
REVIEW ARTICLE OPEN

Hepatocellular carcinoma: signaling pathways and therapeutic
advances
Jiaojiao Zheng1, Siying Wang1, Lei Xia2, Zhen Sun1, Kui Ming Chan 3, René Bernards 1,4, Wenxin Qin 1, Jinhong Chen 5✉,
Qiang Xia 2✉ and Haojie Jin 1✉

Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass
1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to
factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early
stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and
incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and
recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC,
pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic
potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the
management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune
checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or
anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these
trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular
signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts
underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
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INTRODUCTION
Liver cancer, primarily HCC, is among the most challenging tumors
to treat, ranking sixth globally in incidence and third in cancer-
related deaths.1,2 HBV infection is currently the leading cause of
HCC, accounting for approximately 50% of all cases. However, viral
infections of HBV and HCV are declining annually due to the
widespread use of antiviral drugs and vaccines, while non-
alcoholic steatohepatitis (NASH) linked to metabolic disorders
and diabetes as a cause of HCC is on the rise.3

The molecular etiology of HCC differs depending on specific
etiologies and genotoxic damage. The distinct molecular
subtypes and immune responses elicited by HBV-associated
HCC differ from those in NASH-induced HCC. A deep insight into
the molecular mechanisms of HCC caused by various etiologies is
required to formulate more rational therapeutic strategies. This
process is complicated by the notion that only approximately
25% of HCC have actionable mutations. Nearly half of HCC
patients carry at least one recurring oncogenic mutation such as
TP53, CTNNB1, or TERT, However, most of these mutations lack
effective targeting options with conventional pharmaceutical
agents.4 While inhibitors designed to target mutations in the TERT
promoter and components of the WNT/β-catenin signaling
pathway have been developed, achieving satisfactory therapeutic

effects remain elusive.5,6 Most other mutations remain non-
targetable. Studying the effect that these mutations have on
downstream signaling pathways can provide clues to the future
development of drugs that target these currently undruggable
mutations.
The major therapeutic approaches for early stage HCC

currently encompass liver resection and transplantation. In
conventional approaches, local ablation utilizing radiofrequency
serves as the predominant non-surgical intervention for early-
stage HCC.7 Transarterial chemoembolization (TACE) has also
been the predominant treatment method and the benchmark
treatment over the past two decades for intermediate-stage
HCC.8 Traditional methods for HCC treatment are being
challenged by targeted therapy and immunotherapy (Fig. 1a).
The first “targeted” therapy for advanced HCC patients is
sorafenib, which gained FDA approval as a first-line therapy
following successful phase III clinical trials SHARP and Asia-
Pacific. The word “targeted” is between apostrophes because it
is not a targeted drug in the narrow sense of the word, as it
targets a number of related kinases, including RAF, MEK, VEGFR
and PDGFR. The first-line treatment with sorafenib has
significantly increased the median overall survival (OS), rising
from 7.9 to 10.7 months. Following sorafenib’s approval,
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lenvatinib become another first-line agent for HCC,9 demon-
strated prolonged anti-tumor activity, particularly in patients
with portal vein invasion. The success of IMbrave150 trial in
2020 heralded a groundbreaking epoch in HCC treatment using
anti PD-L1 immunotherapy (atezolizumab) synergistically inter-
twines with anti-angiogenic therapy (bevacizumab). This strat-
egy showed superiority over sorafenib in terms of OS,
progression-free survival (PFS), and objective response rate
(ORR). Recently, the strategy also showed significantly improved
recurrence-free survival (RFS) in early stage HCC.10 Similarly, in
November 2022, FDA approved the combination of durvalumab,
an anti-PD-L1 antibody, and tremelimumab, an anti-CTLA-4 (the
cytotoxic T-lymphocyte-associated protein 4) antibody, which
demonstrated remarkable therapeutic outcome in the HIMA-
LAYA trial, achieving a 4-year OS rate of 25.2% for advanced HCC
patients. Despite remarkable advancement, a minority of
patients with advanced disease experience lasting clinical
benefits, highlighting substantial therapeutic complexities.11

In the last five years, phase II trials constitute over half of all
clinical trials in HCC (Fig. 1b). The focus of phase III clinical trials
has predominantly shifted towards second-line investigations and
combination therapies (Table 1), The current focus is on the
development of more potent and safer agents that target immune
checkpoint pathways and angiogenesis-related pathways, such as
the vascular endothelial growth factor receptor (VEGFR), trans-
forming growth factor β (TGF-β) signaling, among others.
Exploring epigenetic modifications and dysregulated pathways,
including MAPK, PI3K-AKT, and Janus Kinases (JAKs)/signal

transducers and activators of transcription (STATs) pathway, can
be beneficial in identifying drug combinations that are both safer
and more effective.
This review summarizes essential signaling pathways including

cellular signaling pathways and immune-related signaling path-
ways, discusses current potential therapeutic targets in HCC, and
presents preclinical animal models alongside ongoing or com-
pleted clinical studies on systemic therapy, aiming to provide a
prospective outlook on precision treatment for HCC in the future.

CELLULAR SIGNALING PATHWAYS IN HCC CELLS
Cellular signaling pathways in HCC cells typically bifurcate into
two main segments: the RTK signaling pathways and other
pathways. Examining the application of these two kinds of
pathways in preclinical and clinical contexts reveals their pivotal
roles in processes such as cell proliferation, survival and migration.
Understanding these pathways holds promise for devising
targeted therapies and advancing cancer treatment strategies.

RTKs signaling pathways
The RTKs comprise a cluster of transmembrane receptors that are
activated upon binding to specific ligands, such as growth factors
or hormones.12 The RTKs consist of an extracellular domain for
ligand binding, transmembrane regions, and a cytoplasmic
domain with tyrosine kinase activity and an ATP-binding site.13

These structural components allow RTKs to transduce extracellular
signals into intracellular responses by activating downstream

Fig. 1 The development of targeted therapy and treatment regimens over time in HCC. a Describing the history of first-line and second-line
therapy in HCC during 2007–2024. FDA-approved agents or agents in Phase III clinical trials framed by red and yellow colors, separately. The
red represents FDA-approved drugs and black represents targeted therapy drugs. b Summarizing the active clinical trials over the last five
years and emphasizing treatment strategies in Phase III trials. Information from the ClinicalTrials.gov registry, and those with the status of “not
yet recruiting”, recruiting”, enrolling by invitation”, “active, not recruiting”, or “completed” were considered active and counted. The green color
represents early Phase I, blue represents Phase I, orange represents Phase II, and red represents Phase III. Figure was created with
biorender.com
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signaling pathways. Upon ligand binding, RTKs undergo dimeriza-
tion, leading to autophosphorylation of tyrosine residues within
their cytoplasmic domains. This autophosphorylation activates the
intrinsic kinase activity of the receptor, allowing it to phosphor-
ylate tyrosine residues on downstream signaling molecules. These
phosphorylation events initiate intracellular signaling cascades,
such as MAPK (mitogen-activated protein kinase), that are
essential for cell survival, proliferation, and differentiation.
Dysregulation of RTK signaling pathways is associated with HCC,
making them important therapeutic targets. Based on the
accumulated knowledge from existing studies, we focused on
reviewing and discussing the roles of eight RTKs classes including
VEGF receptor (VEGFR), Epidermal growth factor receptor (EGFR),
c-Met, platelet-derived growth factor (PDGFR), fibroblast growth
factor receptor (FGFR), insulin-like growth factor receptor (IGFR),
KIT, RET (Rearranged during transfection) and their downstream
pathways including MAPK pathway, Phosphatidylinositol 3-kinase
(PI3K) pathway and JAK-STAT pathway in biological behaviors of
HCC as well as their therapeutic implications.

