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Abstract: Nanoscale engineering of regular structured materials is immensely demanded in various
scientific areas. In this work, vertically oriented TiO2 nanotube arrays were grown by self-organizing
electrochemical anodization. The effects of different fluoride ion concentrations (0.2 and 0.5 wt%
NH4F) and different anodization times (2, 5, 10 and 20 h) on the morphology of nanotubes were
systematically studied in an organic electrolyte (glycol). The growth mechanisms of amorphous and
anatase TiO2 nanotubes were also studied. Under optimized conditions, we obtained TiO2 nanotubes
with tube diameters of 70–160 nm and tube lengths of 6.5–45 µm. Serving as free-standing and
binder-free electrodes, the kinetic, capacity, and stability performances of TiO2 nanotubes were tested
as lithium-ion battery anodes. This work provides a facile strategy for constructing self-organized
materials with optimized functionalities for applications.

Keywords: TiO2; crystal growth; Li-ion batteries; nanotube array; anodization

1. Introduction

Since titanium dioxide (TiO2) was first used in the electrochemical photolysis of water
in 1972, researchers have developed a strong interest in TiO2 [1–4]. TiO2 exhibits rich
physical and chemical properties such as non-toxicity, high corrosion resistance, biocompat-
ibility, and unique optoelectronic properties, allowing it to maintain good competitiveness
in photocatalysis, sensors, dye-sensitized solar cells, and electrochemical energy storage,
etc. [5–11]. After decades of development, nanoscale materials (0D, 1D, 2D, and 3D) are
becoming key in controlling various performances [12]. Among these nanomaterials, 1D
nanotubes have received more and more attention in the materials field. After the synthesis
of carbon nanotubes, the research on highly ordered nanotube structures aroused a great
upsurge of interest [13–15]. Research on TiO2 nanotubes has also became a hot spot.

Three methods can be used for preparing TiO2 nanotubes: the template method [16], the
hydrothermal (solvothermal) method [17], and the electrochemical anodization method [18].
For the template method, TiO2 nanotubes have a larger inner diameter and thicker tube
wall, and their morphology is restricted by the template. With the hydrothermal (solvother-
mal) way, TiO2 nanotubes have small tube diameters, thin tube walls, and their morphology
is also difficult to control. Of these methods, the anodic oxidation method displays the sim-
plest operation process and has the advantages of vertical arrangement and highly ordered
nanotube arrays [19,20]. The preparation technology of anodized TiO2 nanotube arrays can
be roughly divided into three generations: (i) hydrofluoric acid aqueous electrolyte was
used in the first generation, and the length of obtained nanotubes was only 500 nm [21];
(ii) F−-containing water-based electrolyte was applied, and the length of the nanotubes
was 5 µm [22]; (iii) F−-containing organic electrolytes were used, and the length of the
nanotubes reached 100–1000 µm, while the nanotubes were smooth and better than those
of the previous two generations [23].
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Numerous research efforts have been made to study the influencing factors of self-
ordered TiO2 nanotube structures; i.e., F− concentration, pH value, water content, type of
electrolyte, oxidation voltage, oxidation time, and reaction temperature [24]. The concen-
tration of F− ions must be kept at a proper level to achieve the balance between growth and
dissolution of nanotubes [25]. With HF acidic electrolytes, only 5 µm-long nanotubes were
produced [19]. In a fluoride salt solution, the chemical dissolution rate of TiO2 reduced
and 24 µm-long nanotubes can be obtained [23]. F− ions are more aggressive in aqueous
solutions than in organic media; typically side walls of the nanotubes appear distorted in
water, while they grow more smoothly in organic solutions [26]. The lower water content in
organic electrolytes increases the growth rate of the nanotubes [27]. The applied potential
affects the migration of ions and the morphology of the nanotubes, which is often 5–30 V
in water electrolyte and 10–60 V in organic electrolytes [28]. In organic electrolytes, the
optimal temperature range for nanotubes growth was shown to be between 0 and 40 ◦C [29].
However, there still exist less known but important aspects to be explored, such as the
fundamentals of nanotube growth, the effect of defects in the Ti substrate, the effect of
heat-treatments, the improvements in the applications of nanotubes, etc.

