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Abstract

A large number of RNA-sequencing studies set out to predict mutations, splice junctions or fusion RNAs. We
propose a method, CRAC, that integrates genomic locations and local coverage to enable such predictions to be
made directly from RNA-seq read analysis. A k-mer profiling approach detects candidate mutations, indels and
splice or chimeric junctions in each single read. CRAC increases precision compared with existing tools, reaching
99:5% for splice junctions, without losing sensitivity. Importantly, CRAC predictions improve with read length. In
cancer libraries, CRAC recovered 74% of validated fusion RNAs and predicted novel recurrent chimeric junctions.
CRAC is available at http://crac.gforge.inria.fr.

Rationale
Understanding the molecular processes responsible for
normal development or tumorigenesis necessitates both
identifying functionally important mutations and explor-
ing the transcriptomic diversity of various tissues. RNA
sequencing (RNA-seq) provides genome-scale access to
the RNA complement of a cell with unprecedented
depth, and has therefore proven useful in unraveling the
complexity of transcriptomes [1,2]. The analyses of
RNA-seq reads aim at detecting a variety of targets:
from transcribed exons and classical splice junctions with
canonical splice sites, to alternatively spliced RNAs, RNAs
with non-standard splice sites, read-through and even
non-colinear chimeric transcripts [3]. Moreover, RNA-seq
also gives access to those somatic mutations and genetic
polymorphisms that are transcribed. Chimeric RNAs
result from the transcription of genes fused together by
chromosomal rearrangements [4], especially in cancer [5],
and they can also be induced by trans-splicing between
mature messenger RNAs (mRNAs) [6]. RNA-seq can also
capture these complex, non-colinear transcripts, whose
molecular importance is still poorly assessed and which
may provide new diagnostic or therapeutic targets [7,8].

As next generation sequencing (NGS) improves and
becomes cheaper, bioinformatic analyses become more
critical and time consuming. They still follow the same
paradigm as in the first days of NGS technologies: a multi-
ple step workflow - mapping, coverage computation, and
inference - where each step is heuristic, concerned with
only a part of the necessary information, and is optimized
independently from the others. Consequently analyses suf-
fer from the drawbacks inherent to this paradigm: (a) per-
vasive erroneous information, (b) lack of integration, and
(c) information loss, which induces re-computation at sub-
sequent steps and prevents cross-verification. An example
of the lack of integration is that the mapping step cannot
use coverage information, which prevents it from distin-
guishing biological mutations from sequencing errors
early in the analysis.
Here, we design a novel and integrated strategy to ana-

lyze reads when a reference genome is available. Our
approach extracts information solely from the genome
and read sequences, and is independent of any annota-
tion; we implemented it in a program named CRAC. The
rationale behind it is that an integrated analysis avoids re-
computation, minimizes false inferences, and provides
precise information on the biological events carried by a
read. A peculiarity of CRAC is that it can deliver compu-
tational predictions for point mutations, indels, sequence
errors, normal and chimeric splice junctions, in a single
run. CRAC is compared with state-of-the-art tools for
mapping (BWA, SOAP2, Bowtie, and GASSST) [9-13],
and both normal (GSNAP, TopHat, and MapSplice)
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[3,14,15] and chimeric (TopHat-fusion) [16] splice junc-
tion predictions. The results show the relevance of the
approach in terms of efficiency, sensitivity, and precision
(which is also termed specificity in the literature). We
also provide true assessments of the sensitivity of each
method by analyzing complex simulated data.
Availability: CRAC is distributed under the GPL-com-

pliant CeCILL-V2 license and is available as source code
archive or a ready-to-install Linux package from the
CRAC project website [17] or the ATGC bioinformatics
platform [18]. It includes two programs: crac-index to
generate the index of the genome, and crac for analyz-
ing the reads.

Algorithm
Overview
CRAC is a method for analyzing reads when a reference
genome is available, although some procedures (for
example, the support computation) can be used in other
contexts as well. CRAC analysis is solely based on the
read collection and on the reference genome, and is
thus completely independent of annotations. CRAC dis-
regards the sequence quality information of reads. Here,
analyzing reads means detecting diverse biological
events (mutations, splice junctions, and chimeric RNAs)
and sequencing errors from a RNA-seq read collection.
CRAC analysis is based on two basic properties: P1

and P2.
P1: For a given genome size, a sequence of a specific

length will match on average to a unique genomic posi-
tion with high probability. This length, denoted k, can
be computed and optimized [19]. Thus, in a read any
k-mer (a k-long substring) can be used as a witness of
the possible read matching locations in the genome. A
k-mer may still have a random match to the reference
genome. However, in average over all k-mers, the prob-
ability of getting a false location (FL) is approximately
10−4 with k = 22 for the human genome size [19].
P2: As reads are sequences randomly sampled from bio-

logical molecules, several reads usually overlap a range of
positions from the same molecule. Hence, a sequencing
error that occurs in a read should not affect the other
reads covering the same range of positions. In contrast, a
biological variation affecting the molecule should be visible
in many reads overlapping that position.
CRAC processes each read in turn. It considers the

k-mers starting at any position in the read (that is, m -
k + 1 possible k-mers). It computes two distinct k-mer
profiles: the location profile and the support profile.

• The location profile records for each k-mer its exact
matching locations on the genome and their number.
• The support profile registers for each k-mer its
support, which we define as the number of reads

sharing this k-mer (that is, the k-mer sequence
matches exactly a k-mer of another read). The sup-
port value has a minimum value of one since the
k-mer exists in the current read.

CRAC’s strategy is to analyze these two profiles jointly
to detect multiple events and predict sequencing errors in
a single analysis, as well as potential genetic variations,
splice junctions, or chimeras (Additional file 1). The geno-
mic locations of a k-mer are computed using a com-
pressed index of the reference genome, such as a
compressed Burrows-Wheeler transform [20], while the
support of a k-mer is obtained on-the-fly by interrogating
a specialized read index, called a Gk arrays [21]. CRAC
ignores the pairing information of paired end reads. Each
read in a pair is processed independently of the other.
Clearly, the support is a proxy of the coverage and

allows property P2 to be exploited for distinguishing
sequencing errors from variations, and gaining confidence
in predictions. As illustrated below, the location profile
delivers a wealth of information about the mapping, but
the originality of CRAC is its ability to detect the concor-
dance of variations in the two profiles.