VEGFR
“Sustained angiogenesis” is identified as one of the hallmarks of
cancer proposed by Drs. Weinberg and Hanahan as early as
2000.14 Malignant tumor cells require sufficient nutrients and
oxygen for rapid survival and proliferation; thus, tumor
neovascularization is crucial in supporting tumor growth,
infiltration, and spread.15,16 HCC is a vascular-rich solid tumor
with hypervascular nature. Neovascularization plays an impor-
tant role in the development of HCC, and therefore most of the
existing targeted therapies are aimed at targeting its angiogenic
pathways.17,18 VEGF/VEGFR pathway is one of the most typical
and prominent tumor-induced pro-angiogenic factors affecting
the development of HCC.19 VEGFA has a 7% ~ 14% frequency of
focal amplification in HCC.20,21 Its receptors, VEGFR-1 and
VEGFR-2, are usually highly expressed in HCC and correlated
with the differentiation and stage of the tumors.22–25 In HCC
patients, circulating VEGF serves as a marker for HCC metastasis,
whilst VEGF signaling maintains an immunosuppressive tumor
microenvironment.26

Almost all approved TKI for advanced HCC involve the targets of
VEGFRs. Cancer neoangiogenesis is mainly mediated through the
VEGFA/VEGFR2 axis, making VEGFA and VEGFR2 key targets for
the development of novel drugs. Inhibition of VEGFR signaling has
shown promising antitumor effects in HCC cell lines and mouse
models.27,28 Furthermore, a number of selective VEGFR-related
inhibitors are already in clinical practice. Bevacizumab, a
recombinant humanized monoclonal antibody against VEGFA,
was the first FDA-approved agent to inhibit angiogenesis and has
proven to be effective against a wide range of advanced
malignancies.29 The combination of bevacizumab and PD-L1
monoclonal antibody atezolizumab was authorized as a first-line
therapy for advanced HCC in 2020.30 Compared with sorafenib
alone, atezolizumab plus bevacizumab significantly prolonged
overall and disease-free survival and maintained clinical efficacy
during long-term follow-up.30,31 This combination has plausible
biological mechanisms that restore or enhance the efficacy of
immune checkpoint inhibitors in antitumor therapy by inhibiting
the VEGFR-associated immunosuppressive microenvironment.32

Several other regimens targeting VEGFR signaling in combination
with PD-1/-L1 inhibitors have now entered phase III clinical trials
(NCT06172205, NCT05320692, NCT03764293). The CARES-310
study (NCT03764293), which recently disclosed data, demon-
strated that apatinib, a selective VEGFR2 small molecule inhibitor,
in combination with the PD-1 monoclonal antibody camrelizumab
had a superior benefit over sorafenib, and therefore this
combination is currently approved by the National Medical
Products Administration (NMPA) as first-line therapy for unresect-
able or metastatic HCC.33 Moreover, apatinib monotherapy, whichTa
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prolonged survival and response rates in advanced HCC compared
to placebo as a second-line therapy, has now been approved by
the NMPA. Following this, another VEGFR2 monoclonal antibody,
ramucirumab, has been approved by the FDA for advanced HCC
patients who previously recieved sorafenib and had an
AFP ≥ 400 ng/mL.34 The success of these agents demonstrates
the substantial role of VEGFR in HCC treatment. But there have
been some failures, for example, the dual VEGFR and FGFR
inhibitor brivanib failed in phase III trials as first-line, second-line,
and adjuvant therapy in HCC.35–37 Two pan-VEGFR inhibitors,
axitinib and cediranib, failed to advance to phase III trials after
poor performance in phase II trials.38,39 These failures may be
attributed in part to flaws in study design, such as imbalance in
patient baseline across treatment arms and lack of specific
participant eligibility criteria, but may also be due to the structure
of the agents themselves being less active in humans and
presenting off-target toxicity.

EGFR
EGFR belongs to the ErbB receptor family, which is expressed in
many organs of the human body at low levels. Compared with
other tissues, EGFR is relatively highly expressed in hepatocytes of
the adult liver, indicating its significance in maintaining liver
function.40 As a potential biomarker of drug resistance in tumors,
EGFR exhibits intricate responses to various cellular stresses,
including drug stress, UV radiation, and inflammatory cytokines.
Mutations in EGFR can occur in various solid malignant tumors,
especially in Asian NSCLC patients.41,42 Previous studies reported
that activating mutations in exons 18-21 of EGFR are rare in HCC
patients.43,44 Nevertheless, one study found 13 novel missense
mutations in EGFR exon 19-23 from HCC tissues,43 and seven of
these HCC-derived mutants (K757E, N808S, R831C, V897A, P937L,
T940A, and M947T) showed resistant to first-generation EGFR
inhibitors.45 For these patients with rare EGFR mutations, gefitinib
is not suitable for combination with lenvatinib but later-
generation EGFR inhibitors, such as osimertinib, could be
considered.
EGFR is expressed in over 60% of HCC patients, and is positively

correlated with poor differentiation, high proliferative activity,
advanced stage, intrahepatic metastasis, and poorer PFS.46–49

EGFR exhibits high expression levels in HCC cell lines and tissues,
and furthermore, up-regulated EGFR expression in circulating
tumor microemboli maintains stability and distal metastasis of
suspended HCC cells by activating Ras/MAPK pathway.50 The high
EGFR-related pathway signaling in HCC may be related to
alterations in its regulatory factors and overexpressed
ligands.20,51,52

EGFR signaling has been found to mediate resistance to the
first-line targeted drugs lenvatinib and sorafenib. Our group
previously identified EGFR as a synthetic lethal target of lenvatinib
in HCC by using CRISPR-Cas9 genetic screen.53 One of the
mechanisms of intrinsic resistance to lenvatinib treatment in HCC
is the inhibition of fibroblast growth factor receptor (FGFR) leading
to a feedback activation of the EGFR-PAK2-ERK1/2 and EGFR-
PAK2-ERK5 signaling pathways, which allows malignant cells to
maintain survival and sustain proliferation. Subsequent phase I
clinical trials demonstrated a strong synergistic effect of lenvatinib
in combination with the EGFR inhibitor gefitinib in advanced HCC
with high expression of EGFR and refractory to lenvatinib mono-
therapy, with 9 out of 30 cases achieving partial response
(NCT04642547). Recent studies have also revealed multiple other
mechanisms of EGFR involved in lenvatinib resistance, including
reactive oxygen species accumulation,54 activation of ABCB1 to
potentiate the cytotoxic effects of lenvatinib,55 and as a down-
stream target for RNA modification.56,57 An analysis of circulating
tumor DNA profiling of peripheral blood suggests that pre-
treatment low copy number EGFR/ERBB2 amplification may serve
as a genetic marker for lenvatinib resistance.58 Moreover, many

studies have shown that EGFR also contributes to primary and
acquired resistance to sorafenib in HCC cells and can serve as a
potential predictor of resistance to sorafenib.59–62 However, our
preclinical data demonstrated that sorafenib in combination with
EGFR inhibitors did not show a synergistic effect in the majority of
liver cancer cell lines,53 and the phase III RCT trial also found that
the addition of erlotinib, a selective inhibitor targeting EGFR
tyrosine kinase, to sorafenib exhibited no enhancement in survival
outcomes for advanced HCC.63

C-Met
The c-Met is expressed primarily on epithelial cells and is a
transmembrane receptor containing the catalytic structural
domain of tyrosine kinase. The only known endogenous ligand
is HGF, which is secreted mainly by mesenchymal cells and is a
hepatocyte mitogen.64 HGF can activate downstream MAPK, PI3K/
AKT, and STAT3 signaling pathways upon binding to c-Met via low
(the SPH domain) or high (the N and kringle 1 domains) affinity
binding sites. It is involved in various physiological processes such
as embryonic development, tissue repair and regeneration, and
inflammatory responses.65 Furthermore, it also transmits signals in
a noncanonical manner independent of HGF, which is an
important mechanism for malignant cells to acquire resistance
to inhibitors in pathological conditions.66–68 MET is considered a
proto-oncogene, and together with its ligand HGF have been
found to be dysregulated in the process of HCC development.69

Downstream signaling pathways activated by c-Met contribute to
malignant actions including survival, growth, invasion, metastasis,
metabolic reprogramming, epithelial-mesenchymal transition
(EMT), drug resistance, and enhancement of tumor stemness.65

Although c-Met mutation or amplification is detected in only
approximately 1% of HCC patients,70 its overexpression occurs in
about a quarter of patients, even up to 80% in advanced HCC.71,72