Vertically oriented self-organized TiO2 nanotubes have become an excellent candidate
material for lithium-ion battery anodes. The benefits of TiO2 nanotube arrays are shown
as follows [30–32]: (i) Good structural stability, large specific surface area, small volume
expansion rate. (ii) With a hollow tubular structure, the gaps between tubes are conducive
to the penetration of the electrolyte. The inner and outer walls of the tube increase the
contact area between the electrode and the electrolyte, shorten the diffusion path of lithium
ions, and facilitate the reversible insertion/extraction of lithium ions. (iii) The active
materials are firmly combined with the metal titanium matrix, without the need to add
additional binders and conductive agents. (iv) As a negative electrode, the high voltage
can avoid the precipitation of metallic lithium, so it is a promising candidate as a safe
lithium-ion battery anode material.

In this work, we revisited the so-called “old field” of anodic oxidation and finding an
inherent mechanism for engineering regular nanotube structured materials with electrical
and chemical fields to improve the areal capacity, rate capability, and cycling stability of
lithium-ion battery anodes, and fabrication strategies for TiO2 nanotube electrodes were
systematically optimized.

2. Experimental Section
2.1. Reagents and Materials

Titanium foil (99.99%, Qinghe Shenghang Metal Material Co. Ltd., Shanghai, China);
platinum electrode (99.99%, Shanghai Yueci Electronic Technology Co. Ltd., Shanghai,
China); ethylene glycol (EG, 99.5%, Sinopharm Chemical Reagent Co. Ltd., Shanghai,
China); ammonium fluoride (NH4F, 96.0%, Tianjin Komiou Chemical Reagent Co. Ltd.,
Tianjin, China); anhydrous ethanol (99.7%, Tianjin Fuyu Fine Chemical Co. Ltd., Tian-
jin, China).

2.2. Preparation of TiO2 Nanotube Arrays

The high-purity titanium foil (10 mm × 35 mm × 0.1 mm) was ultrasonically cleaned
with anhydrous ethanol and deionized water for 10 min, respectively. Then, titanium
foil was dried in the air. One side of dried titanium foil was sealed with insulating tape.
As shown in Figure 1, a two-electrode system was used, and a high-purity platinum
foil (15 mm × 15 mm × 0.1 mm) was used as a counter electrode. The two electrodes
had a distance of 2 cm. Electrolytes were prepared with 75 mL EG, 0.5 wt% NH4F and
757 µL deionized water. In another set of experiments, 0.2 wt% NH4F was used, and other
conditions remained unchanged. At 20 ◦C, a DC power supply (NPS3010W, Wanptek,
Shenzhen, China) was used to provide a constant voltage potential of 60 V, and oxidation
time was 2, 5, 10, and 20 h, respectively. After reaction, the titanium foil was taken out and
cut into 3 sheets of 10 mm × 10 mm. Then, ultrasonic cleaning was conducted with EG
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and anhydrous ethanol for 10 min, respectively, and we then rinsed the sheets lightly with
anhydrous ethanol three times. Finally, we removed the back insulating tape and dried the
sheets in the air.
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Figure 1. Schematic illustration of an electrochemical anodic oxidation cell.

As for the annealing steps, the prepared TiO2 nanotube array was first placed in a
quartz boat and then transferred to the programmed temperature-controlled muffle furnace.
Then, it was held at 450 ◦C for two hours with a heating rate of 5 ◦C per minute. After
temperature decreased to room temperature, the annealed sample was taken out. The
sample name of TiO2-5 h-450 ◦C denoted a sample anodized for 5 h and heated at 450 ◦C.
TiO2-5 h denoted a sample anodized for 5 h before annealing.

