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Lysate-based cell-free systems have become a major platform to study gene expression but

batch-to-batch variation makes protein production difficult to predict. Here we describe an

active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer

compositions, maximizing protein production and identifying critical parameters involved in

cell-free productivity. We also provide a one-step-method to achieve high quality predictions

for protein production using minimal experimental effort regardless of the lysate quality.
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Cell-free systems, especially lysate-based systems, are major
platforms for both prototyping of genetic circuits and
understanding of fundamental processes1–7. They provide

fast gene expression kinetics, low reaction volumes, allowing high-
throughput measurements and simplified gene characterization
via decoupling protein production from host physiology8–12. Cell-
free systems could disseminate among laboratories and be stan-
dard methods for molecular biology if efficient and predictable
protein productions were guaranteed. Ribosomes, native poly-
merases and cofactors concentrations remain arduous to control
as they are provided by the lysate13,14, making the efficiency of
cell-free systems variable. A great challenge is to develop a lysate-
specific optimization method for cell-free buffer composition to
maximize protein production. Using a design of experiment
approach, Caschera et al.13 explored cell-free buffer compositions
by varying one compound concentration at a time and obtained a
10-fold increase of protein production for in vitro ribosome
assembly in a lysate-based cell-free system. Such results reveal
the considerable margins of improvement of protein expression
for the home-made lysate-based cell-free systems that we tested in
this study.

Active learning is an artificial intelligence method that makes
use of machine learning algorithms to determine the next set of
experiments to be carried out while studying a given problem15.
In the context of systems biology, it was first introduced to assign
protein function using yeast deletion mutants and auxotrophic
growth experiments16 and later used to predict the effect of
supplied chemicals on the subcellular localization of proteins17.
Active learning is now being used in many fields related to
biology including medicinal chemistry18 or structural biology19.
In the context of bioproduction optimization, Design of Experi-
ment (DoE) methods are generally preferred over active machine
learning because the training set sizes on which learning is per-
formed are rather limited20,21. Because cell-free systems enable
one to generate large amount of data in a short time span, we
explore here the use of an active machine learning strategy to
optimize and understand the impact of cell-free buffer compo-
sitions on protein production in cell-free systems.

We demonstrate that a sufficient amount of data can be
obtained to train a machine learning algorithm22,23, achieve high

quality predictions and increase protein production by 34 times
with our home-made lysate in comparison with the initial buffer
composition. We next show that only 20 informative composi-
tions are enough to train our machine learning models and obtain
accurate predictions. This approach enables to maximize protein
production on different cell lysates with minimal experimental
effort.

Results
Combinatorial space of cell-free buffer compositions. To study
cell-free systems productivity, we developed an automatable
strategy coupling an acoustic liquid handling robot (Echo 550,
Labcyte, USA) and a plate reader (Infinite MF500, Tecan, USA)
to measure ~4000 cell-free reactions (including controls and tri-
plicates) and provide data to train machine learning models. The
lysate was obtained by sonication and supplemented with com-
pounds described in Fig. 1a. The reference concentrations are
based on the protocol developed by the Noireaux laboratory24

(see Methods section, we fixed the maximal Mg-glutamate and K-
glutamate concentration based on an initial buffer composition
optimization as described in Noireaux laboratory protocol, Sup-
plementary Fig. 1). We fixed four concentration levels for each of
the 11 compounds leading to a combinatorial space of 4,194,304
possible compositions (Fig. 1a). Protein production was measured
using the fluorescence level from the expression of sfgfp under
control of a constitutive promoter (Fig. 1b and Supplementary
Table 1). In order to compare measurements between plates, we
maximized a relative fluorescence level named yield hereafter
(Fig. 1b). The yield is defined as the ratio of the fluorescence
produced with a chosen composition divided by the fluorescence
obtained with the reference composition (Fig. 1b).

Active learning strategy to optimize buffer composition. To
explore our vast combinatorial space, we used an active learning
strategy22, combining both exploration (buffer combinations with
a low prediction accuracy) and exploitation (buffer combinations
predicted to maximize the yield) to increase the yield and reduce
model uncertainty (Fig. 2). Each iteration started with 102 new
cell-free buffer compositions to be tested. The fluorescence level
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Fig. 1 Combinatorial space of the buffer composition of a cell-free system. a List of chemicals added to the cell-free mix in addition to PEG-8000, HEPES,
and the lysate. Four concentrations have been chosen for each chemical. The concentration in red is the highest concentration, then orange, light green,
dark green stand for 50, 30, and 10% of the highest concentration. b An example of fluorescence obtained using four cell-free compositions with our
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vertical black lines stand for the standard deviation of the three replicates (n= 3 independent samples). Source data are provided in the Source Data file.
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was measured in a plate reader and fed to an ensemble of neural
networks (Fig. 2, see Methods section). Our active learning loop
was initiated with a training set of 102 cell-free buffer composi-
tions (see methods: 22 chosen and 80 random compositions,
Fig. 2). The first iteration already led to a maximum of 10-fold
improvement of the yield (Fig. 3a). As expected, the initial pre-
diction accuracy was very low (Fig. 3b). After seven iterations, we
reached a maximum for both the yield (Fig. 3a) and the predic-
tion accuracy (Fig. 3b). Eventually, we stopped at ten iterations as
we were not able to increase neither the yield nor the prediction
accuracy of our model (Fig. 3b, see Methods section).