Description of the algorithm
In a collection, some reads will exactly match the refer-
ence genome, while others will be affected by one or
more differences (with a probability that decreases with
the number of differences). Here, we describe how a
read is processed and concentrate on reads that differ
from the reference. For clarity, we make simplifying
assumptions: (a) k-mers have no false genomic locations,
(b) the read is affected by a single difference (substitu-
tion, indel, or splice junction), and (c) this difference is
located >k nucleotides away from the read’s extremities
(otherwise, we say it is a border case). These assump-
tions are discussed later.
Consider first a substitution, which may be erroneous

(a sequencing error) or of biological origin (an SNP, sin-
gle nucleotide variant (SNV), or editing). Say the substi-
tution is at position h in the read. All k-mers overlapping
position h incorporate this difference and will not match
the genome. Thus, the location profile will have zero
location for k-mers starting in the range [h - k + 1, h]. In
contrast, k-mers starting left (respectively right) of that
range will have one location in the genome region where
the RNA comes from. Moreover, locations of the k-mers
starting in h − k and h + 1 are k + 1 nucleotides apart on
the genome. We call the range of k-mers having zero
location, a break (Figure 1a). This allows the location of
the difference in both the read and the genome to be
found, but does not distinguish erroneous from biological
differences. The support profile will inform us on this
matter.
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If the substitution is a sequencing error, it is with high
probability specific to that read. Hence, the k-mers overlap-
ping the substitution occur in that read only: their support
value is one (minimal). If the substitution is biological, a
sizeable fraction of the reads covering this transcript posi-
tion share the same k-mers in that region. Their support
remains either similar to that of k-mers outside the break
or at least quite high depending on the homozygosity or
heterozygosity of the mutation. An erroneous difference
implies a clear drop in the support profile over the break
(Figure 1b). Thus, the ranges of the location break and the
support drop will coincide for an error, while a biological
difference will not specifically alter the support profile over
the break. To detect this drop we compare the average

support inside versus outside the break using a separation
function (Figure 1b and Additional file 2). Using this proce-
dure, support profiles are classified as undetermined if the
support is too low all along the read, and otherwise as
either dropping or non-dropping. Reads with a dropping
support profile are assumed to incorporate sequencing
errors, and those with a non-dropping support to accu-
rately represent sequenced molecules.
This procedure can be generalized to differences that

appear as long indels; all cases are summarized by a detec-
tion rule. We can apply a similar location/support profile
analysis to predict such events.
Rule 1 (Figure 1c): Consider a read affected by a single

difference (substitution, indels) compared to the genome.

Read

SNV
error

k-mers

k-mer mappability
break

(a) Analysis of the location profile

Analysis of the support variation

29 reads share the k-
mer starting here

30

1

Stable

There is only one read
with this erroneous k-mer

30

1

Variable

(b) Analysis of the support profile

k-mer that does not exactly map to the genome

Starting position of a k-mer that does not exactly map to the genome

k-mer that exactly maps to the genome

Starting position of a k-mer that exactly maps to the genome

(c)

Genome

Read

expected break

False locations

mirage breaks

(d)

Figure 1 The CRAC algorithm. (a) Illustration of a break in the location profile. We consider each k-mer of the read and locate it exactly on the
genome. In all figures, located k-mers are shown in blue, and unmapped k-mers in light orange. If the read differs from the genome by, for
example an SNV or an error, then the k-mers containing this position are not located exactly on the genome. The interval of positions of
unmapped k-mers is called a break. The end position of the break indicates the error or SNV position. (b) The support profile. The support value
of a k-mer is the number of reads from the collection in which this k-mer appears at least once. The two plots show the support profile as a
black curve on top of the location profile (in blue and orange). The support remains high (left plot) over the break if many reads covering this
region are affected by a biological difference (for example, a mutation); it drops in the region of the break when the analyzed read is affected
by a sequencing error; in this case, we say the support is dropping. (c) Rules for differentiating a substitution, a deletion, or an insertion
depending on the break. Given the location profile, one can differentiate a substitution, a deletion, or an insertion by computing the difference
between the gap in the genome and the gap in the read between k-mers starting before and after the break. (d) False locations and mirage
breaks. When false locations occur inside or at the edges of a break they cause mirage breaks. False locations are represented in red. The break
verification and break merging procedures correct for the effects of false locations to determine the correct break boundaries (and for example
the correct splice junction boundaries) to avoid detecting a false chimera (Rule 2a) instead of a deletion. SNV: single nucleotide variant
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Let jb <ja (where b stands for before and a after) be the
positions immediately flanking the observed break in the
location profile (that is, the break is in the range [jb + 1,
ja − 1]). Let l := ja − jb. L denotes the offset between the
genomic locations of the k-mers starting in jb and ja, so
that L := loc(ja) - loc(jb). (1) If l = L = k + 1 the difference
consists of a single substitution at position ja − 1 in the
read and loc(ja) − 1 in the genome. (2) If l = k and L =
k + p for some integer p, then this is a p nucleotide dele-
tion with respect to the reference genome, which is
located between position ja − 1 and ja in the read, and
between loc(ja) − p and loc(ja) − 1 on the genome. (3)
Symmetrically, if l = k + p and L = k for some integer p,
the difference is a p nucleotide insertion with respect to
the reference.
We call the k-mer concordance the condition that loc

(ja) and loc(jb) are on the same chromosome, the same
strand, and that loc(ja) − loc(jb) equals ja - jb plus or
minus the inferred difference (that is, 0 for a substitu-
tion and p for indels). This notion can be extended to
all k-mer pairs on each side of the break (that is, not
merely jb, ja).
The observed missing part in the read can be due to a

polynucleotidic deletion or the removal of intronic or
intragenic regions by splicing. Without annotations, only
the expected length (that is, the value of p) can distin-
guish these cases. CRAC uses arbitrary, user-defined
thresholds to classify such biological deletions into short
deletions and splice junctions. CRAC does not use splice
site consensus sequences.
Rule 2: Other reads may present profiles not considered

in Rule 1. In particular, some reads will have a break but
the genomic locations at its sides are either on distinct
chromosomes or not colinear on the same chromosome.
We term these chimeric reads (by chimeric we mean
made of a non colinear arrangement of regions rather
than unreal), and consider three subcases corresponding
to possible known combinations [4]: (a) same chromo-
some, same strand but inverted order, (b) same chromo-
some but different strands, and (c) different chromosomes.
(For chimeric RNAs, CRAC can even distinguish five sub-
classes; see Additional file 2 for details). CRAC can handle
such cases with the profile analysis. These cases resemble
that of deletions (Rule 1, case 2), except that the genomic
locations are not colinear. Indeed, CRAC checks the break
length l = k, as well as the coherence of adjacent k-mers
left or right of the break. Coherence means that, for some
(small) integer δ, k-mers in the range [jb − δ, jb] (respec-
tively, [ja, ja + δ]) have adjacent locations on the genome.
Reads satisfying these criteria and harboring a non-drop-
ping support profile are primarily classified as chimeric
reads, which may reveal artifactual or sheer chimeric
RNAs (chRNAs) (see Discussion).

CRAC processes reads one by one, first by determining
the location breaks, then analyzing the support profile,
and applying the inference rules whenever possible. A
read is classified according to the events (SNV, error,
indels, splice, or chimera) that are predicted, and its map-
ping unicity or multiplicity. Additional file 1 gives an
overview of the classification. The CRAC algorithm is
described for the analysis of an individual read, but its
output can be parsed to count how many reads led to the
detection of the same SNV, indel, splice, or chimera; this
can serve to further select candidates. CRAC accepts the
FASTA and FASTQ formats as input, and outputs dis-
tinct files for each category, as well as a SAM formatted
file with mapping results.
In describing CRAC’s method above, we first assumed