2.3. Electrochemical Analysis of Li/TiO2 Cells

In a glove box filled with Ar, the Li/TiO2 cells were assembled into 2032 coin batteries.
A glass microfiber separator was put between the electrode and the lithium sheet, and the
separator was fully wetted with 1 M liquid electrolyte LiPF6 dissolved in a 1:1 volume ratio
of dimethyl carbonate (DMC) and ethylene carbonate (EC). In this work, the Li/TiO2 cells
were tested with charge–discharge equipment (Lanhe CT3001A, Wuhan, China) at a series
of current densities within the voltage range of 1–3 V (vs. Li/Li+). Cyclic voltammograms
(CV) and electrochemical impedance spectroscopy were conducted at an electrochemical
workstation (CHI 660E, Shanghai, China).

2.4. Characterization

The samples were investigated by X-ray diffraction (XRD, Rigaku, SmartLab 9KW,
Tokyo, Japan), scanning electron microscopy (SEM, JEOL, JSM-6700F, Tokyo, Japan) and UV
laser confocal Raman Spectrometer (Horiba, LabRAM HR Evolution, 532 laser, 100–1000 cm−1,
Paris, France). The XRD test parameters were: Cu target, Kα λ = 0.154056 nm, the scanning
speed was 20◦ per minute, the scanning step was 0.01◦, and the scanning range was 10–90◦.

3. Results and Discussion

The process of anodizing and growing TiO2 nanotube arrays in F− ions containing
organic electrolytes was separated into four stages. In the first stage, a layer of dense TiO2
barrier layer was rapidly generated at the anode after voltage was applied (Figure 2a).
In this stage, H2O was ionized into H+ cations and O2− anions (Figure 2, Formula (i)).
At the same time, metal titanium was dissolved into Ti4+ cations (Figure 2, Formula (ii)),
and then a large number of Ti4+ cations combined with O2− anions to form a dense TiO2
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film (Figure 2, Formula (iii)). The overall reaction can be summarized as Formula (iv) in
Figure 2 [33]. In the second stage, F− ions chemically etched the barrier layer to produce a
large number of pits (Figure 2b); as the barrier layer continued to penetrate into the titanium
substrate, the pits became larger and nanopores appeared (Figure 2c). The formation of a
dense oxide layer resulted in volume expansion and generated internal stress. Then, the
F− ions reacted with the TiO2 barrier layer and chemical etching occurred: the chemical
dissolution of oxides (Figure 2, Formula (vi)) or the direct complexation of the free Ti4+

cations (Figure 2, Formula (v)). A large number of pits on the oxide layer were found
(Figure 3a) and these pits were the precursors of pores (Figure 3b) [34].

Figure 2. Schematic diagram of nanotube evolution at constant anodization voltage: (a) formation of TiO2 barrier layer;
(b) pits formed on the oxide layer; (c) pits growing into pores morphology; (d) pores’ growth and voids’ formation;
(e) formation of TiO2 nanotubes; (f) top view of fully grown TiO2 nanotube arrays. Formulas (i)–(vi) are the chemical
reactions that occurred during the anodic oxidation process.
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In the third stage, the porous membrane began to grow steadily and form TiO2
nanotubes (Figure 2d,e and Figure 3c). As the pores extended to the titanium substrate,
the electric field intensity of the metal region increased, accelerating the growth and
dissolution rate of the oxide film. Simultaneously, stress corrosion occurred between
adjacent nanopores, which created voids at the interface of the pores. Due to the growth
stresses, pores were formed as a consequence of flow of material in the oxide barrier layer
under the porous layer toward the wall regions and field-assisted plasticity of the film
material [27]. With the nanopores continuing to grow, the joints between pores continued
to extend to the titanium substrate, eventually forming the tube wall [35]. The formation
of dynamic equilibrium between the oxidation reaction at the oxide/titanium substrate
interface (Figure 2, Formula (iv)) and the dissolution reaction at the electrolyte/oxide
interface (Figure 2, Formulas (v) and (vi)) led to the development of TiO2 nanotubes [36].
The top and bottom of the nanotube array are exhibited in Figure 3d,e. In the final stage,
when the dissolution rate of TiO2 nanotubes on the top was equal to the growth rate of
the nanotubes, the reaction entered the equilibrium stage, at which time the length of the
nanotubes no longer increased [33].

