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Microscopy image analysis gives quantitative support for enhancing the characterizations of various diseases, including
breast cancer, lung cancer, and brain tumors. As a result, it is crucial in computer-assisted diagnosis and prognosis. Un-
derstanding the biological principles underlying these dynamic image sequences often necessitates precise analysis and
statistical quantification, a major discipline issue. Deep learning methods are increasingly used in bioimage processing as they
grow rapidly. *is research proposes novel biomedical microscopic image analysis techniques using deep learning archi-
tectures based on feature extraction and classification. Here, the input image has been taken as microscopic image, and it has
been processed and analyzed for noise removal, edge smoothening, and normalization. *e processed image has been
extracted based on their features in microscopic image analysis using ConVol_NN architecture with AlexNet model. *en,
the features have been classified using ensemble of Inception-ResNet and VGG-16 (EN_InResNet_VGG-16) architectures.
*e experimental results show various dataset analyses in terms of accuracy of 98%, precision of 90%, computational time of
79%, SNR of 89%, and MSE of 62%.

1. Introduction

Advanced microscopy allows us to collect large numbers of
time-lapse photos to see how tissues, cells, and molecules
change over time. Microscopy images generally have a wide
range of SNR and include a great deal of data, necessitating
the use of several parameters and time-consuming iterative
methods to analyze. However, manually processing picture

data is inefficient or even impossible nowadays due to the vast
volume of image data that continues to grow. Computerized
approaches enhance efficiency and objectivity greatly, gaining
a lot of attention in recent literature [1]. ML techniques are
widely and successfully used in medicine as well as biology
research [2]. ML gains expertise from data representations
instead of nonlearning-based approaches that may not ac-
curately transfer domain knowledge into rules. Traditional
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ML methods rarely interact directly with raw data instead of
relying primarily on data representations, requiring extensive
domain knowledge and complex engineering. *e most
general approaches for imaging living cells with transmitted
light are phase contrast (PC) as well as differential interfer-
ence contrast (DIC) [3]. *ey convert data encoded in im-
aging field’s phase into final image’s intensity distribution,
whereas atomic force, as well as scanning electron micros-
copy, is better for rendering 3D quantitative shape mea-
surements of samples. A recent trend in microscope
development is super-resolution microscopy. It records bi-
ological events at the nanoscale scale, breaking the diffraction
limit [4].*ese newmethods allow us to collect large amounts
of high-quality photos containing various biomedical data.
Simultaneously, we face unique obstacles in digesting these
images through quantitative data processing. As a result,
utilizing computational approaches to improve microscopy’s
performance as well as make it multifunctional in post-
processing has become a hot topic in field.

DL is a representation learning technique that takes
raw data directly and learns representations automati-
cally, and it may be utilized for object identification, image
segmentation, and target classification. DL methods have
advanced artificial intelligence significantly in recent
years, and they have been effectively used in computer
vision, NLP, speech recognition, medical imaging, com-
putational biology, and other fields. It has placed first in
various categories, including image classification and
speech recognition has won multiple competitions in
biomedical image study, including brain picture seg-
mentation [5] and mitosis detection, by autonomously
detecting hidden data structures. Meanwhile, it has shown
great promise in various other biomedical applications.
One of the primary advantages of DL over traditional
image processing methods is that humans do not model its
layers of characteristics. Instead, a general-purpose
learning process is used to learn the attributes from the
data. Furthermore, as computer science has progressed,
DL can now deal with large specifications issues and
improve speed, accuracy, and robustness in complex
scenarios [6].

1.1. Research Contribution Is as Follows

(i) To design novel techniques in biomedical micro-
scopic image analysis based on feature extraction
and classification utilizing deep learning
architectures

(ii) To collect the microscopic image and process them
for noise removal, edge smoothening, and
normalization

(iii) To extract the features using ConVol_NN archi-
tecture with AlexNet model

(iv) To classify the extracted features using ensemble of
Inception-ResNet and VGG-16 architectures

(v) *e experimental results show various dataset an-
alyses regarding accuracy, precision, computational
time, SNR, and MSE