Throughout our workflow, we measured fluorescence levels in
1017 cell-free buffer compositions and validated the efficiency of

our method with a high-quality predictions score (R2= 0.93) and
a maximum of 34 fold increase of the yield. The 1017 cell-free
compositions were sorted, from low to high yields, to observe the
relationship between yield and composition (Fig. 3c). An increase
of Mg-glutamate, K-glutamate, amino acids, and NTPs concen-
trations and a decrease of cAMP, spermidine and 3-PGA
concentrations can be noticed with increasing yield (Fig. 3c).
We used a mutual information analysis (see methods) to reveal
the dependence between our 11 compounds concentration and
the yield. Mg-glutamate, K-glutamate, amino acids, spermidine,
3-PGA, and NTPs exhibit a score between 0.25 and 0.75,
confirming that a variation of their concentrations strongly
impacts protein production (Fig. 3d). Variation of tRNA, CoA,
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Fig. 2 Active learning loop to explore the buffer composition of a cell-free system. Illustration of the active learning approach used to explore the
combinatorial space of cell-free composition and trained an ensemble of 25 machine learning models. Source data are provided in the Source Data file.
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Fig. 3 Impact of compounds concentration on protein production. a Yield evolution amongst ten iterations. The green dots are the mean yields of three
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NAD, cAMP, and folinic acid concentrations have little impact
on the yield (Fig. 3d).

A one-step method for lysate-specific optimization. Next, we
investigated whether protein production in cell-free using lysates
made in other conditions (different experimentalists, using a
different strain or supplemented with antibiotics) could be
quickly predicted with a one-step method (Fig. 4a). We selected
102 cell-free buffer compositions representative of the 1017
already tested with the original lysate (see Methods section,
Supplementary Fig. 2a). Amongst the 102 compositions, 20 were
used to train the model and 82 to test its predictive accuracy
(Fig. 4a). The challenge lies in the model’s ability to accurately
predict a large diversity of yields based on a small training dataset.
The 20 compositions (magenta dots in Fig. 2 and Supplementary
Table 2) were chosen to be highly informative (see Methods
section). We used the same 20 and 82 compositions to train and
test our model predictions with all the lysates used in Fig. 4. With
new lysates prepared by other experimentalists (labeled lysate_PS
and lysate_AB), similar cell-free buffer compositions led to dif-
ferent yields but the compounds exhibiting a high impact on
protein production remained the same (Fig. 3b and Supplemen-
tary Fig. 3). The maximum yield amongst the 102 tested com-
positions differs from one lysate to another, with a maximum
yield at 23 and 26 for the lysate_PS and lysate_AB, respectively
(Fig. 4a, b). The 102 yields obtained with the original lysate,

labeled Lysate_ORI, are presented in Supplementary Fig. 4a. The
yield used previously is a relative measurement (Fig. 4 and Sup-
plementary Fig. 5) which does not allow comparison between our
cell-free systems. We calculated a global yield (calculated with the
Lysate_ORI as a global reference, Supplementary Fig. 4b) and
observed a maximum global yield 1.5 times higher with lysate_PS
than lysate_AB (Supplementary Fig. 4c). These results highlight
the variability in lysates quality even when they are prepared in
the same laboratory with the same strain and protocol. Despite
these differences, we achieved high quality predictions with both
lysates (Fig. 4a, b). We obtained a R2 ~ 0.9 for both lysates and
linear fits with intercepts of 0.2/0.1 and slopes of 0.8/1.01 with
lysate_PS, lysate_AB, respectively (Fig. 4a, b). These results vali-
date our approach to both maximize protein production and
accurately predict protein production regardless of the experi-
mentalists who prepared the lysate.