Activation of HGF/c-Met is one of the key mechanisms of
resistance to sorafenib and lenvatinib, which is associated with
the bypassing of growth factor targets of sorafenib and lenvatinib
by HGF/c-Met to promote the downstream pro-carcinogenic
MAPK pathway and induction of EMT.73 Therefore, c-Met levels
could serve as a potential biomarker for predicting response to
sorafenib and lenvatinib.24,74–77 Sorafenib or lenvatinib in
combination with c-Met inhibitors exhibited therapeutic sensitiza-
tion and synergistic antitumor effects.74,76 However, the prog-
nostic association between HGF/c-Met and HCC patients is still
uncertain; although most studies have shown that high c-Met or
HGF expression in HCC predicts shorter survival and higher
potential for recurrence and metastasis,78–81 some studies have
also suggested no prognostic significance of c-Met and HGF.71,78

Several inhibitors targeting HGF/c-Met have been developed.
Cabozantinib is a c-Met/RTK inhibitor, which is currently being
used for the treatment of HCC patients as a second-line drug. The
recent results of the phase III trial COSMIC-312 demonstrated that
cabozantinib in combination with the PD-L1 inhibitor atezolizu-
mab prolonged PFS compared to sorafenib, but did not improve
OS.82 Some selective c-Met inhibitors have been tested for
antitumor activity in HCC, but blocking c-Met alone does not
appear to provide an adequate response.83 Tivanitib, an oral
selective c-Met inhibitor, showed encouraging responses in
preclinical studies and a phase II clinical trial, but a subsequent
phase III trial in advanced HCC with high c-Met expression did not
demonstrate similar effects.84,85 Survival was not improved with
tivanitib monotherapy compared with the placebo group. The
failure may be attributable to primary resistance to c-Met
inhibitors and an exaggerated role for highly expressed c-Met in
patients previously treated with sorafenib.86

Given the contribution of c-Met to sorafenib and lenvatinib
resistance as demonstrated by preclinical data, a strategy of
tivanitib in combination with sorafenib and lenvatinib has been
proposed,76,77,87 but remains to be validated in clinical settings.
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Interestingly, two highly selective c-Met inhibitors that have been
approved by the FDA for the indication of NSCLC harboring the
METex14 skipping mutation, tepotinib and capmatinib, have
shown promising efficacy in early clinical trials in HCC.88–90

FGFR
The FGFR gene family, including FGFR1-4, encodes seven FGFR
proteins, since FGFR1-3 have two alternative splice variants.91

Eighteen ligands and four homologs have been identified in the
fibroblast growth factor (FGF) family.92 Originally named for their
ability to promote mitogenesis in fibroblasts, FGFs are now
recognized as one of the most diverse families of peptide growth
factors in mammals. A substantial amount of evidence has shown
dysregulation of FGFR signaling as a pathogenic mechanism and
consequence of cancer,93 and it is frequently detected to be
highly expressed in HCC, contributing to tumorigenesis, progres-
sion, and drug resistance.94,95 Despite the relatively low frequency
of genetic alterations, dysregulated FGF/FGFR signaling affects
about half of HCC patients.96–98 Among the FGF and FGFR families,
currently the most studied and promising target in HCC is the
FGF19-FGFR4 signaling pathway. FGF19 is localized in the 11q13.3
amplicon, and is frequently detected co-amplified with cyclin D1
(CCND1), a known proto-oncogene, resulting in increased expres-
sion.98 They have been found to be key oncogenic driver signals in
HCC and are widely expressed in patients promoting HCC
progression.98,99 Transgenic mice overexpressing FGF19 in skeletal
muscle led to the development of HCC,100 which was effectively
inhibited by the use of either anti-FGF19 or FGFR4 monoclonal
antibodies.101,102 Interestingly, clinical evidence showed that the
expression of FGF19 and FGFR4 increased sequentially with the
different histologic stages of carcinogenesis (steatosis-
steatohepatitis–cirrhosis-HCC), suggesting a strong association
with HCC development.103,104 In addition, FGF19 can exert pro-
oncogenic effects by crosstalk activation of other growth factor
pathways, such as increasing the expression of the EGFR ligands,
connective tissue growth factor (CTGF) and amphiregulin, thereby
affecting the development of HCC through indirectly or directly
shared pathways.105,106 Furthermore, FGF19/FGFR4 confers
acquired resistance to multikinase inhibitor therapy in HCC, and
targeting the FGF19/FGFR4 axis can sensitize the antitumor effects
of sorafenib and regorafenib.94,107,108

FGFR4 is specifically expressed in the liver, making it a
promising target for drug development. Moreover, the hinge
region of the FGFR4 complex has a unique non-conserved
Cys552 structure, whereas the corresponding positions of
FGFR1-3 are tyrosine, providing feasibility for the development
of selective covalent FGFR4 inhibitors.109 Pan-FGFR inhibitors that
have been approved by the FDA are erdafitinib, pemigatinib, and
infigratinib for indications including uroepithelial cancers, bile
duct cancers, or myeloid/lymphoid neoplasms.110,111 Compared to
these pan-FGFR inhibitors, selective FGFR4 inhibitors have better
manageable toxicity. FGFR4 inhibitors that have shown promising
anti-cancer activity in HCC include BLU-9931,112,113 H3B-6527,114

FGF-401,115 CXF-007,116 and BLU-554 117. Currently, phase I or
phase II clinical trials have been completed for H3B-6527, BLU-554,
and FGF-401, all of which have shown good tolerability.118 The
first-line RTK inhibitor lenvatinib also can suppress FGFRs, but, the
degree of its FGFR4 inhibition remains uncertain.

IGFR
The IGFR consist of two isoforms, IGF-1R and IGF-2R, which
together with the ligands IGF-1 and IGF-2, and the high affinity
IGF-binding protein 1-6 (IGFBP 1-6), comprise the IGF family. IGF-1
exerts its biological effects by binding to IGF-1R, whereas IGF-2
binds to IGF-1R, IGF-2R, and insulin receptor.119 Both have
prominent roles in the growth and development of the organism,
and their deficiencies lead to developmental disorders.120 Due to
shared receptors and ligands, the IGF-1R signaling cascade is also

crosstalked by the insulin/insulin receptor signaling pathway.121 In
contrast, IGF-2R is a type I transmembrane protein with no kinase
activity and does not transduce signaling. It competitively binds to
IGF-2 and enters the lysosome via endocytosis for degradation to
impair IGF-IR signaling.122 The association between the IGF family
and HCC development has been widely reported. Overexpressed
IGF-2 and IGF-1R are frequently detected in HCC tissues and
correlate with advanced stage and prognosis of HCC
patients.123–126 Interestingly, although IGF-IR has no nuclear
localization sequence and is normally localized to the cytoplasmic
membrane, it can undergo nuclear ectoposition by SUMOylation,
binding to promoter DNA of its own gene and some oncogene-
related genes, such as JUN and FAM21, to promote gene
expression.123,127,128 IGF-2R is considered to harbor tumor
suppressor gene properties due to inhibition of IGF-1R signaling
caused by competitive binding of IGF2. Besides antagonizing IGF-
1R, IGF-2R promotes the transport of lysosomal enzymes and the
tumor suppressor TGF-β1 into cells to exert inhibitory effects on
tumor development.122,129 Thus, in contrast to the overexpression
of IGF-1R in patients, the locus where the IGF-2R gene resides has
been found to have frequent loss of heterozygosity (LOH) and
reduced expression in different cancers, especially HCC.130–132

The IGF axis, due to its high relevance with tumorigenesis and
development in HCC, has emerged as a viable target for
therapeutic intervention. Considerable efforts were made to block
the IGF-1R signaling pathway at multiple levels. To date, three
primary classes of therapeutic agents have been assessed in both
animal models and clinical trials: small molecular tyrosine kinase
inhibitors, antibodies to IGF-1R, and antibodies to IGF ligands.
Additionally, alternative therapeutic strategies, including small
interfering RNAs, antisense oligonucleotides, recombinant IGFBPs,
and pregnancy-associated plasma protein-A (PAPP-A) inhibitors,
have also been explored.119 The only currently approved selective
IGF-1R inhibitor is teprotumumab, a fully humanized IGF-1R
monoclonal antibody, which is used to treat thyroid eye
disease.133 Decades of effort have gone into the development of
IGF axis-targeted drugs for indications in oncology. Unfortunately,
although some therapies targeting the IGF axis have demon-
strated potent antitumor activity and tolerability in preclinical and
early clinical trials, no drug has successfully passed phase III trials
to date.134,135 The response to targeting IGF1R as monotherapy is
limited in most cases,136 and therefore it is often used in
combination with other targeted therapies or chemotherapy,
but the results remain disappointing. For patients with HCC, the
IGF-1R inhibitor cixutumumab tested in the clinical setting showed
limited clinical benefit.137,138 Failure is often attributed to the
activation of compensatory signaling pathways, such as growth
hormone- or insulin-related pathways, in response to IGF axis
inhibition, resulting in the loss of inhibition of downstream MAPK
and PI3K-AKT-mTOR cascades.138–140 In addition, crosstalk
between IGF-1R and other receptors such as insulin receptor,
EGFR, and integrins increases the complexity of IGF axis
targeting.138,141,142 Therefore, further insight into the complex
signaling network between the IGF axis and other pro-cancer
pathways and the identification of biomarkers that predict
therapeutic response are important and urgent.