2. Related Works

DL has recently sparked a lot of interest in microscope
image analysis. In cryo-EM pictures, cell and nuclei de-
tection [7] and nanoparticle detection in SEM and TEM
images [8] are two DL-based particle detection research
types. DL methods outperform low-level image processing
methods such as thresholding and others. In biomedical
microscopy image analysis, the authors [9] surveyed
prominent DNNs and summarised the findings for nuclei
identification, cell segmentation, and tissue segmentation
tasks. Many researchers utilize CNN to recognize cells in
cryo-EM pictures and TEM images. Researchers looked at
single-particle recognition on cryo-EM photos [10].
DeepEM is a software framework that they built. *eir
solution relies on a deep CNN to recognize cells in a noisy
environment. DeepEM uses eight layers to extract features
from an image, allowing it to work with fewer training
photos. Square frames are used to detect cells in the pro-
vided image. DeepPicker [11] has taken a different approach
to the same subject. DeepPicker is a CNN-based framework
for fully automated particle selection from cryoEM pictures.
Particle selection is mechanized by dividing it into 5 stages:
scoring, cleaning, filtering, sorting, and iteration. *is
structure allowed for the verification of correctness between
steps. *e authors [12] focused on supervised learning in
DNNs, particularly CNNs and RNNs and their applications
in object detection, recognition, and NLP. *e monograph
[14] surveys general DL methods as well as their applica-
tions (primarily) in speech processing as well as computer
vision. Book [13] established DL methods as well as gives
speculative ideas for future research. *e authors [15] ex-
amine several recent DL applications in medical image
computing. *e authors [16] discuss the use of DNNs in
biomedical data processing, including omics, pictures, and
signals. Many other studies introducing DL or associated
topics exist due to advent of DL and its influences in a wide
range of disciplines [17]. DNNs have been utilized to handle
inverse problems in optical microscopy in certain recent
studies [18]. DL was offered to improve optical microscopy
spatial resolution [19]. DL was used to learn statistical
changes through high degrees of abstraction to improve
upon standard super-resolution techniques in fluorescence
microscopy, according to [20]. DL has also been used to
solve problems related to holographic picture
reconstruction.

3. System Model

*is section proposes novel techniques in analysis of mi-
croscopic images based on feature extraction as well as
classification utilizing DL methods. Initially, input has been
processed for noise removal, edge smoothening, and nor-
malization.*e processed image has been extracted based on
their features in microscopic image analysis using CNN
architecture with AlexNet model. *en, the features were
classified using ensemble of Inception-ResNet and VGG-16
architectures. *e overall proposed architecture is shown in
Figure 1.
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In general, microscopic images are available as raw data
for processing. As a result, the tiny images must be trans-
formed into grayscale photographs. It is critical to reducing
noise to enhance further processing effects, and noise re-
moval is a common preprocessing step. A nonlinear filter
called the median filter is used to eliminate noise in this
work. Because it preserves the while reducing noise, it is
commonly employed in image processing. It is done by
slapping a 3 ∗ 3 mask over the image, calculating the me-
dian value, and then replacing the mask’s center with a
median filter. It is a noise reduction technique created to
avoid over-amplification of noise. It only works on limited
areas rather than the complete image.

3.1. ConVol_NN_AlexNet Model-Based Feature Extraction.
As shown in Figure 2, CNN comprises a convolutional,
pooling, full connection, and an output layer. Each neuron
in a regular NN must be connected to all neurons in pre-
ceding layer, resulting in a vast amount of calculation; each
neuron in a CNN just pulls information from the previous
layer’s local perception, effectively reducing the number of
specifications. Enhancing number of convolution kernels
can help obtain additional features as well as increase
model’s expressive ability to some level.

*e deconvolution layer, also known as transposed
convolution, is commonly utilized in image restoration and
super-resolution reconstruction to restore extracted feature
image to original image.*is study employs the deconvolution
layer to classify images, then restores features recovered by
convolution layer, minimizes number of feature maps over
time, and finally outputs via the complete connection layers.
*e number of output characteristic graphs is considerably
reduced due to the deconvolution operation compared to
output of convolution layer, reducing number of nodes.
Downsampling layer is another name for pooling layer [12].
*ere are three types of pooling: mean, maximal, and random
pooling. Maximum pooling preserves image’s texture data

better, while mean pooling effectively preserves the image’s
background information, and random pooling is a mix of two,
withmatching probability assortment determined based on the
element value of the sample region. *e SoftMax classifier is
typically used in the output layer to tackle multiclassification
issues since evaluation amount is small and training pace is fast.
Assume that function is given in the following way:
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Only the input and output layers are present in SoftMax’s
NNs. After adding hidden layers to the design, the concept of a
deep neural layer arose.*e network’s numerous hidden layers
helped the model learn faster. Method performs better when
there are roughly 50 to 60 neurons in hidden layer. SoftMax
loss is utilized in fully connected layer’s output layer. ReLu is
used as the activation function in hidden layers, while in the
output layer, SoftMax is used as an activation function. Ar-
chitecture of ConVol_NN_AlexNet based on feature extraction
is shown in Figure 3.