simplifying conditions: especially the absence of false
locations (FLs) and border cases. Some details will clar-
ify how the actual procedure handles real conditions.
Differences with the genome at a read’s extremities
(border cases)
Border cases are not processed with a specific procedure
by CRAC; instead, the sequencing depth of NGS data
indicates border cases. While processing a read, if an
event (say, a splice junction) generates a break at one of
the read’s extremities, the coverage ensures that the
same event is likely located in the middle of other reads,
and will be detected when processing these. The border
case read is classified either as undetermined or biologi-
cally undetermined depending on its support profile,
and it is output in the corresponding files.
False locations (Figure 1d)
Our criterion to set k ensures a low average probability of
a random k-mer match on the genome [19], but it does
not prevent random matches, which we term false loca-
tions. Compared to true (unique or multiple) locations, FL
of a k-mer will generally not be coherent with those of
neighboring k-mers. It may also alter the break length in
an unexpected manner, making the break length another
criterion of verification (Rule 1). When a read matches the
genome, CRAC considers ranges of k-mers having coher-
ent locations to infer its true genomic position. In the case
of a break, CRAC faces two difficulties. First, when a FL
happens at the end of a break, CRAC may incorrectly deli-
mit the break. When a FL occurs inside a break, it makes
adjacent false breaks, termed mirage breaks. In both cases,
the FL may cause CRAC to avoid Rule 1, apply Rule 2,
and predict a false chimeric read. To handle a FL at a
break end, CRAC uses a break verification procedure, and
it applies a break fusion procedure to detect and remove
mirage breaks.
These procedures are detailed in Additional file 2, which

also includes explanations of the distinction of dropping
and non-dropping supports around a break, on read
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mapping at multiple locations, on the subclassification of
chimeric reads, and on the simulation protocol.

Results
We evaluated CRAC for mapping reads, predicting candi-
date SNVs, indels, splice junctions, and chimeric junctions,
and compared it to other tools. Simulated data are needed
to compute exact sensitivity and accuracy levels, while real
data enable us to study predictions with biologically vali-
dated RNAs. For simulating RNA-seq, we first altered a
reference genome with random substitutions, indels, and
translocations to derive a mutated genome, then reads
were sequenced in silico using FluxSimulator [22], the
annotated RefSeq transcripts, and a realistic distribution of
random expression levels (Additional file 2). As read
lengths will increase, we used two simulated datasets to
assess different strategies: one (hs75) with a typical read
length of 75, another (hs200) with reads of 200 nt repre-
senting the future.

Mapping with current (75 nt) and future (200 nt) reads
Mapping, that is, the process of determining the location
of origin of a read on a reference genome, provides critical
information for RNA-seq analysis. Currently used mappers
(Bowtie, BWA, SOAP2 and Bowtie2) compute the best
continuous genome-read alignments up to a certain num-
ber of differences [9,11,12,23]. CRAC and GSNAP [14],
also consider discontinuous alignments to search for the
locations of reads spanning a splice junction: they can find
both continuous and spliced alignments.
An overview of mapping results with 75 nt reads

(Table 1) indicates a high level of precision, but strong
differences in sensitivity among tools. All achieve a global
precision >99%, meaning that output genomic positions
are correct. Bowtie, BWA, and SOAP2 are similar by

design, and all look for continuous alignments with a few
substitutions and small indels. Although its approach dif-
fers, GASSST also targets these (and is better for longer
indels). Even within this group, the sensitivity varies sig-
nificantly: from 70% for GASSST to 79% for BWA. These
figures are far from what can be achieved on RNA-seq
data since GSNAP and CRAC, which also handle spliced
reads, reach 94% sensitivity: a difference of at least 15
points compared to widely used mappers (Bowtie2
included). As only uniquely mapping reads were counted,
the sensitivity cannot reach 100%: some reads are taken
from repeated regions and thus cannot be found at a
unique location.
One gets a clearer view by considering the subsets of

reads that carry an SNV, an indel, an error, a splice, or a
chimeric junction (Figure 2). Strikingly, CRAC is the only
tool that achieves similar performance, a sensitivity of 94%
to 96%, in all categories. For instance with indels, GSNAP
yields 65% and 83% sensitivity on insertions and deletions
respectively, Bowtie2 yields 70% sensitvity for both inser-
tions and deletions, while the other tools remain below
30%. BWA, GASSST, Bowtie, and SOAP2 output continu-
ous alignments for 9% to 19% of spliced reads, and Bow-
tie2 up to 35%. Although their output locations are
considered correct, for they are in one exon, their align-
ments are not. Such reads are considered as mapped and
thus not reanalyzed by tools like TopHat or MapSplice in
a search for splice junctions, which may lead to missing
junctions.
Analyzing longer reads (200 nt) is another challenge: the

probabilities for a read to carry one or several differences
(compared to the reference) are higher. In this dataset,
36% of the reads cover a splice junction, and 50% carry an
error. Compared to the 75 nt data, while their precision
remains >99%, BWA, GASSST, Bowtie, Bowtie2, SOAP2,
and GSNAP, have lower sensitivity (approximately 10
points less for BWA-SW, GASSST, and GSNAP, 14 for
Bowtie2, and 20 for Bowtie). Only CRAC remains as pre-
cise and gains 1.5 points in sensitivity (Table 1). The detail
by category confirms this situation (Figure 2), showing
CRAC is better than current tools. CRAC’s k-mer profiling
approach can accurately handle reads altered by distinct
categories of biological events, and importantly adapts well
to longer reads.
The same analyses have been performed on Drosophila

datasets and these show that all tools perform better, but
the differences between tools remain (Additional file 3).
The run times and memory usage of all tools are given in
Additional file 3, Table S3. CRAC requires a large memory
and its run time for analyzing reads ranges between that of
Bowtie and TopHat, which are practical tools. Indexing
the human genome with crac-index takes two hours on an
x86_64 Linux server on a single thread and uses 4.5 giga-
bytes of memory.

Table 1 Comparative evaluation of mapping sensitivity
and precision

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

Bowtie 75.42 99.59 55.72 99.81

Bowtie2 76.64 99.26 62.31 98.78

BWA/BWA-SW 79.29 99.13 68.66 96.86

CRAC 94.51 99.72 95.9 99.79

GASSST 70.73 99.09 59.43 97.86

GSNAP 94.62 99.88 84.84 99.28

SOAP2 77.6 99.52 56.08 99.78

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for mapping. The sensitivity is the percentage of correctly reported cases over
all sequenced cases, while the precision is the percentage of correct cases
among all reported cases. Values in bold in the three tables indicate the
maximum of a column, and those in italics the second highest values. For all
tasks with the current read length, CRAC combines good sensitivity and very
good precision. Importantly, CRAC always improves sensitivity with longer
reads, and delivers the best sensitivity while keeping a very high precision.
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Predicting distinct categories of biological events
Mapping is not a goal per se, but only a step in the analy-
sis; the goal of read analysis is to detect candidate biolo-
gical events of distinct categories (SNVs, indels, and
splice and chimeric junctions) from the reads. The ques-
tion is: if, for example, there is an SNV or splice junction
that has been sequenced, can it be predicted and not bur-
ied under a multitude of false positives (FPs)? Here, sen-
sitivity and precision are relative to the number of events,
not to the number of reads covering them. We assessed
CRAC’s prediction ability and compared it to splice junc-
tion prediction tools on our simulated datasets.
Figure 3 gives CRAC’s precision and sensitivity for

each category of events and for sequencing error detec-
tion. For SNVs and indels (<15 nt), CRAC achieves a
sensitivity in the range [60,65]% and a precision in the
range [96.5,98.5]% (Figure 3), making it a robust solu-
tion for such purposes. Typically, CRAC missed SNVs
that either have low coverage (42% of them appear in
≤2 reads) or are in reads carrying several events (66% of
missed SNV reads also cover a splice junction). For the
splice junction category, CRAC delivers 340 false and
67,372 true positives (TPs).