PDGF
The PDGF family encoded by four genes, PDGFA, PDGFB, PDGFC,
and PDGFD.143,144 The PDGF receptor (PDGFR) contains two
isoforms, PDGFR-α and PDGFR-β, and is a type III tyrosine kinase
protein.145–147 PDGFs are typically produced by discrete cell
populations and act as paracrine factors to regulate cellular
responses.148,149 PDGFRs are considered as an oncogenic driver,
expressed or subject to activating genetic alterations in many
types of cancer tissues, including HCC, which promote carcino-
genesis, progression, and drug resistance through the classical
MAPK and PI3K cascades.150–152 More than half of HCC patients
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have high PDGFR-α expression in their tumor tissues.153 Over-
expressed PDGFRs promote HCC progression and are significantly
associated with a worse prognosis of HCC patients.24,154 Similar to
the functions of VEGF and FGF, PDGFs also can act as a pro-
angiogenic factor in HCC tissues and has a role in inducing tumor
neovascularization 17. Upregulated PDGFR-α may be involved in
HCC development and is significantly associated with microvessel
density and vascular infiltration of tumors,154 which could serve as
a biomarker for predicting HCC metastasis and a potential
therapeutic target.155

Several currently FDA-approved HCC-targeted agents, including
lenvatinib, sorafenib, and regorafenib, have PDGFR as one of their
targets. Donafenib monotherapy, which simultaneously targets
PDGFR, VEGFR, and RAF kinases, was approved by the NMPA in
2021 as a first-line therapy for advanced HCC based on its ability
to achieve a superior OS compared with sorafenib.156 Linifanib, a
small molecule inhibitor targeting PDFGR and VEGFR, was found
to have promising antitumor activity in HCC in preclinical and
early clinical studies.157 However, it did not show superior efficacy
over sorafenib in phase III trials and failed to meet the primary
endpoint.158 Another triple angiokinase inhibitor, nintedanib,
targeting PDFGR/VEGFR/FGFR, also exhibited similar results in
clinical trials.159

Approaches to selectively inhibiting the PDGF/PDGFR axis
primarily include receptor antibodies or small molecule inhibi-
tors that block ligand-receptor interactions, neutralizing anti-
bodies or ligand traps that isolate the ligand, and blocking
PDGFR kinase domain activity.152 However, there are several
challenges to specifically targeting PDGFR signaling. PDGFR-α
and PDGFR-β, as class III RTK proteins, have greater structural
similarity to some other cell surface receptors such as FLT3, kit,
and CSF1R, as well as functional redundancy when PDGFR is
activated.152,160 Several selective PDGFR inhibitors have been
developed, including olaratumab, CP-673451, and CHMFL-
PDGFRα-159, all of which have shown significant anti-cancer
and antiangiogenic effects.161–165 One of these, olaratumab, was
tested clinically and was received accelerated approval by the
FDA for the treatment of advanced soft tissue sarcoma based on
a successful phase II result, but unfortunately did not show
similar benefit in a subsequent phase III trial.166 In addition, anti-
PDGFR-α monoclonal antibodies have been found to have anti-
proliferative and pro-apoptotic effects in multiple human and
mouse HCC cell lines.153 Inhibition of PDGF signaling to suppress
HCC progression was also found in mouse models.167 However,
there are currently no selective PDGF/PDGFR inhibitors in
clinical testing for HCC.

C-Kit
c-Kit, encoded by the KIT gene, is primarily activated by stem cell
factor (SCF).168 In normal conditions, c-Kit is abundantly expressed
in hematopoietic stem cells and is crucial for cell survival,
proliferation, and differentiation.169 The current view is that c-Kit
may play a double-edged role in the liver: on the one hand, c-Kit-
positive cells participate in tissue repair by promoting target cell
regeneration in the event of liver injury, but on the other hand, the
overexpression or mutation of c-Kit as a proto-oncogene
contributes to the development of HCC.170 An important
contributor to heterogeneity in HCC is liver cancer stem/progenitor
cells (LCSCs), implicated in drug resistance and tumor recur-
rence.171 c-Kit receptor serves as a marker for LCSCs, and its
overexpression promotes the transformation of hepatic stem/
progenitor cells into LCSCs.172–174 In HCC driven by HBV or HCV,
c-Kit plays a mediating role. PreS1 protein of HBV and core proteins
of HCV induce LCSC production and self-renewal of tumor cells by
stimulating c-Kit expression, accelerating HCC onset and progres-
sion.175–177 Aberrant crosstalk exists between SCF/c-Kit and other
pro-cancer pathways like TGF-β/SMAD2, forming positive feedback
loops promoting malignant cell proliferation and invasion.178

The first targeted drug approved for the treatment of cancer,
imatinib, has c-kit as one of its targets. Unfortunately, clinical trials
of imatinib in HCC have all failed.179,180 Many inhibitors targeting
c-Kit mutations have been approved, but the vast majority are
multi-targeted kinase inhibitors.181 One of the targets of the
current first-line targeted agents sorafenib and lenvatinib and the
second-line therapies regorafenib and cabozantinib in the
treatment of HCC includes c-Kit. Another tyrosine kinase inhibitor,
anlotinib, which takes c-Kit as one of its targets, has shown
promising efficacy and a tolerable safety profile in clinical studies.
In a multicenter, phase II study enrolling patients with advanced
HCC, anlotinib in combination with the PD-1 inhibitor toripalimab
as first-line treatment achieved an ORR of 32% and a median
survival of 18.2 months.182 Another phase II studies found that
anlotinib monotherapy resulted in promising benefits as first- or
second-line treatment in advanced HCC,183 while the combination
of chemotherapy did not provide additional efficacy.184 Several
real-world studies have also confirmed the efficacy of anlotinib in
patients with HCC.185,186 Multiple Phase III clinical trials are
currently testing the efficacy of anlotinib in HCC patients in
different clinical settings (NCT05862337, NCT04344158,
NCT05344924, NCT04665609, NCT03950518). However, anlotinib
also targets some other RTKs, and the effect of selective c-Kit
inhibitors on HCC has been less well-studied.

RET
RET is identified in 1985 during the transfection of mouse NIH-3T3
cells with human T-cell lymphoma.187 In the normal body, RET has
a crucial role in embryonic kidney and neural development.188,189

RET is considered a proto-oncogenic driver gene, and RET fusion is
the alteration of great interest, whereby the RET gene breaks and
recombines with another gene to form a new gene, thus
possessing the ability to self-phosphorylate for sustained activa-
tion, frequently occurring in thyroid cancer and NSCLC.190

Treatment of EGFR or KRAS inhibitors may induce acquired RET
fusions, contributing to resistance to targeted therapy.191,192 RET
alterations are rare in HCC patients with a frequency of less than
1%.193,194 Data from TCGA suggest that RET expression is
significantly downregulated in HCC tissues compared to adjacent
tissues.195 Currently, the mechanism of RET signaling in the
occurrence and development of HCC has been less reported.
The first-line drug lenvatinib and the second-line drugs

cabozantinib and regorafenib, used for advanced HCC treatment,
target RET among other pathways. FDA-approved selective RET
inhibitors, pralsetinib and selpercatinib, are indicated for meta-
static RET fusion-positive NSCLC and medullary thyroid cancer,
with selpercatinib additionally approved for other advanced RET
fusion-positive solid tumors.196,197 However, the multicancer
indication for selpercatinib was based on a phase I/II trial
excluding HCC patients.190 Although lacking preclinical and
clinical data in HCC, the success in thyroid and lung cancers
prompts exploration of RET inhibitor efficacy in HCC, necessitating
patient selection criteria.