*e deconvolution operation minimizes number of
feature maps, and output is then carried out over whole
connection layer. Input of full connection layer is substantially
minimized due to simplicity of feature maps. To limit
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Figure 1: Overall proposed architecture.
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overfitting degree of model, add a penalty component to loss
function to prevent specifications from being too large or too
small and keep method basic. After regularisation, the loss
function is J

‘

, as shown in the following equation:

J′(θ) � J(θ) + αΩ(θ). (2)

L2 regularisation is utilized in this paper to improve
model generalization, and method weight is reduced to near
zero, as shown in the following equation:

J′(ω) � J(ω) +
1
2
α‖ω‖

2
2. (3)

After the convolution layer, the batch normalizing (BN)
layer is expanded to normalize the data, which, not only speeds
up network convergence but also helps to overcome gradient
disappearance as well as explosion issues among them, is sample
mean, µ is sample variance σ, and ε is a constant close to 0.
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3.2. Ensemble of Inception-ResNet and VGG-16 (EN_InRes-
Net_VGG-16) Architectures in Classification. We execute
convolutions with varying kernel sizes in parallel in each
Inception module and then concatenate output from these
parallel operations. Input is provided by the layer imme-
diately preceding this block. *is 1× 1 Conv1D is a low-cost
operation that acts as a dimensionality reduction layer for
input features and is much easier to work with when extra
channel is removed as seen in Figure 3. *is 1× 1 Conv1D
bottleneck is referred to as a bottleneck because it lowers the
number of input channels. *e maximum kernel size
hyperparameter determines the kernel sizes of 1× 3 and 1× 5
Conv1D layers.

*e stem layer is identical to that of the InceptionV4
model, while the remainder is made up of (a) 35× 35 grid
Inception ResNet-A module, (b) 35× 35 to 17×17 Reduc-
tion-A module, (c) 17×17 grid Inception ResNet-B module,
(d) 17×17 to 8× 8 Reduction-B module, and (e) 8× 8 grid
InceptionResNet-C module [33]. Global average pooling
was implemented instead of flatten to prevent overfitting in
convolutional structure as illustrated in Figure 4 natively.
Compared to the flatten approach, global average pooling is
more parameter efficient [34]. After that, a dropout layer was
added with a preset value of 0.8 as illustrated in Figure 5.

To boost computational speed, factorize 5× 5 convolu-
tion into two 3× 3 convolution processes. A 5× 5 convo-
lution is 2.78 times more classy than a 3× 3 convolution,
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Figure 2: ConVol_NN architecture.
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Figure 3: Architecture of ConVol_NN _AlexNet based on feature extraction.
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whichmay appear paradoxical. As a result, stacking two 3× 3
convolutions improves performance. Furthermore, they
factorize n× n filter convolutions into a mix of 1× n and
n× 1 convolutions. A 3× 3 convolution, for example, is the
same as executing a 1× 3 convolution first, then a 3×1
convolution on the output. Module’s filter banks were

enlarged to remove representational bottleneck. BatchNorm
after summation was not used in the original research to
train classical on a single dataset. As a result, Inception-
ResNet models could obtain greater accuracies at a lower
epoch.

Finally, SoftMax activation function σ was utilized in
dense layer, as stated in equation (5), where x and y denote
input and output, K denotes number of classes, and e is usual
exponential function, that is, e≈ 2.718.

w′ � w − α∗∇ w; x
(i)

; y
(i)

􏼐 􏼑. (5)

*e iterative SGD technique was used for back-
propagation optimization, as shown in equation (5), where
w relates weight, α relates learning rate, and ∇ (w; x (i); y (i))
relates gradient to weight, input, and output/label. Table 1
shows full list of configurable hyperparameter parameters.
*ese hyperparameters, such as decay andmomentum, were
later fine-tuned to improve accuracy.