We then challenged our method by interfering with the
transcription or translation processes to mimic lysates of lower
quality. By adding novobiocin (Fig. 4c) or spectinomycin (Fig. 4d)
to the cell-free mix, we interfered with the transcription or
translation apparatuses respectively. The two antibiotics led to a
strong decrease in absolute protein production (Supplementary
Fig. 4c) but opposite behaviors can be observed (high versus low
room for yield improvement, Fig. 4c, d and Supplementary
Fig. 5c, d). When the transcription process is impaired, we
obtained a prediction of high accuracy with a R2 of 0.91 and
linear fit intercepts of 0.2 and slopes of 0.9 (Fig. 4c). The cell-free
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containing novobiocin exhibits a high leeway for yield improve-
ment (Fig. 4c and Supplementary Fig. 5c) with a maximum yield
of 35 amongst the 102 cell-free buffer compositions. When the
translation process is impaired, the yield is capped to a maximum
improvement of 15 (Fig. 4d and Supplementary Fig. 5d). The R2

value observed in Fig. 4d is lower but the linear fit exhibit an
intercept of 0.1 and slopes of 0.9. Thus, we obtained accurate
prediction for the low and high yields value but the intermediate
yields remain difficult to estimate. Such predictions stay powerful
to maximize protein production as extreme values are captured
and provide precious information concerning the lysate quality
(Supplementary Fig. 6, Supplementary note 2). However, a higher
R2 value of 0.76 is reached with this lysate when using a training
set of 25 buffer compositions instead of 20 (Supplementary Fig. 7;
Supplementary Table 2). Our approach exhibits efficient predic-
tions with low quality lysates but requires more information for
models training.

Eventually, we tested our method with a lysate prepared using
the strain DH5α. As observed with the lysate supplemented with
spectinomycin, the R2 value is low but the linear fit of the data
exhibits an intercept of 0.07 and slopes of 0.96. As with
spectinomycin, a higher R2 value of 0.80 is reached when using
a training set of 25 buffer compositions instead of 20
(Supplementary Fig. 7; Supplementary Table 2). The maximum
global yield obtained with this lysate was low, as expected for a
strain not optimized for protein production25 (Supplementary
Fig. 4c). Nevertheless, with half of the tested cell-free buffer
compositions, the Lysate_DH5α-based cell-free exhibits a high
global yield (Supplementary Fig. 4c). The yield exhibits a similar
behavior to the lysate supplemented with spectinomycin,
suggesting an impaired translation process (little room for yield
improvement, Fig. 4d, e, Supplementary Fig. 5d, e), but with a
higher level of protein production.

Discussion
Our method enables a fast lysate-specific optimization of the cell-
free buffer composition to predict and maximize protein pro-
duction (Fig. 4 and Supplementary Fig. 8). Our results suggest
that the optimization of the cell-free buffer composition mainly
improves the efficiency of the translation apparatus as we
observed a limited improvement with an impaired translation. On
the contrary, an inefficient transcription machinery can be
balanced by the optimization of the cell-free buffer composition.
Our approach gives precious information about the room for
protein production improvement of a home-made cell-free sys-
tem, the impact of each compound on cell-free productivity and
the efficiency of the transcription and translation processes.

Eventually, we observed a pool of buffer compositions leading
to high yields in all our lysates (Supplementary Figs. S4c, S5 and
Supplementary Data 1). Indeed, our mutual information analysis
revealed that the same compounds affect protein production in all
our lysates but with a lysate-dependent sensitivity. For example,
NTPs concentration highly impact protein production with
Lysate_ORI but Lysate_DH5a is more sensitive to a decrease in
amino acids concentration. Thus, a buffer with high NTPs and
amino acids concentrations will be efficient with both lysates but
using a buffer with low amino acids and high NTPs concentra-
tions (or vice versa) will significantly decrease protein production
with only one of the two lysates.

Our method, based on the measurements of GFP production
with the same 20 or 25 cell-free buffer compositions used in this
work to train the models provided, can be easily extended to any
other bacterial-based cell-free5,26,27 to investigate cell-free buffer
optimization beyond E. coli cell-free systems. As our model is not
based on mechanistic hypotheses, our method can be extended to

cell-free systems using other organisms as yeast, insect, plant or
human cells after performing new explorations to find the most
informative buffer compositions for those cell-systems.

Methods
Bacterial strains and DNA constructs. Strains BL21 DE3 (B F– ompT gal dcm
lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12
(λS)) and DH5α (F– endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20
φ80dlacZΔM15 Δ(lacZYA-argF)U169, hsdR17(rK–mK+), λ–) were used to pre-
pare the different lysates in this study. Our sfgfp plasmid was obtained by mod-
ification of the RBS of the plasmid pBEAST-J23101-sfGFP9. We used PCR
amplifications using the reverse primer GCGGTCTCACATCTACTATTTCTCCT
CTTTCTCTACTAGCTAGC and foward primer GCGGTCTCAGCTTACTTTAT
CTGAGAATAGTC with the backbone, and reverse primer p CCGGTCTCAAA
GCTTATCATCATTTGTACAGTTCATCC and GCGGTCTCAGATGCGTAAAG
GCGAAGAG foward primer with the sfgp sequence. The PCR amplifications was
followed by a golden gate assembly using BsaI and T4 ligase (New England Biolab)
and transformed into chemically competent E. coli top10.