MAPK pathway
The MAPK pathway is one of the most important signaling
pathways underlying life-sustaining activities in eukaryotes, which
is frequently altered in a wide range of diseases.198 Four different
MAPK cascades have been identified, namely the extracellular
signal regulated kinase 1/2 (ERK1/2), Jun amino terminal kinases
(JNK), p38 MAPK, and BMK1 cascades. ERK1/2 is the most classical
and well-studied key MAPK signaling pathway, which is activated
mainly by signals transmitted through cell surface transmembrane
receptors such as RTKs or G protein-coupled receptors.198,199

Almost all growth factor signals depend on the activation of ERK
to complete the signaling process, thus ERK is a ubiquitous
signaling pathway in the human body. Ras, Raf, MEK and ERK
proteins are key components of this pathway, and abnormal
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function of any one of them may lead to serious consequences.
Since ERK plays an important role in key cellular functions, its
aberrant activation is closely linked to the development of
malignant lesions. The upstream activating protein of the ERK
pathway, RAS is a frequent driver mutation in human cancers, with
approximately 19% of cancer patients harboring mutations in the
RAS gene.200,201 Aberrant activation of the MAPK pathway is
present in about half of patients with early-stage HCC, and high
expression of ERK signaling is detected in almost all patients at
advanced stages.202–204 Activated MAPK signaling is significantly
associated with poorer prognosis and metastasis in HCC
patients.205,206

Inhibitors targeting the MAPK pathway are a hot topic in
antitumor drug development and have great potential for clinical
application. Almost all of the currently approved RTK-targeted
agents in the HCC could affect downstream activation of the
MAPK pathway. One of the targets of both sorafenib and
regorafenib includes the RAF protein. A number of selective
inhibitors have been developed that target components of the
MAPK pathway, focusing on two key kinases, MEK and ERK. The
first MEK inhibitor to enter clinical testing was CI-1040 (also known
as PD184352), which targets MEK1/2. Although CI-1040 in
combination with sorafenib was found to have a superior
antitumor effect compared to sorafenib alone in a xenograft
HCC model,207 it displayed insufficient antitumor activity in a
phase 2 clinical study in solid tumors,208 which may be due to its
low exposure resulting from its fast clearance rate and poor
solubility. Several second-generation selective MEK inhibitors have
subsequently been developed, which has led to the approval of
the selective MEK1/2 inhibitors trametinib, cobimetinib, selume-
tinib, and binimetinib. In addition, three RAF inhibitors, vemur-
afenib, dabrafenib, encorafenib, and two KRASG12C inhibitors,
sotorasib and adagrasib, have also become available in recent
years.209 Although none of their current indications include HCC,
promising antitumor activity in HCC has been demonstrated in
several preclinical and early clinical trials, either as a monotherapy
or in conjunction with other targeted agents.210–214 For instance, a
phase II clinical trial found that the MEK1/2 inhibitor refametinib in
combination with sorafenib demonstrated potential synergistic
effects in HCC patients with Ras mutations.215 Although therapies
targeting the MAPK pathway have made encouraging progress,
they are highly susceptible to drug resistance. The therapeutic
effect is often short-lived and difficult to achieve complete tumor
regression.216 Activating mutations of key components under
drug stress, mobilization of independent alternative pathways,
and feedback upregulation of the number of targeted proteins
can all lead to resistance to MAPK pathway-related inhibitors.217

Several coping strategies have been proposed, including rational
combinations (such as MEK plus BRAF inhibitors) and optimization
of the drug’s structure (such as the second-generation RAF
inhibitors PLX-8394, TAK-580, BGB-283).217 However, it remains
difficult to overcome the primary or acquired resistance that
almost inevitably occurs. In addition, attention should be drawn to
the issue that in cells with wild-type BRAF, RAF inhibitors may
transactivate ERK signaling resulting in toxicity and drug
resistance.218 The low occurrence of BRAF V600 mutations in
HCC targeted by vemurafenib, dabrafenib, and encorafenib also
limits their application value.

PI3K-AKT pathway
PI3K-AKT has been broadly characterized to be a critical and
ubiquitous pathway in regulating the cell cycle. PI3K was
discovered to phosphorylate phosphatidylinositol lipids and to
act as downstream of RTKs and insulin signaling.219,220 PI3K-AKT-
mTOR has been found constitutively activated in cancer and acts
as oncogenic pathway, regulating cell cycle, survival, metabolism,
motility and angiogenesis in cancers.221,222 In HCC, activation of
PI3K-AKT-mTOR signaling is found in about 50% cases, which is

involved in upregulation of EGFR, PI3K, AKT and mTORC1,223–228

while the key suppressor of the PI3K/AKT cascade such as TSC1/2
and PTEN were found with loss-of function mutation or reduced
expression in HCC.229 Activation of PI3K-AKT-mTOR signaling by
overexpression of AKT or knockout of Pten/Tsc1/2 were validated
to induce HCC hepatocarcinogenesis in mouse models,230 power-
fully validating the oncogenic roles of this signaling. PIK3C3 is
required to the cancer stem cells (CSCs) growth and activity.231

Hepatic mTORC2 facilitates hepatosteatosis via de novo fatty acid
and lipid synthesis in HCC.232 While long-term inhibition of
mTORC1 promotes HCC development through promoting IL-6/
STAT3 pathway in a murine model of obesity,233 which indicates
the complex function of mTORC1 in HCC might relates to the
etiology. In addition to the initiation of HCC, PI3K-AKT pathways
have been broadly investigated to facilitate HCC progression via
metabolic reprogramming, such as glucose metabolism, lipid
metabolism, amino acid metabolism, pyrimidine metabolism, and
oxidative metabolism.234 HCC patients with altered PI3K-AKT-
mTOR signaling showed the activation of asparagine synthetase
(ASNS), glycolysis, and the pentose phosphate pathway.235 The
significant tumor-promoting roles of PI3K-AKT signaling were
substantially demonstrated as above, so the anti-tumor effect by
suppression of this pathway has been frequently clarified in HCC,
and several agents were under the investigation of clinical
trials.230

Several selective inhibitors targeting PI3K-AKT-mTOR cascade
have progressed in phase II studies for the treatment of liver
cancer, of which the outcome is inconsistent and with significant
adverse effects. Copanlisib, a specific PI3K inhibitor, was evaluated
in cancer patients with activating mutation of PI3K in a phase II
clinical study (NCT02465060).236 Another phase II study evaluated
the efficacy of an allosteric AKT inhibitor, MK-2206, in advanced
biliary cancer (NCT01239355).237 While the two trials showing
discouraging results with limited efficacy and severe adverse
effects.236,237 Though a phase I/II study failed to exhibit effective-
ness of single RAD001 (everolimus) targeting mTOR for treating
patients with advanced HCC (NCT00516165), another mTOR
inhibitor sirolimus (rapamycin) was encouragingly demonstrated
to improve the survival of HCC patients in 2 phase II studies.238 An
orally administrated mTOR inhibitor, ATG-008 (CC-223) was tested
in HBV-positive HCC in a phase II trial (NCT03591965), while
terminated based on strategy development. An ATP-competitive
mTOR kinase inhibitor AZD8055, has undergone an evaluation of
its safety, tolerability, pharmacokinetics, and preliminary efficacy
in a phase I/II study, (NCT00999882).239 Several clinical trials are
ongoing to explore drug combinations of inhibitors targeting
PI3K-AKT-mTOR signaling cascade.230,240 The combination treat-
ment of rapamycin with bevacizumab demonstrated complete
response (CR) in 1 case, PR in 2 cases, and stable states of the
disease in 14 cases out of 20 evaluable HCC patients in a phase I
study (NCT00467194).241 A single-arm phase II trial exploited the
inhibition of mTOR with temsirolimus along with sorafenib’s
effects on HCC,242 showing on improvement in overall survival
compared with the treatment of single sorafenib (NCT01687673).
Overall, therapies targeting this pathway alone or connectionally
showing promising anti-HCC potential in clinical assessment, but it
still requires further investigation to improve the clinical response
and avoid toxicities and adverse effects.
Except for the limited agents under clinical assessment, the