All network layers used 3× 3 filters with a max-pooling
size of 2 and a stride and pad size of 1. Figure 2 shows the
VGG-16 architectural block diagram, consisting of 16 layers,
including 13 convolution layers, ReLu layers, five max-
pooling layers, and three fully connected layers with SoftMax
layer. Table 2 shows VGG-16’s architecture, including 13
convolutional layers and three fully connected layers. VGG-
16’s default input image size is 224× 224 pixels. Size of
feature map is cut in half after each pooling layer. For ex-
ample, before fully connected layers 7× 7, last feature map
has 512 channels and is enlarged into a vector with 25,088
(7× 7× 512) channels.

*e VGG-16 network, as depicted in Figure 6, has
following structure: first and second convolutional layers are
made up of 64 3× 3 feature kernel filters. As the input image
goes through first and second convolutional layers, di-
mensions change to 224× 224× 64. *e filter size of 124
feature kernel filters in the third and fourth convolutional
layers is 3× 3. In fifth, sixth, and seventh levels, convolu-
tional layers with a kernel size of 3× 3 are used.*ere are two
sets of convolutional layers, one with a kernel size of 3× 3. A
maximum pooling layer with a stride of 1 follows these
layers. Finally, 14th and 15th levels are 4096-unit fully
connected hidden layers, with a 1000-unit SoftMax output
layer following.

Using (1× 1) convolutional layers enhances the non-
linearity of decision function without changing the con-
volutional layers’ receptive fields. Moreover, to boost
network width and flexibility to varied sizes, different
convolutional kernel sizes are utilized for feature extraction
and connection following 3× 3 maximum pooling, and a
1× 1 convolution is introduced.

4. Performance Analysis

In a simulated scenario, our system is compared against
benchmarks for continuous variable mapping. Simulations
were run in MATLAB software with a system having a
1.8GHz Intel i7 processor and 16GB of RAM. *e effec-
tiveness of the feature extraction and classification system is
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assessed using conventional and well-known metrics,
allowing the system to be compared to other systems in the
literature. A suitable assessment metric is influenced by
several aspects, including the system’s functionality. Among
other things, these metrics can be used to assess compu-
tational complexity, processing time, memory use, and ac-
curacy. In terms of accuracy, precision, computational time,
MSE, and SNR, various performance metrics are provided
below that can be utilized to calculate feature extraction and
classification efficacy of DL methods.

4.1. Dataset Description

4.1.1. PMID2019 Dataset. PMID2019 is the first phyto-
plankton detection dataset with high-resolution color
photos. Each image has a resolution of 2040 1536 pixels,
which is significantly greater than the photos in the com-
parison datasets. Microscopes are used to acquire photo-
graphs of phytoplankton in a laboratory setting. Each object
in the images is given a bounding box and a ground-truth
category by hand.

4.1.2. CEM500K Dataset. We created CEMraw, an unla-
beled cellular EM dataset that includes photos from 101
unrelated scientific investigations. Picture data superset,
which provides for 591 3D image volumes and 9,626 2D
images, was compiled using data from our studies as well as
data from publicly available sources. We design a pipeline
after obtaining this collection of heterogeneous photographs
in which we first remove numerous almost identical images

before filtering out low-quality and low data images. *is
yields a 25GB 2D picture dataset with 0.5×106 highly data-
rich, relevant, and nonredundant.

4.1.3. BSST265 Dataset. It comprises 79 fluorescence
photos of antibody and DAPI labelled samples with a total
of 7813 nuclei. One Schwann cell stroma-rich tissue cry-
osection, seven neuroblastoma patients, one Wilms pa-
tient, two NB cell lines, and a human keratinocyte cell line
were used to create the photos. Furthermore, the dataset is
diverse in preparation, imaging modality, magnification,
SNR, and other technical characteristics. Type of BSST265
dataset preparation has been summarised based on the
suitable composition of parameters in terms of diagnosis,
magnification, SNR, and modality.

*e various stages of microscopic image processing are
shown in Table 3. Here, the various dataset input has been
processed using proposed feature extraction as well as
classification technique. Based on this processing of image,
parametric analysis comparison has been carried out be-
tween proposed and existing techniques.

*e above Table 4 shows comparative analysis for var-
ious microscopic image datasets between proposed and
existing techniques. Here, the existing technique compared
is CNN and DNN in terms of accuracy, precision, com-
putational time, SNR, and MSE in calculating the error and
loss function of the processed and classified image.

Table 1: Default hyperparameter settings.