Plasmid preparation. We noticed with preliminary experiments that the same
cell-compositions gave different results when we used plasmid DNA from mini-
prep done on different days using the same kit. The whole project was done using
aliquots from the same initial batch of sfgfp plasmid. The plasmid was extracted
from a 600mL LB of E. coli top 10 using the Plasmid DNA purification Nucleo-
Bond Xtra Maxi of Macherey-Nagel. The 500 μL aliquots were stored at −80 °C.
The whole project was done using aliquots from the same initial batch of DNA.
The final sfgfp plasmid concentration in every reaction was 10 nM.

Cell-free reagents preparation. As the reagents preparation can have a significant
impact on cell-free efficiency28, all our reagents except spermidine and Mg-
glutamate (we run out of those two compounds during the study) came from
aliquots of the same initial batch. We did not see an impact on our control when
the spermidine and Mg-glutamate were renewed.

Cell lysate mix preparation and reactions. The cell lysate preparation is based on
the protocol of Sun et al.24. Briefly, the protocol of Sun et al.24 is a 5-day protocol in
three phases: harvest cells (colonies grow on plate overnight at 37 °C, 50 mL pre-
culture at 37 °C for 8 h, 12 L of cultures at 37 °C until OD600= 1.5), lysate pre-
paration (multiple pellet washing followed by beads-beating to obtain an lysate).
The protocol was modified by using sonication instead of use of a bead beater to
obtain BL21 or DH5α cell lysates. After washing the cells as following the Sun et al.
protocol (Day 3 step 18) with S30A buffer (14 mM Mg-glutamate, 60 mM K-
glutamate, 50 mM Tris, 2 mM DTT, pH 7.7), the cells were centrifuged 2000 × g for
8 min at 4 °C. The pellet was re-suspended in S30A (pellet mass (g) × 0.9 mL). The
solution was split in 1.5 mL aliquots in 2 mL Eppendorf tubes. Eppendorf tubes
were placed in a cold block and sonicated using Vibracell 72408 (from Bioblock
scientific) using the following procedure: 20 s ON—1 min OFF—20 s On—1 min
OFF—20 s ON. Output frequency 20 kHz, amplitude 20%.The remaining protocol
followed the procedure of the Sun et al. protocol for day 3, step 37. mRNA and
protein synthesis are performed by the molecular machinery present in the lysate,
with no addition of external enzymes. Reactions take place in 10.5 μL volumes at
30 °C in 384-well plate. Note that we kept the 50 mM HEPES and 2% PEG-8000
fixed in every reaction. Lysate_ORI, Lysate_PS and Lysate_AB were obtained from
the same E. coli strain BL21 in the same laboratory with the same sonicator and
centrifuge. The Lysate_ORI came from one-batch prepared from 12 L of BL21
culture. The 12 L culture were separated in 4 L culture. The culture were inoculated,
grown and their pellets were washed on different 3 days then freeze and stock at
−80 °C. Then, the pellets were weighed, resuspended in S30 buffer, pooled, soni-
cated, centrifuged, mixed, and aliquoted on an extra day. The Lysate Lysate_PS,
Lysate_AB and Lysate_PS and Lysate_DH5α were each obtained from 2 L culture.
For the Lysate_spectinomycin and Lysat_novobiocin, the final concentration of
novobiocin and spectinomycin were 0.25 mg/mL and 0.5 mg/mL, respectively.
They were added to the cell-free reactions using Lysate_PS.

sfGFP purification. The sfGFP was produced in E. coli culture. After a 10 min
centrifuge at 4000 × g, the pellet was resuspended in 20 mM Tris (Ph8), 0.2 M NaCl
and sonicated (Output frequency 20 kHz, amplitude 40% with the Vibracell 72408).
After sonication, the solution was centrifuged (4000 × g, 15 min). The proteins in
the supernatant were purified and fractionated using ammonium sulfate. The
sfGFP was isolated at more than 70% saturation. The solution was centrifuged
(4000 × g, 15 min) and the pellet resuspended in 20 mM Tris (Ph8), 100 mM NaCl.
The solution was dialyzed overnight in 20 mM Tris (Ph8), 100 mM NaCl. Even-
tually, for the last step of purification, we used a Mono Q anion exchange chro-
matography column (GE Healthcare) and obtained a solution of 90% sfGFP. The
final solution dialyze in a solution 0 mM Tris (Ph8), 100 mM NaCl and 50%
glycerol leading to a final concentration of 7.62 mg/mL. To obtain an absolute
quantification of the protein production in cell-free, we measured the sgGFP
fluorescence in wells containing 10.5 μL of sfGFP solution at different
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concentration. The G-yield values are calculated as described in Supplementary
Fig. 4b with the fluorescence measured from sfGFP and no autofluorescence
divided by the cell-free mix lysate_ORI autofluorescence and the reference fluor-
escence obtained from our plasmid in a cell-free mix with lysate_ORI.

myTXTL commercial kit. We used the commercial kit: myTXTL from Arbor
Biosciences (Sigma 70 Master Mix Kit, (USA). We used both our plasmid (10 nM
final concentration) and the control plasmid, pTXTL-P70a(2)-deGFP (20 nM final
concentration) provided by Arbor Biosciences. The two plasmids were expressed
with the reactions provided with myTXTL kit and with the optimized cell-free
reaction with the Lysate_ORI Supplementary Fig. 8b.