preclinical research of other agents targeting this signal axis is
continuously attracting attention. These agents include potent
PI3K inhibitors (LY294002, DZW-310,243 740Y-P,244 copanlisib245)
and AKT inhibitors (MK2206, AKT inhibitor VIII).246,247 These
agents elicited consistent anti-tumor effectiveness such as
proliferation inhibition and apoptosis induction in HCC
cells.230,248,249 Other unselective agents have also found to inhibit
HCC.230,250 For example, celecoxib, a non-steroidal anti-inflam-
matory drug, targets the cyclooxygenase 2 (COX-2)/AKT pathway
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and was sufficient to inhibit the progress of HCC by inhibiting
lipogenesis.250

Activation of PI3K/AKT/mTOR signaling also associates with
sorafenib resistance in HCC,251 providing the rationale for the
combination of targeting PI3K/AKT/mTOR cascade with sorafenib.
For instance, PI3K inhibitor copanlisib exhibits synergistically anti-
tumor effectiveness to sorafenib in HCC treatment,245 the
synergistic effectiveness was also observed in the treatment with
lenvatinib.248

JAK-STAT pathway
JAK-STAT pathway is an evolutionarily conserved signaling
transduction pathway and functions in cell proliferation and
survival, modulation of the immune response, as well as
angiogenesis and metabolism.252–254 Nearly 60 cytokines includ-
ing various interleukins, growth factors and colony-stimulating
factors (CSFs) act as ligand to activate this pathway.252 Upon
binding to the receptor, JAKs activate STATs by phosphorylation,
which provokes STATs dimerization and subsequent translocation
to the nucleus where they stimulate the transcription of specific
target genes responsible for immune system development,
immune regulation and hematopoiesis.253,254 The vital role of
JAK-STAT pathway is well-known pivotal to neoplastic disorders
including hematopoietic and solid cancers.252 Several studies
affirm aberrant activation of this pathway and its promotion of
malignant phenotypes in HCC via different mechanisms. Actually,
STAT3 was indicated to be constitutively active in nearly 60% of
the HCC cases.255 Activation of STAT3 causes the transcriptional
expression of genes associated with the diverse hallmarks of
cancer, like Cyclin D in cell cycle, VEGF in angiogenesis, and IL-10
in immunosuppression, indicating the crucial roles of STAT3 in
HCC.256 In 9% of HBV-related HCC cases, missense mutations in
JAK1 were found and led to activation of JAK1 and STAT3,
allowing cytokine-independent growth.257 In contrast, the nega-
tive regulators of the JAK/STAT pathway, CIS, SOCS1 and SOCS3
were found frequently downregulated or lost in HCC, thus
resulting in continuous activation of the pathway and HCC
progression.258–262 The diversity of ligands and receptors, as well
as JAKs and STATs can activate the JAK-STAT pathway, which
contributes to its complexity and various cellular responses in
cancers. Namely, STAT5A/B act as protumor factors like STAT3,
while STAT1 and STAT2 present antiproliferative effects in HCC
both in vitro and in vivo.263–265

As an essential immune-regulated pathway, interferon-alfa (IFN-
α) mediated JAK-STAT signaling induces various target genes with
antiviral and immunomodulatory functions, based on which IFN-α
was used to drive host antiviral responses as the current first-line
therapy for chronic hepatitis B and has been confirmed to slow
the progression of liver fibrosis and even the emergence of
HCC,266 indicating the promising characteristics of this pathway in
HCC therapy. Actually, kinds of JAK/STAT inhibitors have been
examined for their clinical significance in diverse cancers,
including HCC, mainly focused on JAK and STAT3 inhibitors.
As the upstream of this signaling axis, JAKs function as a feasible

target to curb the downstream effects. WP1066,267,268 pacriti-
nib,269,270 common JAK inhibitors like cryptotanishinone and
ruxolitinib are being studied in human diseases. However, these
compounds are still in preclinical stages for HCC treatment.271–273

For example, WP1066 has been demonstrated to inhibit MMPs and
counteract the activity of UCK2, which suppressed the migration
and invasion abilities of HCC cell lines.274

STAT3 can be directly suppressed by small molecule
compounds like static,275 OPB-111077,276 OPB-31121,277 napa-
bucasin 278, and siRNA (AZD9150).279 OPB-111077 was well
tolerated overall while showed limited efficacy in sorafenib-
refractory HCC patients.276 OPB-31121 in a phase I research of
advanced solid tumors (NCT00657176) and HCC
(NCT01406574)277,280 showed limited antitumor efficacy with

toxic side effects. A phase Ib/II clinical trial is evaluating
napabucasin in combination with sorafenib for HCC
(NCT02279719). Another Phase III trial is also underway for the
combination of napabucasin and paclitaxel in gastric and
gastroesophageal junction cancers (NCT02178956).278 Unlike
small molecule inhibitors, AZD9150 is a siRNA targeting STAT3,
showing clinically valuable antitumor activity and can be
regarded as a safe treatment for diffuse large B-cell lym-
phoma.281 A phase I study showed that AZD9150 was well
tolerated with mild and a few serious adverse events
(NCT01839604) in HCC.279 Nevertheless, further studies are
required to illuminate its clinical efficacy. Some agents showed
therapeutic effect by indirectly targeting STAT1. An example is
acyclic retinoid acts synergistically with IFNs in suppressing the
proliferation of HCC cells in vitro by increased expression and
DNA-binding activity of STAT1.282

Altogether, these studies reveal the potential of targeting the
JAK/STAT pathway in HCC. While clinical research on these
inhibitors are still in the initial phases for HCC and adverse effect
need attentions. The beneficial effects observed in other tumor
types offer indications of potential clinical efficacy for HCC
likewise.
Although the frequency of mutations in RTKs is not high, they

were detected to be overexpressed in HCC tissues of most
patients and are closely associated with malignant biological
behaviors such as tumor angiogenesis, proliferation, invasion,
metastasis, and drug resistance. Therefore, most RTKs genes are
considered as oncogenic driver genes. A series of tyrosine kinase
inhibitors and antibody-based agents have been developed and
tested as shown in Fig. 2.

Other pathways in HCC
Beyond the frequently altered and therapeutically targeted RTK
pathways in HCC. Pathways in cell differentiation such as Wnt/
β-catenin, Hippo, Hedgehog and Notch are especially important
for liver tissue homeostasis, and closely correlates to liver disease
including HCC. Here, we review the main dysregulated signaling
pathways with therapeutic advances in HCC (Table 2).