An overview and the effect of read length on sensitivity
and precision are shown in Table 2. With 75 nt, all splice
detection tools achieve good sensitivity, ranging from
79% for CRAC to 85% for TopHat, but their precision
varies by more than 10 points (range [89.59,99.5]). CRAC
reaches 99.5% precision and thus outputs only 0.5% FPs;
for comparison, MapSplice and GSNAP output four
times as many FPs (2.32% and 2.97%), while TopHat
yields 20 times more FPs (10.41%). With 200 nt reads,
tools based on k-mer matching, that is CRAC and MapS-
plice, improve their sensitivity (6.5 and 5 points respec-
tively), while mapping-based approaches (GSNAP and
TopHat) lose, respectively, 12 and 30 points in sensitivity,
and TopHat2 gains 6.4 points in sensitivity. With long
reads, CRAC has the second best sensitivity and the best
precision (>99%). It also exhibits a better capacity than
MapSplice to detect junctions covered by few reads:
15,357 vs 13,101 correct junctions sequenced in ≤4 reads.
A comparison using chimeric RNAs shows that CRAC

already has an acceptable balance between sensitivity
and precision with 75 nt reads (53% and 93%, respec-
tively), while the sensitivities of TopHat-fusion and
MapSplice remain below 32% (Table 3). With 200 nt
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Figure 2 Comparison of mapping results by category for seven tools. The figure shows the mapping by event category on simulated RNA-seq
against the human genome on datasets with short and long reads (left 42M, 75 nt; right 48M, 200 nt) for seven different mapping tools: Bowtie, Bowtie2,
BWA/BWA-SW, CRAC, GASSST, GSNAP, and SOAP2. We consider six categories of reads depending on whether they contain an SNV, an insertion, a
deletion, a junction, a sequence error, or a chimeric splice junction (a chimera). In each category, the bar is the percentage of those reads mapped at a
unique location by the corresponding tool. The red tip at the top of the bar is the percentage of incorrectly mapped reads. With 75 nt reads, CRAC is
better than the other tools, reaching a sensitivity >90% and a precision >95% whatever the category. The other tools except GSNAP are below 50%
sensitivity for mapping reads in categories where spliced alignments are needed (for which they are not intended) and for reads containing insertions or
deletions. With 200 nt reads, CRAC remains by far the most sensitive and specific tool; the difference between CRAC and GSNAP and Bowtie2 increased in
all categories. Compared to short reads, the other tools had a better mapping of insertion and deletion containing reads. SNV: single nucleotide variant
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reads, only CRAC is able to predict chimeric splice
junctions with acceptable precision, and sensitivity is
improved compared to shorter reads (Table 3 and Addi-
tional file 3).
As with mapping, for all categories of event, CRAC’s

prediction performance improves with longer reads
(Figure 3).

Predicting distinct categories of biological events on
real data
Splice junction prediction
To evaluate CRAC’s ability to detect splice junctions in
real RNA-seq data, we compared it to state-of-the-art

tools (TopHat, GSNAP, and MapSplice) on a dataset of
75 million stranded 100 nt reads (ERR030856; see Addi-
tional file 4 Table S1). Splice junctions were searched for
using each tool and then compared to human RefSeq tran-
scripts. Each found junction consists of a pair of genomic
positions (that is, the exons 3’ end and 5’ start) and we
considered that it matches a RefSeq junction if the posi-
tions were equal within a 3 nt tolerance. Found junctions
were partitioned into known, new, and other junctions
(KJs, NJs, and OJs, respectively). Known junctions are
those already seen in a RefSeq RNA, new ones involve
RefSeq exons but in a combination that has not yet been
observed in RefSeq, while the remaining junctions go into

(A)

SNV Ins. Del. Splices Errors Chimera

200bp
True positives 37,833 3,347 3,290 125,530 31,023,122 1,185
False positives 1,899 151 68 1,027 139,676 129

75bp
True positives 18,670 1,641 1,637 67,372 10,324,528 624
False positives 609 57 26 340 37,660 41
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Figure 3 Sensitivity and precision of CRAC predictions by category for human simulated data. (A) Absolute numbers of true and false
positives reported by CRAC. These figures are the number of distinct events, say SNVs, reported by CRAC, not the number of reads containing
the same SNV. False positives represent a small fraction of its output, thereby indicating a high level of precision. (B) and (C) For each category,
the figure shows the proportion of events found by CRAC for the 75 nt and 200 nt datasets. The blue bars are the true positives, while the red
bars on top are the false positives. The height of a blue bar gives CRAC’s sensitivity, and the relative height of the red part of the bar gives the
precision. For the two read lengths, for all categories the sensitivity increases with longer reads, while the precision in each category varies only
a little. SNV: single nucleotide variant
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the class other. Note that known RefSeq junctions include
both junctions between neighboring exons and alternative
splicing cases, mostly caused by exon skipping or alterna-
tive splice sites [24]. Novel junctions will provide new
alternative splicing candidates, while junctions in class
other are totally new candidate RNAs.
For each tool, the distribution of junctions in the classes,

and the number of detected RefSeq RNAs and genes
(those having at least one KJ or NJ) are given in Figure 4a.
The agreement on known junctions (KJs) among the tools
is shown as a Venn diagram (Figure 4b); see Additional
file 4 for the corresponding figures and a Venn diagram
on novel junctions (NJs). Clearly, MapSplice, GSNAP, and
CRAC find between [140,876;144,180] known junctions
and all three agree on 126,723 of them. GSNAP and
CRAC share 93% of CRAC’s reported known junctions.
TopHat reports about 25,000 junctions fewer than the
other tools, and only 1,370 of its junctions are not detected

by any of them. For instance, CRAC covers 93% of
TopHat’s KJs. As known junctions likely contain truly
expressed junctions of well-studied transcripts, these fig-
ures assess the sensitivity of each tool and suggest that in
this respect CRAC equals state-of-the-art tools. Logically,
the numbers vary more and the agreements are less pro-
nounced among novel junctions. A marked difference
appears within the class other: CRAC yields only 20.36%
of other junctions, while with the other tools find [25;27]%
of detected junctions.
To further test CRAC with negative controls, we cre-

ated a set of 100,000 random junctions by randomly
associating two human RefSeq exons, and for each we
built a 76 nt read with the junction point in the middle
of the read (see Additional file 4). These 100,000 reads
were processed by CRAC with k = 22 and it predicted
no splice junctions.
Are the junctions in classes New and Other interesting

candidates? To check predicted junctions, we extracted a
50 nt sequence around each inferred junction point and
aligned it with BLAST against the set of human mRNAs/
ESTs (for details and results see Additional file 4). A 50 nt
sequence can either match over its entire length on an
EST or match only one side of the junction but not both
exons. The former confirms the existence of that junction
in the ESTs and yields a very low E-value (≤10-15), while
the latter has a larger value (≥10-10). As expected, at least
95% of KJs have very low E-values against ESTs, whatever
the tool. Among new and other junctions, BLAST reports
good alignments for respectively 68% and 69% of CRAC’s
junctions. The corresponding figures are 47% and 47% for
GSNAP, 49% and 50% for MapSplice, 51% and 44% for
TopHat. The percentages of OJs and NJs confirmed by
mRNAs are >13% for CRAC and <8% for all other tools
(excepted for OJs with TopHat, which was 17%, the same
as CRAC). If we consider all junctions, 93% of CRAC junc-
tions align entirely to an EST with a good hit. Whatever
the class of the junctions, CRAC predicts more unreported
junctions that are confirmed by mRNAs or ESTs than the
other tools. This corroborates the precision rates obtained
by these tools on simulated data.
Regarding expressed transcripts, all tools detect