Fluorescence quantification. We used a plate reader Infinite MF500 (Tecan) to
measure fluorescence in 384-well plates (Nunc 384-well optical bottom plates,
Thermo-Scientific). The excitation wavelength was fixed at 425 nM, the emission at
510 nM and the gain at 50. We measured five fluorescences values for each well as a
quality control of the plate reader measurements. The fluorescence was measured
from the top of the 384-well plates with no lid.

Echo liquid handler. We used the Echo software Cherry Pick to program the Echo
550 liquid handler. The software was programmed using CSV (comma separated
values) files that gave machine-readable instructions: namely the well it had to take
liquid from (containing pure reagents), the well the liquid was destined to and the
volume that was to be taken. It allows us to program the content of each individual
well separately. We calculated the concentrations of our chemical compounds
stocks so the final volumes sent to the destination well were multiples of 2.5 nL (the
droplet size managed by the Echo machine). The scripts generating the CSV file are
presented below in “concentrations to instructions workflow”. We chose our stock
volumes so that the minimal volume to transfer was 12.5 (=5 droplets).

General script descriptions. All scripts mentioned below were written in Python
(version 3.6.5), executed in Jupyter notebooks (version 1.0.0). Scripts are available
online at github (https://github.com/brsynth/active_learning_cell_free). The
libraries numpy and csv were used to handle files between different scripts. We
used scitkit-learn29 (version 0.19.1) for all model training.

Concentrations to instructions workflow. The details of those scripts are
described in the READme file of the ECHO_handling_scripts of our code. Roughly,
it proceeds in four steps:

Complete concentrations: Taking as input a file containing only concentrations
of interest for the machine learning algorithm, it adds information of values that
are constant across all conditions, such as the lysate quantity.
Concentration to volume: This file converts a csv file concentrations -to a file of
volumes one wants to test (in triplicates). This is due to the fact that the ECHO
liquid handler needs volumes as inputs.
Optional: we sorted those volume files according to water content. This allows
us later to manually pipet important water volumes so that the robot only
adjusts small volumes.
Volume to echo: This file converts a set of transfer volume quantities to the csv
file expected by the ECHO liquid handler (instructions files). It also provides a
file containing the name of the wells with their corresponding transfer volumes.
This file is used to match the well compositions with the fluorescence
measurements obtained later with the plate reader. The amino acids and water
were pipetted manually (for volumes >1 μL).
Named volumes to concentrations: maps the volumes and the associated well
name to a concentration file with the associated well name, for integration with
the fluorescent plate reader at the next step.

The script matched the named concentration with the yield value as described
in “Data analysis” of those methods.

The chemical compounds were dispensed using BP2 fluid class except for K-
glutamate and 3PGA (CP fluid class).

Data analysis. We provide a script to map the fluorescence quantification (see
“fluorescence quantification” above) to the tested concentrations with well names
(last step of “concentrations to instructions workflow” above). We performed
outlier removal based on the following criteria: if the coefficient of variation,
amongst three replicates, was higher than 30%, we removed the value farthest from
the other 2. This concerned 27 values of our 1017 values tested during the active
learning. Those are identified in the online data on Github with the third value of
fluorescence is set to −1. This script also outputs csv files allowing for visualization
of where the outliers are, in order to spot potential border effects. It also separately
outputs the outliers for further analysis.

Data normalization. We normalized using the following equation:

Yieldcomposition ¼ Fluorescencecomposition � Autofluorescence

Fluorescencereference � Autofluorescence

Where autofluorescence is the fluorescence measured in the cell-free reaction
supplemented with water and using the reference composition. The yield exhibited
in Fig. 4 used a cell-free reaction with the new lysate to measure the auto-
fluorescence and the fluorescence with the reference composition. In supplemen-
tary Fig. 4, all the yields are calculated with autofluorescence and reference
fluorescence of the Lysate_ORI.

