope to further apply this

PET/NIR-II imaging platform with other large molec-

ular materials, for more widespread and powerful

applications in the future.
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