>18,000 transcripts and agree on 17,131 of them (Addi-
tional file 4 Figure S1). GSNAP and CRAC agree on
97% (19,431) of CRAC’s detected transcripts, expressed
in 15,589 distinct genes, which represents 87% of the
17,843 multi-exon RefSeq genes.
By simultaneously exploiting the genomic locations and

support of all k-mers gives CRAC some specific abilities for
junction detection. CRAC reports 752 junctions with an
intron larger than 100 knt. The other tools find fewer of
these junctions: 695, 589, and 470 for GSNAP, MapSplice,
and TopHat, respectively, but both MapSplice and TopHat
find fewer than expected by chance according to the global

Table 2 Comparative evaluation of splice junction
prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 79.43 99.5 86.02 99.18

GSNAP 84.17 97.03 72.94 97.09

MapSplice 79.89 97.68 84.72 98.82

TopHat 84.96 89.59 54.07 94.69

TopHat2 82.25 92.71 88.65 91.35

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for splice junction prediction. The sensitivity is the percentage of correctly
reported cases over all sequenced cases, while the precision is the percentage
of correct cases among all reported cases. Values in bold in the three tables
indicate the maximum of a column, and those in italics the second highest
values. For all tasks with the current read length, CRAC combines good
sensitivity and very good precision. Importantly, CRAC always improves
sensitivity with longer reads, and yields the best precision (that is the fewer
false positives) over all solutions, even against specialized tools like TopHat.

Table 3 Comparative evaluation of chimeric RNA
prediction tools

75 bp 200 bp

Tool Sensitivity Precision Sensitivity Precision

CRAC 53.89 93.84 64.86 90.18

MapSplice 2.33 0 2.63 0.01

TopHat2 77.72 7.32 70.72 12.50

TopHat-fusion 32.73 42.02

TopHat-fusion-post 12.26 97.22

We compared the sensitivity and precision of different tools on the human
simulated RNA-seq (42M, 75 nt and 48M, 200 nt) against the human genome
for chimeric junction prediction. The sensitivity is the percentage of correctly
reported cases over all sequenced cases, while the precision is the percentage
of correct cases among all reported cases. Values in bold in the three tables
indicate the maximum of a column, and those in italics the second highest
values. For all tasks with the current read length, CRAC combines good
sensitivity and very good precision. Importantly, CRAC always improves
sensitivity with longer reads, and has the best balance between sensitivity
and precision. TopHat-fusion could not process 200 nt reads.
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agreement between these tools (Additional file 4). CRAC
also reveals 69,674 reads that cover exactly two known
RefSeq junctions, that is, that cover three distinct exons
and include one of them. An example of a double junction
covering a 29 nt exon of the CALM2 gene is shown in
Additional file 4. Moreover, of 9,817 of such junctions,
GSNAP, MapSplice, and TopHat, find respectively 8,338,
9,167, and 7,496, which for GSNAP and TopHat is less
than expected by taking a random sample of junctions

(Additional file 4). CRAC even maps reads spanning 3
successive junctions (4 exons), and finds an additional 89
junctions, which are not all reported by current tools. For
instance, GSNAP does not map such reads. An example
for the TIMM50 gene is shown in Figure 4c. Altogether,
these results suggest that numerous new splice junctions,
even between known exons, remain to be discovered [25],
but other predicted junctions that would correspond to
completely new transcripts may also be due in part to the

ERR030856 CRAC MapSplice TopHat GSNAP
% # % # % # % #

known SJ 77.63 142,000 68.67 140,876 71.02 116,687 68.12 144,180
new SJ 2.01 3,671 4.35 8,921 3.62 5,956 5.13 10,861
other SJ 20.36 37,254 26.98 55,349 25.35 41,667 26.76 56,626
RefSeq RNAs 19,998 19,549 18,326 20,313
RefSeq genes 15,868 15,825 15,223 15,935

(a)

(b)

(c)

Figure 4 Splice junction detection using human real RNA-seq: comparison and agreement. The figure shows the detection of splice
junctions by CRAC, MapSplice, TopHat, and GSNAP for a human six-tissue RNA-seq library of 75M 100 nt reads (ERR030856). (a) Number and
percentage of known, new, and other splice junctions detected by each tool with +/−3 nt tolerance for ERR030856. (b) Venn diagram showing
the agreement among the tools on known RefSeq splice junctions (KJs). Additional file 4 has pending data for novel junctions (NJs) and RefSeq
transcripts. (c) A read spanning four exons (2 to 5) and three splice junctions of the human TIMM50 gene displayed by the UCSC genome
browser. The included exons, numbers 3 and 4, measure 32 and 22 nt, respectively. So exon 3 has exactly the k-mer size used in this
experiment. KJ: known splice junction; SJ: splice junction
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inaccuracy of splice junction prediction tools. In this
respect, CRAC seems to ally sensitivity and precision,
which should help discriminate true from false candidates,
while it has good potential for detecting multiple junctions
occurring within the same read. Such reads with multiple
junctions will be more abundant with longer reads, and are
useful for the reconstruction of transcripts, which is done
on the basis of detected junctions [26].
Comparisons of chimeric splice junction prediction
Edgren et al. used deep RNA-sequencing to study chimeric
gene fusions in 4 breast cancer cell lines (BT-474, KPL-4,
MCF-7, and SK-BR-3; see Additional file 4 Table S1); they
found 3 known cases and validated 24 novel intergenic
fusion candidates (that is, involving 2 different genes) [27].
As CRAC, TopHat-fusion can predict both intragenic and
intergenic chRNA candidates and identify a chimeric junc-
tion in a spanning read [16]. For evaluation purposes, we
processed each library with TopHat-fusion and CRAC, and
compared their results. TopHat-fusion exploits both the
read sequence and the read pairs, while CRAC uses only
the single read sequence. Otherwise, TopHat-fusion per se1

and CRAC both select potential chRNAs based on compu-
tational criteria. We further filtered out all candidate chi-
meric reads for which an alternative, colinear alignment
was found by GSNAP (Additional file 4). Then, filtered
predictions were compared with valid chRNAs. A post-fil-
tering script, called TopHat-fusion-post, based on biologi-
cal knowledge, can be applied to TopHat-fusion results,
but in [16] its parameters were chosen ‘using the known
valid fusions as control’, and may have biased the compari-
son. So, we recalculated all predictions using TopHat-
fusion with and without TopHat-fusion-post.
The numbers of distinct candidate chimeric junctions

(chRNA for short) and chimeric single reads detected by
both tools in each library are given in Table 4.
The 50 nt reads, which are well suited for Bowtie and