Quality controls. In every 384-well plates we measured 13 control compositions
(in triplicate) including the reference composition with and without DNA In each
384-well plate, we used two rows of controls: A and P. The controls in row A never
changes. The controls in row P changed throughout the workflow. We used the
compositions leading to higher yields in the previous iteration. When analysing our
controls, we checked whether the yields were identical from plate to plate (R² > 0.75
between new plate and all previous plates on yield of controls). Plates with R² > 0.75
when compared to all previous plates, or systematically above or below other plates
are discarded and the same combinations were tested again.

Initiation of the machine learning. For the first plate of the active learning, we
proceeded as follows. We chose 22 concentrations that we wished to test: fixing all
reagents at the maximum allowed concentration, except one which was at the
lowest (11 combinations) and fixing all reagents at the minimum allowed con-
centration except one which was at the highest (11 combinations). The remain-
ing 80 compositions were chosen randomly.

Model training. We used an ensemble of neural networks as performed in
Caschera et al.13 the rationale being that it easily gave us both yield and uncer-
tainty. The models were trained as follows.

Input data is normalized: each component maximum concentration is 1, and
the other values take discrete values of 0.1, 0.3, or 0.5 as described in the legend of
Fig. 1. While unnormalized inputs could be used, we strongly encourage
normalization due to scale differences between the inputs.

We trained an ensemble of n models, where n= 25. For each model, training
was performed ten times (models_number) using the whole dataset so far acquired
(e.g., 3 × 102 values at the 3rd iteration). Training the model multiple times allows
for optimizing for random weight initialization of the model. We kept the best
model of the ten models we trained (with the highest regression from scitkit-learn
R2 score) and repeated the procedure 25 times to obtain an ensemble of 25 best
models.

Multilayer perceptrons gave the best results (random forests and linear
regressions were also investigated early on). They were trained with the default
parameters from scitkit-learn except the following parameters: maximum iteration
of 20,000, adaptive learning rate, adam solver, early stopping and the following
layers: (10, 100,100, 20)

We obtained mean and standard error from our predictions by taking the mean
and standard error from the n results generated by our ensemble of n models.

Active learning. The workflow used the data from all the available plates as an
input. It trains an ensemble of 25 models and returns instructions for the following
round. Here is the detailed process:

For N times (N= 100,000):

Randomly sample a composition in the composition space (Fig. 1a).
If a composition was drawn previously (either in a previous experiment or
during current selection), neglect it.
Predict mean and standard deviation for all 100,000 points using the ensemble
of 25 models previously trained.

Select the best set of compositions, according to the following Upper
Confidence Bound (UCB) formula: exploitation * yield_pred_mean + exploration
* yield_pred_std, with exploitation = 1 and exploration = √2. While the initial
value for exploration was set to √2, which is a common value taken with UCB, if
the active learning fails to improve either yield or prediction accuracy this value can
easily be changed to optimize the desired characteristic. Our scripts output the best
500 compositions based on the mean and standard deviation predictions of the
yields. A high standard deviation value stands for an uncertain yield value. We
output compositions for full exploitation, full exploration and maximization of the
above formula but use the third option for the rest of the workflow. We are
therefore querying points with both high yield and uncertainty.

Model statistics. For model statistics presented in Fig. 3b, we used the same
models as described in the active learning section above, but using 5-fold cross
validation instead of the whole training set. The full dataset is separated into five
subsets then the 25 models are trained on four subsets, and used to predict the 5th,
where scores are obtained. This is done five times, once on each subset. The scores
presented in Fig. 3b are the mean and standard deviation of those five scores.
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Mutual information calculation. Mutual information is a method to quantify the
mutual dependence between two variables. This concept is intrinsically linked to
the concept of entropy and is especially useful to quantify non-linear relationships
between variables. More information on the theory behind this method can be
found in the review ‘estimation of mutual information30 and in sci-kit learn
documentation29. It was calculated using the feature_selection.mutual_info_re-
gression function from scitkit-learn29 (version 0.19.1) between each feature and the
yield (compounds_effect_analysis/mutual_information_analysis jupyter notebook)
with default parameters.

Identification of informative points. To identify the most informative points, we
proceeded in the following manner:

We did 1000 iterations of the following procedure:

Randomly sample n combinations from the dataset (n= 20 out of a dataset of
102 values for Fig. 4).
Train models on those points using the strategy presented in model training for
each lysate.
Predict on the other points (82 for Fig. 4) for each lysate.
Obtain the average score on all lysate.
Keep those combinations if this average is better.
Note: Data is saved every 100 iterations.

To improve prediction accuracy with the lysate BL21+Spectinomcyn and the
lysate DH5a we used the same 20 buffer compositions as previously and 5 extra
buffer compositions common to these two lysates (Supplementary Fig. 7;
Supplementary Table 2). A user with a lysate of low quality can measure protein
productions with this extended training set and obtain predictions of higher
accuracy.

Maximization of the protein production for future users. Users must do the
following experiments:

Maxiprep a LB culture of our plasmid (or MyTXTL plasmid).
Measure the yields (or absolute fluorescence) in the 20 cell-free compositions
described in Fig. 4a.