Figure 4a shows XRD patterns of as-obtained amorphous TiO2 and annealed TiO2 at
450 ◦C for 2 h. Before annealing, only the characteristic diffraction peaks of Ti substrate at
34.9, 38.2, 40.0, 52.8, 62.8, 70.5, 76.0, 82.1 and 86.6◦ existed. After annealing, the characteristic
diffraction peaks at 25.2, 36.9, 42.9, 53.8, 54.9, 68.6 and 74.9◦ belonged to the anatase TiO2
phase. The TiO2 nanotubes obtained by anodizing for 2, 5, 10, and 20 h had the same
crystal structure. The results show that oxidation time had no influence on the crystal
phase of samples. Furthermore, Raman spectra were performed to study their structures
(Figure 4b). According to group theory analysis of anatase TiO2, there were six optical
vibration modes of anatase TiO2 with Raman activity, which were one A1g, two B1g, and
three Eg modes respectively. As shown in Figure 4b, five peaks of anatase TiO2 were
observed. The peak positions and vibration modes were 140 cm−1, Eg1; 193 cm−1, Eg2;
391 cm−1, B1g(1); 511 cm−1, A1(g) + B1g(2), and 633 cm−1, Eg3, respectively. This result is
consistent with the previously reported pure anatase TiO2 structure [37].
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nanotubes after annealing. The samples were synthesized in electrolyte with 0.5 wt% NH4F and with anodization oxidation
time of 20 h.

Figure 5 shows SEM images of TiO2 nanotube arrays before and after annealing with
different oxidation times at 0.2 wt% NH4F. The diameters and lengths of TiO2 nanotubes
were: 70 nm and 6.5 µm in 2 h oxidation (Figure 5a); 100 nm and 11 µm in 5 h oxidation
(Figure 5b); 130 nm and 17 µm in 10 h oxidation (Figure 5c); and 145 nm and 40 µm in 20 h
oxidation (Figure 5d), respectively. The above changes clearly demonstrate the transfor-
mation process from nanopores to nanotubes. Compared with amorphous nanotubes, the
nozzles of anatase nanotubes collapsed slightly (Figure 5e–h), but the tube diameters and
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lengths kept the original values, which indicates that TiO2 nanotubes obtained by anodic
oxidation method have good thermal stability.
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Figure 6 demonstrates the change of nanotubes under the electrolyte of 0.5 wt% NH4F.
The diameters and lengths of TiO2 nanotubes were: 80 nm and 7.5 µm in 2 h oxidation
(Figure 6a); 130 nm and 12 µm in 5 h oxidation (Figure 6b); 150 nm and 18 µm in 10 h
oxidation (Figure 6c); and 160 nm and 45 µm in 20 h oxidation (Figure 6d), respectively.
After annealing, nozzles collapsed slightly but the tube diameters and lengths remained
the same. Similarly, the morphology of the nanotubes after annealing also kept the same
(Figure 6e–h). What is exciting is that in comparison with all the above samples, the
nanotube arrays obtained by anodizing at 0.5 wt% NH4F for 10 h showed a high-ordered
nanotube array.
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The concentration of F− ions can affect the morphology and length of the nanotube.
Figure 7 exhibits the changes in the diameter and length of nanotubes with different
oxidation times under two different F− concentrations. In this work, the diameter and
length of the nanotubes were positively correlated with F− ion concentration and oxidation
time. When the F− ion concentration was suitable, more pores were chemically etched
uniformly and synchronously on the entire oxide layer surface. An excessively high
fluoride ion concentration led to the rapid formation of soluble complex ions [TiF6]2−,
thereby inhibiting the formation of an oxide layer and further hindering the growth of
nanotubes. Low F− ion concentration resulted in the insufficient dissolution of the formed
barrier layer, and the formation of a dense oxide layer [38,39]. The growth rate of nanotube
diameter gradually decreased with the increase of oxidation time, while the increase in
nanotube length showed an opposite trend. This was caused by the gradual decrease of
the dissolution rate between the nanotubes, and more fluoride ions were used to push the
nanotubes toward the titanium substrate. Obviously, the growth and dissolution of the
nanotubes had not yet reached an equilibrium, which means that the nanotubes would
continue to grow as the oxidation time increased.
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Owing to its sufficient capacity and higher lithiation potential (~1.6 V vs. Li/Li+), TiO2
is often considered as a suitable anode material [28,40,41]. The electrochemical reaction of
insertion/extraction of Li+ in TiO2 nanotube electrodes is as follows:

TiO2 + xLi+ + xe− ↔ LixTiO2 (1)

Figure 8a,b reveals CV curves of amorphous and anatase TiO2 nanotubes. For amor-
phous TiO2 nanotubes, there is a reduction peak around 1.1 V, which indicates that part
of the TiO2 has undergone a phase change to form a cubic phase of Li2Ti2O4 [42], and
it is only visible in the first cycle, proving that it is irreversible. Amorphous TiO2 nan-
otube has mainly displayed pseudocapacitive behavior [43,44]. For anatase TiO2 nan-
otubes, a pair of redox peaks appear around 1.6 and 2.1 V, respectively. The redox process
(Ti4+ ↔ Ti3+) is accompanied by Li+ insertion/extraction into the oxide structures, which
represents the transition from lithium-poor phase LixTiO2 to orthorhombic lithium titanite
(Li~0.55TiO2) [45].

Figure 8c,d shows that charge–discharge curves of amorphous TiO2 nanotubes were
sloping with no voltage plateau, while the curves of anatase TiO2 nanotubes had two
obvious plateaus at 1.78 and 1.85 V, which were consistent with CV curves. This result
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indicates that no two-phase reaction occurred in the amorphous TiO2 nanotube electrode.
The plateaus in anatase TiO2 nanotube electrode can be attributed to the insertion and
extraction of Li+ from tetrahedral and octahedral positions [46]. Amorphous TiO2 nan-
otubes undergo large irreversible first discharge capacity loss, contributing to irreversible
decomposition of part of the electrolyte, and changes of initial oxide morphology, and
stoichiometric ratio. Anatase TiO2 nanotube electrode showed stable charge–discharge
for the initial three cycles, owing to its stable crystal structure. After the second cycle, the
battery no longer had a significant loss of discharge capacity, that is, it entered a stable
redox stage.
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Figure 8. CV curves of amorphous TiO2-20 h (a) and anatase TiO2-20 h-450 ◦C (b) at a sweep rate of 0.2 mV/s. The first
three cycles charge/discharge curves of amorphous (c) and anatase (d) TiO2 nanotubes. The voltage range was between 1.0
and 3.0 V, and the constant charge and discharge current was 100 µA/cm2. The samples were synthesized in electrolyte
with 0.5 wt% NH4F and anodization time of 20 h.

The kinetic characteristics of TiO2 nanotube anodes were analyzed by electrochemical
impedance spectroscopy (EIS). Figure 9 shows the Nyquist plots of the amorphous and
anatase TiO2 anodes prepared with different oxidation times, where RΩ and Rct correspond
to electrolyte resistance and interface charge transfer resistance, respectively [47,48]. RΩ of
amorphous and anatase TiO2 was around 5 Ω, and the value of anatase TiO2 was slightly
smaller than that of amorphous TiO2. The Rct values of amorphous TiO2 increased greatly
with the increase of the oxidation time, especially when the oxidation time was greater
than 5 h. In contrast, the values of anatase TiO2 were relatively stable. The results confirm
that TiO2 with stable crystal structure can display better kinetic performance.
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Figure 9. Nyquist plots of amorphous TiO2-20 h and anatase TiO2-20 h-450 ◦C anodes under different oxidation times:
(a) 2 h; (b) 5 h; (c) 10 h; (d) 20 h. The samples were synthesized in electrolyte with 0.5 wt% NH4F and anodization time of
20 h.