TopHat, are unfavorable for CRAC, which performs better
with longer reads. Globally after filtering with GSNAP,
TopHat-fusion reports a total of 193,163 chRNAs, while
CRAC outputs 455: a 600-fold difference. Compared

to the results obtained above for a six-tissue library
(ERR030856), TopHat-fusion reports about as many chi-
meric junctions as CRAC, GSNAP, or MapSplice for nor-
mal splice junctions. Such a set likely includes a majority
of false positives as already noted [16], and cannot help in
estimating the quantity of non-colinear RNAs in a tran-
scriptome. In comparison, CRAC’s output is a practical
size and allows an in-depth, context-dependent investiga-
tion for promising candidates for validation.
In CRAC’s output, intragenic and intergenic chRNAs

account for 58% and 42% respectively, and are parti-
tioned into five subclasses (Methods, Additional file 5).
Looking at the intersection, TopHat-fusion also outputs
76% (346) of the chRNAs found by CRAC, therefore pro-
viding additional evidence in favor of their existence,
since the presence of some supporting read pairs is a
mandatory criterion in TopHat-fusion [16] (Additional
file 5).
When compared with the set of validated chimeras of

Edgren et al. [27], TopHat-fusion and CRAC detected 21
and 20 out of 27, and agreed on 17 of them (Table 5).2

The first 20 cases were found by CRAC, and the 7
remaining ones were not predicted by CRAC; however,
for the final 2, we could not detect any read matching the
15 to 20 nt over the junction. Among the seven cases
CRAC misses, only one (BCAS4-BCAS3) is a false nega-
tive, four are uncertain with not enough expressed candi-
dates (CPNE1-P13, STARD3-DOK5, WDR67-ZNF704,
and PPP1R12A-SEPT10), and no read seems to match
the junction of the two remaining ones (DHX35-ITCH
and NFS1-PREX1). As the BCAS4-BCAS3 junction
includes a substitution near the splice site, the reads
carry two events (SNV plus junction): CRAC does not
exactly position the junction and outputs them in the
BioUndetermined file, whose exploration could extract
BCAS4-BCAS3 as a candidate (future work). For the four
uncertain cases, the k-mer support over the junction
break equals one, meaning that only one read matches
the junction exactly; hence CRAC identifies a chimeric
junction, but classifies them as uncertain candidates

Table 4 Chimeric RNA detection in breast cancer libraries

Edgren
libraries

CRAC TopHat-fusion

Raw After GSNAP Raw After GSNAP

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

Number of
chRNAs

Number of
reads

BT-474 692 9,661 153 460 109,711 349,801 81,327 189,523

KPL-4 407 5,157 60 199 32,412 98,330 23,075 53,165

MCF-7 466 3,475 90 180 42,738 121,544 27,267 57,676

SK-BR-3 703 9,354 152 577 86,249 241,219 61,494 130,682

TopHat-fusion reports approximately 200 times more raw candidates than CRAC; this ratio increases after filtering. Comparison with the set of validated chRNAs
by Edgren et al. [27] shows that both the filtered and unfiltered predictions of CRAC and TopHat-fusion include respectively 20 and 21 true chRNAs and they
agree for 17 of them.
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(Undetermined file). Three out of four are nevertheless
detected by TopHat-fusion, but with two or one spanning
reads (2,1,1) and few supporting pairs (6,5,0), thereby
corroborating CRAC’s view and confirming these are
expressed at very low levels in this dataset.
Considering validated intergenic chRNAs [27], the

sensitivity over the 27 valid chRNAs is comparable
between TopHat-fusion (77% = 21/27) and CRAC
(74% = 20/27), while the precision over the total num-
ber of candidates is markedly in favor of CRAC (21/
143,003 � 0.01% vs 20/192 � 10.4% ;3 Table 5, Addi-
tional file 5). Clearly, some experimentally validated
chRNAs (like DHX35-ITCH or NFS1-PREX1), happen
to have no read spanning their junction, and thus
should not be computationally predicted as candidates

on the basis of this read data. This important state-
ment illustrates how difficult computational chRNA
prediction is, thereby emphasizing the quality of
CRAC’s analysis. Moreover, the evidence suggests that
other promising candidate chRNAs populate CRAC’s
results.
Numerous chRNAs are predicted in classes 3/5, where

the RNA non-colinearity appears as an inversion. CRAC
detects three such chRNAs within the MAN1A2 gene,
which recur in up to three out of four breast cancer
libraries, and in a K562 library. These specific inversions
in MAN1A2 are described as post-transcriptional exon-
shuffling RNAs and found highly expressed in several
acute lymphoblastic leukemia samples [28]. Our results
support the existence of such mRNA-exhibiting shuffled

Table 5 CRAC and TopHat-fusion predictions for the set of validated chimeric junctions from breast cancer libraries

Library Fused genes Chromosomes 5’ position 5’ strand 3’ position 3’ strand Average supporta CRACb TopHat-fusionc

BT-474 SNF8-RPS6KB1 17-17 47,021,337 1 57,970,686 -1 36 Yes Yes

BT-474 CMTM7-GLB1 3-3 32,483,329 -1 33,055,545 1 2 Yes Yes

BT-474 SKA2-MYO19 17-17 57,232,490 -1 34,863,351 -1 6 Yes Yes

BT-474 ZMYND8-CEP250 20-20 45,852,968 -1 34,078,459 1 9 Yes Yes

BT-474 VAPB-IKZF3 20-17 56,964,572 1 37,934,021 -1 6 Yes Yes

BT-474 ACACA-STAC2 17-17 35,479,452 -1 37,374,427 -1 46 Yes Yes

BT-474 DIDO1-TTI1 20-20 61569147 -1 36,634,800 -1 2 Yes Yes

BT-474 RAB22A-MYO9B 20-19 56,886,178 1 17,256,205 1 9 Yes Yes

BT-474 MCF2L-LAMP1 13-13 11,371,8616 -1 113,951,811 -1 2 Yes No

KPL-4 NOTCH1-NUP214 9-9 139,438,475 -1 134,062,675 1 2 Yes Yes

KPL-4 BSG-NFIX 19-19 580,782 1 13,135,832 1 9 Yes Yes

MCF-7 RPS6KB1-TMEM49 17-17 57,992,064 1 57,917,126 1 5 Yes Yes

MCF-7 ARFGEF2-SULF2 20-20 47,538,548 1 46,365,686 -1 10 Yes Yes

SK-BR-3 PKIA-RARA 8-17 79,485,042 -1 38,465,537 -1 7 Yes Yes

SK-BR-3 TATDN1-GSDMB 8-17 125,551,264 -1 38,066,177 -1 334 Yes Yes

SK-BR-3 KCNB1-CSE1L 20-20 47,956,856 -1 47,688,990 -1 6 Yes No

SK-BR-3 CYTH1-EIF3H 17-8 76,778,283 -1 117,768,258 -1 11 Yes Yes

SK-BR-3 SUMF1-LRRFIP2 3-3 4,418,012 -1 37,170,640 -1 4 Yes Yes

SK-BR-3 SETD3-CCDC85C 14-14 99,880,273 1 100,002,353 1 3 Yes No

SK-BR-3 PCDH1-ANKHD1 5-5 141,234,002 1 139,825,559 -1 2 Yes Yes

BT-474 CPNE1-P13 20-20 34,243,123 NA 43,804,501 NA 1 No Yes

BT-474 STARD3-DOK5 17-17 37,793,479 NA 53,259,992 NA 1 No Yes

SK-BR-3 WDR67-ZNF704 8-8 124,096,577 NA 81,733,851 NA 1 No Yes

MCF-7 BCAS4-BCAS3 20-17 49,411,707 NA 59,445,685 NA 3 No Yes

KPL-4 PPP1R12A-SEPT10 12-2 80,211,173 NA 11,034,3414 NA 1 No No

SK-BR-3 DHX35-ITCH 20-20 Unknown NA Unknown NA NA No No

SK-BR-3 NFS1-PREX1 20-20 Unknown NA Unknown NA NA No No

NA: not applicable
a Average support value over the junction k-mers
b Detected by CRAC
c Detected by TopHat-fusion