Number of epoch(s) : 20
Train, val., test split : 70: 15: 15
Number of batches (s) : 32
Learning rate : 1e− 3
Momentum : 0.5
Decay : 1e− 6
Activation : SoftMax
Optimizer : SGD

Table 2: Architecture of VGG-16 network.

Layer Input size Patch size
conv× 2 3 × 224 × 224 3 × 3/1
conv× 2 64 × 112 × 112 3 × 3/1
pool 64 × 224 × 224 2 × 2
conv× 3 128 × 56 × 56 3 × 3/1
pool 128 × 112 × 112 2 × 2
conv× 3 256 × 28 × 28 3 × 3/1
pool 256 × 56 × 56 2 × 2
conv× 3 512 × 14 × 14 3 × 3/1
pool 512 × 28 × 28 2 × 2
fc 25088 25088 × 4096
pool 512 × 14 × 14 2 × 2
fc 4096 4096 × 4096

3x3 kernel
depth 512

3x3 kernel
depth 64 

3x3 kernel
depth 64 

2x2 max pooling

3x3 kernel
depth 512 

2x2 max pooling

Fully connected
layer 1-4096 

2x2 max pooling Softmax

3x3 kernel
depth 128

3x3 kernel
depth 128

Fully connected
layer 2-4096 

Input Layer

Figure 6: VGG-16 model architecture–13 convolutional layers and
2 fully connected layers and 1 SoftMax classifier VGG-16.
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*e above Figures 7–9 show comparative analysis of
proposed and existing techniques in microscopic image
analysis for various datasets. Here, the datasets compared are
PMID2019, CEM500K, and BSST265 for proposed and
existing techniques. For PMID2019 dataset, the proposed
technique obtained accuracy of 97%, precision of 90%,
computational time of 81%, SNR of 82%, andMSE of 65%; by
analysis of CEM500K dataset, the proposed technique ob-
tained accuracy of 92%, precision of 93%, computational time
of 79%, SNR of 85%, andMSE of 63%; and BSST265 dataset in
analysis of microscopic image, the proposed technique ob-
tained accuracy of 98%, precision of 90%, computational time
of 79%, SNR of 89%, and MSE of 62%. From this analysis of
various datasets, the proposed technique obtained optimal
results in microscopic image classification and feature ex-
traction by validated training set and testing set of data.

Table 3: Processing of input microscopic image using proposed feature extraction and classification technique.

Dataset Input microscopic
image

Processed microscopic
image

Extracted features of
microscopic image

Classified microscopic
image

PMID2019 dataset

CEM500K dataset

BSST265 dataset

Table 4: Comparative analysis of various microscopic image datasets between proposed and existing techniques.

Datasets Techniques Accuracy Precision Computational time SNR MSE

PMID2019
CNN 92 85 88 68 72
DNN 93 89 85 78 69

EN_InResNet_VGG-16- ConVol_NN _AlexNet 97 90 81 82 65

CEM500K
CNN 88 87 90 71 70
DNN 91 91 83 82 66

EN_InResNet_VGG-16- ConVol_NN _AlexNet 92 93 79 85 63

BSST265
CNN 90 88 89 73 70
DNN 93 89 81 85 67

EN_InResNet_VGG-16- ConVol_NN _AlexNet 98 90 79 89 62

CNN DNN EN_InResNet_VGG-16-
ConVol_NN _AlexNet

Methods

0
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Figure 7: Comparative analysis of PMID2019 dataset in terms of
accuracy, precision, computational time, SNR, and MSE.
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5. Conclusion

*is research proposes novel techniques in analysis of
microscopic images based on feature extraction as well as
classification utilizing DL methods. Initially, input has
been processed for noise removal, edge smoothening, and
normalization. *e processed image has been extracted
based on their features in microscopic image analysis
using CNN architecture with AlexNet model. *en, the
features were classified using ensemble of Inception-
ResNet and VGG-16 architectures. *e experimental
results show various dataset analysis in terms of accuracy
of 98%, precision of 90%, computational time of 79%,
SNR of 89%, and MSE of 62%. From this analysis of
various datasets, the proposed technique obtained opti-
mal results in microscopic image classification and fea-
ture extraction by validated training set and testing set of
data.
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Figure 9: Comparative analysis of BSST265 dataset in terms of
accuracy, precision, computational time, SNR, and MSE.
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Figure 8: Comparative analysis of CEM500K dataset in terms of
accuracy, precision, computational time, SNR, and MSE.
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