Figure 10 depicts the rate performance and cycling stability of amorphous and anatase
TiO2 nanotube electrodes. The areal capacities of amorphous TiO2 are higher than those of
anatase TiO2, which is due to the high defects, loose structure, and disorder of amorphous
TiO2 [30]. For example, reversible capacity of amorphous TiO2 is 1350 µAh/cm2, while
the same value of anatase TiO2 is 1240 µAh/cm2 for samples obtained under 0.2 wt%
NH4F and 20 h oxidation time, which is higher than TiO2 nanotube foam with areal
capacity of 507 µAh/cm2 at 50 µA/cm2 [30]. In comparison, the rate performance of
anatase TiO2 electrodes under different current densities was more stable than that of
amorphous TiO2. Therefore, as lithium-ion battery anodes, anatase TiO2 nanotubes show
more stable electrochemical performance than amorphous phase. The areal capacities
increased with prolonging oxidation time and F− ions concentration. With the increase
of oxidation time and F− ions concentration, longer nanotubes were formed in Ti foil,
contributing to enhanced areal capacities. As shown in Table 1, with increase of the diameter
and length of TiO2 nanotubes, the specific area capacities also increased. The increased
tube diameter can increase the contact area between the electrode and the electrolyte,
while longer TiO2 nanotubes can increase the amount of active materials per unit area.
Therefore, TiO2 nanotubes with larger tube diameter and longer tube length show better
electrochemical performances.
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Materials 2021, 14, 510 10 of 12

Table 1. Relationship between the second discharge capacity and the diameter/length of the nanotubes.

Anodization
Electrolyte Samples Nanotube Diameter

(nm)
Nanotube Length

(µm)
2nd Discharge Capacity

(µAh/cm2)

0.2 wt% NH4F

TiO2-2 h 70 6.5 269.1
TiO2-5 h 100 11 448.2
TiO2-10 h 130 17 705.8
TiO2-20 h 145 40 1251.1

TiO2-2 h-450 ◦C 70 6.5 190.4
TiO2-5 h-450 ◦C 100 11 347.3
TiO2-10 h-450 ◦C 130 17 558.8
TiO2-20 h-450 ◦C 145 40 1336.9

0.5 wt% NH4F

TiO2-2 h 80 7.5 264.1
TiO2-5 h 130 12 444.2
TiO2-10 h 150 18 808.3
TiO2-20 h 160 45 1576.1

TiO2-2 h-450 ◦C 80 7.5 203.2
TiO2-5 h-450 ◦C 130 12 339.5
TiO2-10 h-450 ◦C 150 18 706.3
TiO2-20 h-450 ◦C 160 45 1220.1

4. Conclusions

In this work, we studied the relationship between electrochemical performance and
crystallographic structure of TiO2 and geometry of as-formed TiO2 nanotube arrays. Highly
ordered TiO2 nanotube arrays with a tube diameter of 70–160 nm and length of 6.5–45 µm
were grown by anodic oxidation of Ti foil. With the studied growth mechanism, the
diameter and length of TiO2 nanotubes could be adjusted by controlling oxidation time
and F− concentration. The formation of [TiF6]2− complexes led to the chemical dissolution
of formed TiO2 at oxide/electrolyte interface, which favors the growth of nanotubes and
increase of tube diameter. The higher the F− concentration, the larger the tube diameter.
The tube length was related to the total electrical charge. Thus, the longer the reaction
time, the longer the tube length. F− concentration did not affect the increase trend of
tube length, but only increased the TiO2 tube diameter. Serving as Li-ion battery anodes,
reversible capacities of amorphous TiO2-20 h and anatase TiO2-20 h-450 ◦C were 1350
and 1240 µAh/cm2, respectively. The higher areal capacity of amorphous TiO2 was due
to the high defects and loose structure of the amorphous phase. However, anatase TiO2
nanotubes showed better rate performance owing to their stable crystallographic structure.
Anatase TiO2 nanotubes with longer tubes showed higher areal capacity and stable cycling
performances. The increased tube diameter increased the contact area between the electrode
and the electrolyte, and longer TiO2 nanotubes increased the amount of active materials per
unit area. The anodic oxidation method can be a facile nanotechnology tool to synthesize
other 1D nanotube metal oxides, i.e., Nb2O5, Fe2O3, ZnO, CuO etc.
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