Then, in order to apply our method to a new extract, a jupyter notebook called
predict_for_new_lysate is available at https://github.com/brsynth/
active_learning_cell_free. It takes as input a csv file containing tested
concentrations with their corresponding yields and standard error values. It
provides as an output a file to maximize exploration, exploitation, or a combination
of both as in the active learning loop. For obtaining the highest possible yield, it is
recommended to take the exploitation results, which contain the highest predicted
yields. It must be noticed that several cell-free compositions can be predicted to
reach maximum yield or values in the same range. The algorithm provides mean
yields value with standard deviation errors and so several yields will be equivalent
to the maximum value. During this study we provided yield values to our training
algorithms but absolute fluorescence can also be used if a user does not need to
compare fluorescence values measured on different 384-well plates.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated and analyzed during this study are available in the Source Data file. All
other relevant data are available from the authors upon reasonable request.

Code availability
Code is available on GitHub at https://github.com/brsynth/active_learning_cell_free.

Received: 6 February 2020; Accepted: 24 March 2020;

References
1. Orelle, C. et al. Protein synthesis by ribosomes with tethered subunits. Nature

524, 119–124 (2015).
2. Pardee, K. et al. Paper-based synthetic gene networks. Cell 159, 940–954

(2014).
3. Karzbrun, E., Tayar, A. M., Noireaux, V. & Bar-Ziv, R. H. Programmable on-

chip DNA compartments as artificial cells. Science 345, 829–832 (2014).
4. Moore, S. J. et al. Rapid acquisition and model-based analysis of cell-free

transcription–translation reactions from nonmodel bacteria. Proc. Natl Acad.
Sci. 115, E4340–E4349 (2018).

5. Noireaux, V., Bar-Ziv, R. & Libchaber, A. Principles of cell-free genetic circuit
assembly. Proc. Natl. Acad. Sci. 100, 12672–12677 (2003).

6. Karzbrun, E., Shin, J., Bar-Ziv, R. H. & Noireaux, V. Coarse-grained
dynamics of protein synthesis in a cell-free system. Phys. Rev. Lett. 106,
048104 (2011).

7. Hodgman, C. E. & Jewett, M. C. Cell-free synthetic biology: thinking outside
the cell. Metab. Eng. 14, 261–269 (2012).

8. Borkowski, O. et al. Cell-free prediction of protein expression costs for
growing cells. Nat. Commun. 9, 1457 (2018).

9. Pandi, A. et al. Metabolic perceptrons for neural computing in biological
systems. Nat. Commun. 10, 3880 (2019).

10. Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. & Murray, R. M. Linear DNA
for rapid prototyping of synthetic biological circuits in an Escherichia coli
based TX-TL cell-free system. ACS Synth. Biol. 3, 387–397 (2014).

11. Schoborg, J. A., & Jewett, M. C. Cell-free protein synthesis: An emerging
technology for understanding, harnessing, and expanding the capabilities of
biological systems. In Synthetic Biology: Parts, Devices and Applications (eds.
Smolke, C., Lee, S.Y., Nielsen, J., Stephanopoulos, G.) 309–330 (Wiley-VCH
Verlag, 2018).

12. Takahashi, M. K. et al. Characterizing and prototyping genetic networks with
cell-free transcription-translation reactions. Methods 86, 60–72 (2015).

13. Caschera, F. et al. High-throughput optimization cycle of a cell-free
ribosome assembly and protein synthesis system. ACS Synth. Biol. 7,
2841–2853 (2018).

14. Balbas, P., Lorence, A., Swartz, J. R., Jewett, M. C. & Woodrow, K. A. Cell-free
protein synthesis with prokaryotic combined transcription–translation.
Methods Mol Biol. 267, 169–182 (2004).

15. Cohn, D. A., Ghahramani, Z. & Jordan, M. I. Active learning with statistical
models. J. Artif. Intell. Res. 4, 129–145 (1996).

16. King, R. D. et al. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 427, 247–252 (2004).

17. Naik, A. W., Kangas, J. D., Sullivan, D. P. & Murphy, R. F. Active machine
learning-driven experimentation to determine compound effects on protein
patterns. Elife 5, 10047 (2016).

18. Reker, D. & Schneider, G. Active-learning strategies in computer-assisted drug
discovery. Drug Discov. today 4, 458–465 (2015).

19. Osmanbeyoglu, H. U., Wehner, J. A., Carbonell, J. G. & Ganapathiraju, M. K.
Active machine learning for transmembrane helix prediction. BMC Bioinform.
11, S58 (2010).