CRAC and TopHat-fusion predictions on the set of validated chimeric junctions from four breast cancer libraries [27]. The first 20 cases were found by CRAC, and
the 7 remaining ones were not predicted by CRAC; however, for the final 2, we could not detect any read matching the 15 to 20 nt over the junction. A short
read length penalizes CRAC: indeed, with k = 22, only the 6 (= 50 - 2 × 22) middle positions of a read could be used to locate any event (splices or mutations)
exactly. Hence we expect that the spanning reads by which a chRNA is amenable to detection by CRAC to be rare. NA: not applicable. Columns: library, fused
genes ID, annotation of the junction points, chromosomes, 5’ position and strand, 3’ position and strand, average support value over the junction k-mers,
detection by CRAC and by TopHat-fusion (THF).
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exons, as well as cases where the inversion is short,
sometimes inducing a repeat within the read (see an
example in the LONP1 gene given in Additional file 4).
Notably, among 455 chRNAs, CRAC reports 36

chRNAs that appear to recur in two, three, or even all
four breast cancer libraries (Additional file 5). Among
these 36 chRNAs: 24 are intra- and 12 are inter-chro-
mosomal, 20 are intragenic, while 16 fuse different
genes. Moreover, 35 out of 36 (including the MAN1A2
and LONP1 cases) harbor exactly the same junction
point in all libraries in which they were detected. Pre-
vious investigations of these libraries [16,27] did not
report any recurrent chRNAs. However, when we ran
TopHat-fusion, it also output 23 of these chRNAs
among 193,163 candidates.
For instance, we found a HSPD1-PNPLA4 chRNA in

both KPL-4 and SK-BR-3 libraries: PNPLA4 (GS2) is
highly expressed in human SW872 liposarcoma cells
[29], while HSPD1, the heat shock protein Hsp60, shows
a broad antiapoptotic function in cancer [30]. Among the
intragenic chRNAs, we observed in all four libraries a
non-colinear chRNA within GNAS, a gene coding for the
G-protein alpha subunit, which is known to be associated
with multiple human diseases including some cancers
[31], and was recently found to be recurrently mutated in
cystic pancreatic lesions related to invasive adenocarcino-
mas [32], as well as amplified in breast cancers [33].
Moreover, we also found the same CTDSPL2-HNRNPM
chimeric RNA in the BT-474, MCF-7, and SK-BR-3
libraries. Both genes belong to the heterogeneous nuclear
ribonucleoprotein family and play a pivotal role in pre-
mRNA processing. Importantly, HNRNPM regulates the
alternative splicing of carcinoembryonic antigen-related
cell adhesion molecule-1 (CEACAM1) in breast cancer
cells [34].

Discussion
CRAC is a multi-purpose tool for analyzing RNA-seq
data. In a single run it can predict sequencing errors,
small mutations, and normal and chimeric splice junc-
tions (collectively termed events). CRAC is not a pipeline,
but a single program that can replace a combination of
Bowtie, SAMtools, and TopHat/TopHat-fusion, and can
be viewed as an effort to simplify NGS analysis. CRAC is
not simply a mapper, since it uses local coverage infor-
mation (in the support profile) before computing the
genomic position of a read. In contrast to the current
paradigm, mapping and post inferences are not disjoint
steps in CRAC. Instead, it implements a novel, integrated
approach that draws inferences by simultaneously analyz-
ing both the genomic locations and the support of all
k-mers along the read. The support of a k-mer, defined
as the number of reads sharing it, approximates the local
read coverage without having the reads mapped. The

combined k-mers location and support profiles enable
CRAC to infer precisely the read and genomic positions
of an event, its structure, as well as to distinguish errors
from biological events. Integration is not only the key to
an accurate classification of reads (Additional file 1), but
it avoids information loss and saves re-computation, and
is thereby crucial for efficiency. Indeed, CRAC takes
more time than state-of-the-art mappers, but is consider-
ably faster than splice junction prediction tools (for
example, Bowtie plus TopHat). The other key to effi-
ciency is the double-indexing strategy: a classical FM-
index (where FM stands for Ferragina - Manzini) for the
genome and the Gk arrays for the reads [21]. This makes
CRAC’s memory requirement higher than that of other
tools, but fortunately computers equipped with 64 giga-
bytes of memory are widespread nowadays. Experiments
conducted on simulated data (where all answers are
known), which are necessary for assessing a method’s
sensitivity, have shown that for each type of prediction
CRAC is at least competitive or surpasses current tools
in terms of sensitivity, while it generally achieves better
precision. Moreover, CRAC’s performances further
improve when processing longer reads: for example on
200 nt reads, it has 85% sensitivity and 99.3% precision
for predicting splice junctions.
CRAC analyzes how the location and support profiles

vary and concord along the read. Hence k-mers serve as
seeds (in the genome and in the read set), and k is thus
a key parameter. Its choice depends on the genome
length [19], and quite conservative values - k = 22 for
the human genome - have been used in our experi-
ments. Smaller k values are possible with smaller gen-
omes (like bacterial ones). k affects the number of false
genomic locations (FLs) that occur in the profile; a FL
indicates a wrong location for a k-mer, which differs
from the location of origin of the sequenced molecule.
This tends to induce a false location for the read (map-
ping) or a false location for a junction border (normal
and chimeric junction prediction). However, CRAC uses
two criteria to avoid these pitfalls: the coherence of
locations for adjacent k-mers over a range and the con-
cordance of locations for the k-mers around the break
(especially in the break verification and fusion proce-
dures; see Additional File 2). When k-mers surrounding
the break have a few, but several, locations, CRAC exam-
ines all possible combinations, and as FL occurrences are
governed mainly by randomness, this eliminates discor-
dant positions. FLs have a larger effect on the prediction
of chimeras. Overall, the results on both simulated and
real data, like the improved mapping sensitivity (+15
points compared to Bowtie, BWA, and SOAP2), show
that CRAC makes accurate predictions with conservative
values. k controls the balance between sensitivity (shorter
seeds) and precision. The breast cancer libraries we used
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have 50 nt reads, but CRAC could still find 74% of the
chimeric RNAs validated by Edgren et al. [27]. Of course,
the k value has two limitations: first, the minimal exon
size detectable in a read is ≥k, second, reads must be long
enough (>40 nt with k = 20 for the human genome).
However, NGS is progressing towards longer reads,
which should become standard, and Figure 4c illustrates
well CRAC’s ability to detect short exons within single
reads. The k-mer profiling approach detects events
located near the read extremities, but cannot exactly
determine their position in the read. Hence the inference
rules cannot be fully applied, and CRAC classifies such
reads as incompletely determined (Undetermined and
BioUndetermined files). However, the position of an
event in a read is random, and thus, the high coverage
delivered by NGS nearly ensures that the same event
occurs in the middle of other reads covering it. Conse-
quently, border cases do not hinder CRAC from detecting
mutations, splice junctions, etc. Only errors escape this
rule since they are mostly read specific. A more complex
drawback of k-mer profiling is when two events are
located <k positions apart on the genome (see the
BCAS4-BCAS3 chimera); again such cases even with a
high support are not fully resolved and end up in the
BioUndetermined file. A post-processing of reads in this
file, for example by an alignment program, could clearly
save such cases. Obviously, such cases are rare, and we
keep this as future work. As briefly mentioned, k-mer
profiling also detects when reads span a repeat border
region, which should help in inferring the locations of
mobile genetic elements, duplications, or copy number
variations; this suggests further developments and
CRAC’s usefulness for analyzing genomic data.
Determining the correct genomic location of reads is