TGF-β signaling
The transforming growth factor (TGF-β) family is the most diverse
and far-reaching family of cytokines in the human body and is
expressed in almost all types of tissues and cell types.283 This
superfamily consists of 33 multifunctional factors, and TGF-β
isoforms (I-3) are the typical members, with TGF-β1 being the
most abundant and well-studied.284 Three isoforms of the TGF-β
receptor exist, types I, II, and III, the first two being single
transmembrane glycoproteins with serine/threonine kinase activity,
and the latter being proteoglycan with no kinase activity.285 TGF-β
is a major player in tumorigenesis. It has a well-known dual effect in
cancer and is no exception for HCC.286 For normal tissues, TGF-β
signaling inhibits cell proliferation and induces apoptosis or
differentiation by blocking cells at the G1 phase or prolonging
the G1 phase, thus acting as a tumor suppressor in precancerous
cells.285 In the early stages of carcinogenesis, TGF-β inhibits
tumorigenic inflammation or triggers apoptosis in precancerous
progenitor cells carrying RAS mutations. As tumors progress to
advanced stages, TGF-β signaling gradually exhibits pro-
tumorigenic effects such as induction of immunosuppressive
microenvironment, EMT, and promotion of angiogenesis.283 In
HCC, downregulation of the TGF-β signaling pathway may imply
loss of cancer suppressive activity, while upregulation leads to
fibrosis and inflammation.287 Nearly 40% of HCC patients have
somatic mutations in at least one member of the TGF-β pathway.287

Increasing preclinical and clinical evidence suggests that TGF-β
signaling activation in established anti-cancer therapies such as
targeted therapies, chemotherapy, and radiation is a driver of drug
resistance,288,289 involving multiple mechanisms such as induction
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of EMT, metabolic reprogramming, activation of alternative
pathways, promotion of an immune-suppressive microenviron-
ment, induction of a stem cell-like phenotype, and promotion of
drug uptake and efflux.290,291 Therefore, the prevailing view is that
therapies combining TGF-β signaling inhibitors with other anti-
tumor therapies is a promising strategy that not only inhibits
advanced tumor progression but also reverses treatment resis-
tance. However, TGF-β receptors and their ligands are widely
distributed in vivo, so potential systemic cytotoxicity is a major
obstacle. Currently, the only FDA-approved TGF-β inhibitor,
liuspatercept, is indicated for anemia in adults with Myelodys-
plastic Syndromes (MDS). For HCC, a small molecule inhibitor
targeting TGFβR1, galunisertib, in combination with sorafenib as
first-line therapy for advanced patients has demonstrated a
manageable safety profile and improved OS.292 The combination
of galunisertib with stereotactic body radiotherapy demonstrated

tolerable toxicity in a pilot study.187 However, galunisertib did not
show sensitization to VEGFR inhibitors in HCC patients as shown in
preclinical studies.293 In addition, a neutralizing antibody, NIS793,
was recently tested for safety in advanced malignancies, including
HCC, supporting the further exploration.294 A phase III trial was
recently initiated to test the efficacy and safety of livmoniplimab, a
humanized monoclonal antibody against the LRRC32/TGF β 1
complex, in combination with a PD-1 inhibitor in advanced HCC
(NCT06109272). Considering the dual role of TGF-β in tumors,
targeting the TGF-β pathway may only be effective in specific HCC
patients, thus identification of biomarkers is warranted. For
example, previous studies have found that upregulation of
SMAD7, CLTC, and CXCR4 is associated with the pro-
carcinogenic profile of TGF-β, and it may be worthwhile to further
test whether clusters with high expression of these genes are
more likely to respond to TGF-β inhibitors.295
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Wnt/β-catenin signaling
Without the presence of extracellular Wnt ligands, the canonical
Wnt signaling is inactive. β-catenin is located in adherent
junctions and cytoplasm of the cell, where it becomes
phosphorylated by the destruction complex (containing adeno-
matous polyposis coli protein (APC), Axin, casein kinase I
isoform-α (CKIα) and glycogen synthase kinase 3 β (GSK3β)
and targeted for ubiquitylation and proteasomal degradation.
Wnt signaling is tightly regulated intracellularly by the canonical
molecules in this pathway mentioned above. It is also
modulated by extracellular antagonists and inhibitors, such as
Wnt inhibitory factor 1, Dickkopf-related proteins (DKKs), and
other novel potential regulators.296 Here, we focused on the role
of Wnt/ β-catenin in HCC. Wnt-β-catenin signaling is commonly
overactive in HCC. 20–35% of HCCs have genetic mutations and/
or aberrant activations of key genes involved in this cascade.297

Human HCCs with aberrant Wnt/ β-catenin activation present
distinct clinical, pathological, and molecular characteristics. The
gain-of-function mutations of CTNNB1 occurred in HCCs with
HCV (28%),298,299 alcohol (42%) 70 and non-cirrhotic liver in the
absence of common risk factors of HCC.300 While AXIN1 is more
frequently mutated in HBV-related HCCs (18%) than in HCV-
related or non-viral HCCs (14% and 8%, respectively).299

Mutations of Wnt/β-catenin were more often identified to be
associated with nonproliferation subgroups of HCC but also
found in proliferation group.300

Wnt-β-catenin has been connected to HCC stemness, progres-
sion, metastasis and drug resistance. As an illustration, elevated
activity of β-catenin prominently leads to proliferation, self-
renewal and in vivo hepatocarcinogenesis of CSCs in HCC.301–303

In transgenic mice models, activation of Wnt/ β-catenin was
found to induce HCC formation when cooperated with other-
oncogenic signaling such as activated c-Met,304–306 K-Ras,307

Akt,308 LKB1,309 and Nrf2310. Co-expression of these oncogenes
and activation of Wnt/ β-catenin were also found in human HCC
tissues.83,304,310 The Wnt/β-catenin axis exerts crucial effects in
HCC through regulating the downstream target genes. β-catenin
induced c-MYC expression311,312 is implicated in gankyrin-driven
glycolysis, glutaminolysis313 and sorafenib responsiveness in
human HCC.314 Another direct target of this signaling, cyclin
D1, was frequently found to be upregulated by activation of Wnt-
β-catenin in mouse and human HCC.315,316 The interlinked and
feedback mechanisms between cyclin D1 and Wnt-β-catenin
were involved in hepatocarcinogenesis and HCC metastasis.300,317

Other target genes of Wnt/β-catenin such as glutamine synthe-
tase (GS)318,319 and KIF2C320 were found to link with mTOR
cascade and promote HCC growth.321,322 Activation of Wnt/
β-catenin has also been linked to resistance against Lenvatinib,
sorafenib and regorafenib in HCC patients.302,323,324 Above all, the
activities of the Wnt/ β-catenin cascade during hepatocarcino-
genesis have not been clearly characterized and need further
investigation.
Porcupine (PORCN) is an O-acyltransferase indispensable for

Wnt ligand secretion,325 whose inhibitor CGX1321 is tested in
patients with advanced solid tumors, like HCC and CCA
(NCT02675946, NCT03507998). OMP-54F28, which binds Wnt
ligands competing with native Frizzled 8, was assessed in a
phase I study in combination with sorafenib in HCC patients
(NCT02069145). Dickkopf-1 (DKK1) is known as an extracellular
antagonist of Wnt,326,327 thus inhibition of DKK1 can suppress
β-catenin signaling. DKN-01, a DKK1-neutralizing monoclonal
antibody is being evaluated in a phase I trial in combination
with gemcitabine and cisplatin in patients with CCA or
gallbladder cancer (NCT02375880), but did not show additional
activity beyond gemicitabine/cisplatin alone, which may be due
to heterogeneity of differential activity for DKN-01 to different
DKK1 expression or the need for increased dose/intensity.328

Whereas the effect of DKN-01 in HCC keeps unknown.

Niclosamide is a FDA-approved drug and was used to treat
taeniasis, showing inhibiting effect on tumors proliferation,
stemness and metastasis with limited toxicity in other can-
cers,329,330 providing hopeful optimism for human HCC therapy.
Besides, kinds of common drugs in clinic, such as vitamin D and
retinoic acid, have been reported to block the interaction of
β-catenin with TCF, NSAIDs, such as aspirin and sulindac, have
been proved to strengthen the degradation of β-catenin, showing
promising potential in preclinical and clinical settings for liver
cancer including HCC therapy.297

The majority of agents targeting Wnt-β-catenin axis have been
evaluating in preclinical studies, providing the rationale for clinical
assessment. Kinds of inhibitors showed growth suppressive effect
in HCC, including PORCN inhibitors (LGK-974, ETC-159),331 fungal
derivatives (PKF115-854 and CGP0449090),332,333 TNKS inhibitor
XAV939.334 Interfering RNA– or antisense RNA–based therapy
constitutes another method to suppress the Wnt/β-catenin
pathway, showing suppressive effect to HCC in vitro335,336 and
in mouse models.307,337

In summary, preclinical studies have assessed the therapeutic
prospect of targeting this pathway against cancers, including
HCCs. The clinical development of these agents has been rather
restricted to date. Therefore, the therapeutic effects for targeting
Wnt-β-catenin pathway remain elusive.