20. Xu, P., Rizzoni, E. A., Sul, S. Y. & Stephanopoulos, G. Improving metabolic
pathway efficiency by statistical model-based multivariate regulatory
metabolic engineering. ACS Synth. Biol. 6, 148–158 (2017).

21. Carbonell, P. et al. An automated design-build-test-learn pipeline for
enhanced microbial production of fine chemicals. Commun. Biol. 1, 1–10
(2018).

22. Settles, B. Active Learning Literature Survey (University of
Wisconsin–Madison Department of Computer Sciences, 2009).

23. Camacho, D. M., Collins, K. M., Powers, R. K., Costello, J. C. & Collins, J. J.
Next-generation machine learning for biological networks. Cell 173,
1581–1592 (2018).

24. Sun, Z. Z. et al. Protocols for implementing an Escherichia coli based TX-TL
cell-free expression system for synthetic biology. J. Vis. Exp. 79, e50762 (2013).

25. Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. Differential plasmid rescue
from transgenic mouse DNAs into Escherichia coli methylation-restriction
mutants. Proc. Natl Acad. Sci. 87, 4645 (1990).

26. Wiegand, D. J., Lee, H. H., Ostrov, N. & Church, G. M. Establishing a cell-Free
Vibrio natriegens expression system. ACS Synth. Biol. 7, 2475–2479 (2018).

27. Kelwick, R., Webb, A. J., MacDonald, J. T. & Freemont, P. S. Development of a
Bacillus subtilis cell-free transcription-translation system for prototyping
regulatory elements. Metab. Eng. 38, 370–381 (2016).

28. Cole, S. D. et al. Quantification of interlaboratory cell-free protein synthesis
variability. ACS Synth. Biol. 9, 2080–2091 (2019).

29. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011).

30. Kraskov, A., Stögbauer, H. & Grassberger, P. Estimating mutual information.
Phys. Rev. E 69, 066138 (2004).

Acknowledgements
O.B. is supported by Genopole “Allocation Recherche 2017” and CRI Paris “Short-term.
Fellows”. M.K. is supported by DGA (French Ministry of Defense) and Ecole Poly-
technique. PS is supported by the ANR SynBioDiag grant number ANR-18-CE33-0015.
A.C.B. acknowledge funding provided by the ANR SINAPUV grant number ANR-17-
CE07-0046. A.P. is supported by INRAE (National Institute for Agricultural, Ali-
mentation, and Environmental Research) and an idEx interdisciplinary scholarship from
the University of Paris-Saclay. J-L.F. acknowledges support from BBSRC/EPSRC (grant
number BB/M017702/1) and the Life Science Department of the University of Paris

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15798-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1872 | https://doi.org/10.1038/s41467-020-15798-5 | www.nature.com/naturecommunications 7

https://github.com/brsynth/active_learning_cell_free
https://github.com/brsynth/active_learning_cell_free
https://github.com/brsynth/active_learning_cell_free
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Saclay. The chemogenomic and Biological Screening Platform of Pasteur is funded by the
Global Care initiative and Institut Carnot Pasteur MS. We thank the Faulon Lab and
Agou Lab members for fruitful discussions. We thank Claire Donnat (from Stanford
University) for the data analysis advice that she kindly gave us. We thank Stephen
McGovern (from INRAE) who generously provided purified sfGFP and Bikash Ranjan
Semal (from INRAE) for producing Supplementary Fig. 7 predictions.

Author contributions
O.B., M.K., and J-L.F. designed experiments. O.B. performed experiments. M.K. devel-
oped and performed model simulations and liquid handler programming. O.B. and M.K.
performed data analysis. O.B. and A.Z. collected data. O.B., A.P., A.C.B., and P.S. pro-
vided lysates. A.P. cloned and maxi prep the plasmid. O.B., M.K., A.Z., and J-L.F. wrote
the paper. All authors approved the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15798-5.

Correspondence and requests for materials should be addressed to J.-L.F.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15798-5

8 NATURE COMMUNICATIONS |         (2020) 11:1872 | https://doi.org/10.1038/s41467-020-15798-5 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-15798-5
https://doi.org/10.1038/s41467-020-15798-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Large scale active-learning-guided exploration for in�vitro protein production optimization
	Results
	Combinatorial space of cell-free buffer compositions
	Active learning strategy to optimize buffer composition
	A one-step method for lysate-specific optimization

	Discussion
	Methods
	Bacterial strains and DNA constructs
	Plasmid preparation
	Cell-free reagents preparation
	Cell lysate mix preparation and reactions
	sfGFP purification
	myTXTL commercial kit
	Fluorescence quantification
	Echo liquid handler
	General script descriptions
	Concentrations to instructions workflow
	Data analysis
	Data normalization
	Quality controls
	Initiation of the machine learning
	Model training
	Active learning
	Model statistics
	Mutual information calculation
	Identification of informative points
	Maximization of the protein production for future users
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