crucial information for any NGS data analysis and espe-
cially for cataloging all transcripts of a cell with RNA-
seq. Generally, a mapping step computes this informa-
tion using efficient, well-known tools (BWA, Bowtie,
and SOAP2), but the mapping sensitivity is rarely ques-
tioned. We performed extensive mapping tests on simu-
lated data, which showed that sensitivity can truly be
improved and that CRAC makes a significant step in
this direction. Of course by considering discontinuous
alignments (as do CRAC and GSNAP) many reads cov-
ering splice junctions can be mapped, which BWA,
Bowtie/Bowtie2, and SOAP2 cannot detect. However,
the mapping results for categories of reads carrying one
mutation, a short indel, or even errors indicate that clas-
sical mappers missed between 15 to 20 points in sensi-
tivity, thereby confirming that the difference due to
splice junction reads is critical even for other events,
while CRAC performs equally well (>90%) whatever the
category (Figure 2). The other way around, those tools
are able to map 10% to 35% of reads containing a splice

junction. This can negatively affect downstream analyses
depending on the type of events under investigation. For
instance to predict splice junctions, in the current strat-
egy (TopHat, MapSplice, or TopHat-fusion), reads are
first mapped with Bowtie to divide the collection into:
(a) reads having a continuous alignment on the genome
and (b) unmapped reads. The former serve further to
delimit exons, and the latter are then processed again to
search for spliced alignments. If a read that requires a
discontinuous alignment is mapped by Bowtie, it is not
considered by TopHat, MapSplice, or TopHat-fusion as
potentially containing a junction, and they will not find
a spliced alignment for it. In contrast, CRAC’s k-mer
profiling approach is flexible, reliable in this respect
(Figure 3), and importantly, adapts well to longer reads
(for example, 200 nt). This last point is key since longer
reads will be available soon. They will much more likely
incorporate not one, but several events - errors, muta-
tions, splice junctions, etc. - and thus be harder to map.
Whatever the class of required predictions, CRAC’s sen-
sitivity is always improved with longer reads. This is
crucial for detecting multiple exons within single reads,
and CRAC exhibits a better ability in this as exemplified
by a transcript of TIMM50 gene (Figure 4c).
An issue in transcriptomics is to reliably extract the com-

plete set of splice junctions with a minimal number of false
positives [24]. In this regard, our results (Table 2) demon-
strate that k-mer profiling approaches (MapSplice and
CRAC) profit greatly in sensitivity from longer reads, and
that CRAC is the tool with the highest precision whatever
the read length. They also indicate that CRAC handles dif-
ficult cases with higher sensitivity, like long-distance
splices, multi-exon reads, or RNA expressed at a low level.
The analysis of a multi-tissue library shows that CRAC,
GSNAP, and MapSplice have a very large (>90%) agree-
ment on the set of reported known junctions (>140,000
distinct junctions), RefSeq transcripts, and genes, thereby
providing evidence of their ability to extract splice junc-
tions of well-annotated transcripts (Figure 4b and 4a). In
contrast, TopHat misses 21% of these known RefSeq junc-
tions. Comparatively, CRAC reports fewer novel or
unknown junctions than other tools, and tends to be more
conservative, which likely reflects its precision. Altogether,
CRAC is a solution for exploring qualitatively the tran-
scriptome of a sample with high sensitivity and precision,
and thus provides the primary material for determining all
transcript structures, which is indispensable for estimating
the expression levels of all RNA isoforms [3,26].
Recent investigations have suggested that non-colinear

RNAs are quantitatively more abundant in human tran-
scriptomes than previously thought, underlining the struc-
tural diversity of these chimeric RNAs and their
occurrence in cancers [8,27,28,35,36]. Predicting chimeric
RNAs (chRNAs) is the most difficult and error-prone
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computation when analyzing RNA-seq. The combinatorial
possibilities of aligning a read partly to two distinct regions
on the same or different chromosomes [4] increase the
likeliness of predicting FPs. It explains why filtering for
suboptimal but colinear alignments of an apparent chi-
meric read may still help, and also partly why TopHat-
fusion per se yields so many more chRNA candidates
compared to CRAC (Table 4). Paired end reads are not
sufficient: analyzing single reads by splitting them is inevi-
table for predicting the chimeric junction point; hence k-
mer profiling also suits this purpose. Nevertheless, paired
end reads are useful for performing a complementary con-
solidation of chRNA candidates, which we may develop in
the future. However, chRNAs can occur at low expression
levels and be much less expressed than their parental
genes; this impels CRAC to rely less on the support profile
than for mutation prediction. In addition, transcriptional
noise or template switching during library preparation
may generate true chimeric reads from biologically irrele-
vant chRNAs. Thus, subsequent criteria are definitely
needed to prioritize chRNA candidates: the consistent
finding of the same junction point has been suggested as
an important one [27,36,37]. Notably, CRAC predicted for
the four breast cancer libraries 36 recurrent chRNAs that
were not reported previously [16,27], and 35/36 always
harbor the same junction point in the different libraries
and among the distinct reads predicting them. Several of
these involve genes known to be implicated in tumorigen-
esis or tumor maintenance, like GNAS [31] or HSPD1
[30]. As CRAC outputs also included 74% of validated
chRNAs with a single clear false negative, this shows that
CRAC consistently reports interesting chRNA candidates
based on the read data. As already mentioned, CRAC dis-
tinguishes between five chRNA classes, included those
exhibiting small-scale sequence inversions, as illustrated
by a chRNA within the LONP1 gene, which recurs in nor-
mal and tumoral libraries. We also reported cases of
chRNAs, which although validated, do not constitute good
candidates for the computational inference step, since not
enough reads in the data support their existence. The lat-
ter point is critical and strengthens how difficult chimeric
RNA prediction is.
Here, the in silico experiments focus on transcrip-

tomic data, but the method is also applicable to geno-
mic sequencing. For instance, the counterparts of splice
junctions and chimeras in RNA-seq are large deletions
and rearrangements (translocation, inversion, and displa-
cement of a mobile element) in DNA. Thus, CRAC may
also prove useful for genomic analyses.

Endnotes
a TopHat-fusion without the extra post-filtering script.

b If TopHat-fusion-post is applied to TopHat-fusion’s
results with default parameters, it reports 27 chimera,

11 of them being validated chimeras, which is about half
those reported by TopHat-fusion alone.

c Only intergenic chRNAs are counted here.
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