Hedgehog signaling
Hedgehog (Hh) signaling regulates cell proliferation, differentia-
tion, tissue homeostasis, and carcinogenesis.338,339 It is com-
posed of the Hedgehog ligand, nuclear transcription factors and
two transmembrane protein receptors, Patched-1 (Ptch1) and
Smoothened (Smo).340 In humans, there are three types of
Hedgehog ligands: Sonic Hedgehog (Shh), Indian Hedgehog
(Ihh) and Desert Hedgehog (Dhh), which are disparate in the
timing of expression, spatial distribution and action character-
istics.341,342 The role and mechanism for Shh is the most
studied.342 When Hedgehog ligands are absent, a Glioma-
associated oncogene (Gli) is phosphorylated343–347 and then
undergoes proteolytic cleavage, generating Gli repressor
(GliR).345 GliR binds to the promoters of Hedgehog target genes
and represses their transcription. When Hedgehog ligands bind
with the receptors, the canonical Hedgehog signaling pathway
is activated.338 The binding of Hedgehog ligands to Ptch
alleviates the restraint of Smo by the receptor protein, resulting
in the movement of Smo to primary cilium (PC).338,348,349 The
existence of Smo in PC hinders phosphorylation and proteolytic
cleavage of Gli, avoiding the generation of GliR. Thus, the
promoters of Hedgehog target genes are available to transcrip-
tion. Hedgehog signaling pathways are widely investigated to
crosstalk with the Notch during cell development in various
systems and in cancer biology.350

The activation and oncogenic effect of Hh signaling were
investigated in multiple levels of HCC cell lines, mice models and
clinical samples. The increased levels of Shh and its target genes
like Ptch, smo and Gli were detected in human HCC tissues and
HCC cell lines, suggesting activation of Hedgehog Signaling in
human HCC.351–355 In detail, Shh is overly expressed in approxi-
mately 60% of human HCC, Ptch1 and Gli1 are expressed in over
50% of the tumor.355–358 Hepatic activated Hh signaling led to
hepatic fibrosis and hepatocarcinogenesis.357,359 Hedgehog path-
way inhibition reduce HCC growth in cell lines and mouse
models.353,360 Shh signaling pathway provokes cell migration and
invasion of HCC cell through Shh and Gli1.361,362 Above all,
activation of Hh signaling is oncogenic in HCC. Given its
participation in the initiation and development of HCC, Hh
targeted therapies could be a hopeful strategy to fight
against HCC.
Targeting Gli with arsenic trioxide (ATO) in has been assessed in

phase II clinical trials in treating patients with metastatic liver
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cancer (NCT00128596), and advanced primary carcinoma of the
liver (NCT00582400). A Smo inhibitor vismodegib, was assessed in
phase I clinical trial includes patients with HCC (NCT01546519).
However, the causal relationship between vismodegib exposure
and serious adverse events are ascertain due to the high number
of patients with advanced HCC with cirrhosis.363 Sonidegib is a
Hedgehog pathway inhibitor approved for treatment of laBCC (US,
EU, Switzerland, and Australia) and metastatic BCC (mBCC;
Switzerland and Australia).364 While in HCC, it remained in phase
I clinical stage (NCT02151864) with unpublished results. Thus, the
clinical effectiveness of Hedgehog signaling remains unclear.
Preclinical studies targeting the Hedgehog signaling pathway

mainly concentrate on suppressing the activity of Smo. Except
vismodegib in clinical assessment, cyclopamine is also a smo
inhibitor, which can increase apoptosis and inhibted cells growth
and proliferation in diverse HCC cell lines like Hep3B and
Huh7.352,355,365–367 The anti-tumor effects and impact on drug
resistance of various agents targeting Gli have also been assessed.
GANT61 is a selective small molecular inhibitor of Gli1 and Gli2-
mediated transactivation, displaying anti-tumor effect on cell
viability, proliferation and migration in HCC cell lines in vitro and
growth in xenograft model, as well as the drug resistance of
CD44+ HCC patient derived organoids.368–372 Another study
showed that Bufalin (Bu), one of the topoisomerase II inhibitors,
affecting the expression of Gli1 and Gli3 and exhibits consistent
inhibitory effect in Huh7, Hep3B and HepG2 cells.373 Inhibition of
Gli by RNAi can also effectively reverse sorafenib, 5-FU,
doxorubicin, and cisplatin resistance in HCC cell lines.369 A
previous study generated a polymeric nanoparticle-encapsulated
Gli inhibitor HPI-1 (NanoHHI) and demonstrated its tumor growth
inhibition and antimetastatic effects in an orthotopic model of
human HCC.374 Some drugs originally intended for other path-
ways and diseases have also been found to inhibit the Hh
pathway. They can act as unselective inhibitors of the hedgehog
pathway and exerts anti-tumor effects in HCC, including ITCZ,375

Taccalonolide A,376 human sulfatase 2 inhibitor 2,4-disulfonylphe-
nyl-tert-butylnitrone (OKN-007).377

HIPPO/YAP signaling
Hippo signaling was firstly recognized as a crucial determinant for
organ size,378 emerging as a vital player in liver biology, such as
liver development, cell fate determination, homeostasis and
regeneration from injury.379 The cascade is initiated by neurofi-
bromatosis 2 (NF2) and kidney and brain expressed protein
(KIBRA) when transmembrane receptors transduce signals to
them. The canonical Hippo signaling pathway acts to suppress the
activity of YAP/TAZ. When the Hippo pathway is inactivate, the
abolition of YAP phosphorylation by MST1/2 enables YAP to
translocate into the nucleus, subsequently interacting with the
transcription factor TEAD to mediate the target genes expression
such as RUNXs, SMAD, PPARG.379 Hippo/YAP signaling exerts a
deep impact on the physiopathology of liver diseases including
hepatic malignancies. In HCC, Hippo signaling is involved in
various oncogenic effects such as cell proliferation and apoptosis,
cell cycle and differentiation. YAP activation is an early occurence
in HCC development. Genomic amplification of the genomic locus
which contains the YAP gene (11q22) is found in 5–10% of HCC,380

and increased YAP activity is found in 65–85% of HCC.381,382

Activation of YAP is associated with more aggressive subtypes of
HCC and is an independent prognostic marker in HCC.383–385

Activation of Hippo acts as tumor suppressor, while YAP/TAZ
activity has shown to promote carcinogenesis in HCC. For
instance, Nf2-deletion, hepatic inactivation of HPO1/2 lead to
generation of HCCs, iCCAs (intrahepatic cholangiocarcinomas),
and mixed hepatocellular cholangiocarcinomas.386–389 Both YAP
and TAZ are required for c-Met/sgAxin1-dependent hepatocarci-
nogenesis using conditional knockout (KO) mice.390 Ablation of
TAZ completely prevented c-MYC-induced hepatocarcinogenesis

in knockout mice.391 Multiple regulators participate in the
oncogenic activity of YAP in HCC, such as NUAK2,392 Notch
signaling,393 Ccl2 related immune regulation.394,395 Other signal-
ings can interact with Hippo pathway to promote HCC, such as
Notch pathway, EGFR signals, AKT pathway and
DDR1 signaling396–399

Considering the oncogenic roles of YAP in liver cancer and
other disease, it is attractive to develop inhibitors targeting YAP.
However, the currently developed selective YAP activity inhibitors
were clinically evaluated in other cancers such as non-small cell
lung cancer and gastric cancer rather than HCC.391 Several agents
target other pathways were found indirectly regulate Hippo/YAP
signaling and against HCC, such as Statins (fluvastatin and
simvastatin),400 Salvianolic acid B (Sal B)401 and Tankyrase inhibitor
G007-LK.390 However, above unselective agents may exist
potential off-target toxicity. More selective strategies have been
developed to decrease potential off-target effects. For example,
NUAK2 has been identified as a critical downstream target of YAP
during liver tumorigenesis, and pharmacological inhibition of
NUAK2 suppressed YAP-driven tumor growth in vivo.402 NIBR-LTSi,
a selective small-molecule LATS kinase inhibitor was characterized
to activate YAP signaling and blocks differentiation in vitro and
in vivo, also accelerate liver regeneration following extended
hepatectomy in mice,403 suggesting a clinical potential after
resection therapy for HCC. However, the adverse effect due to the
off-target effect and the risk for promoting proliferation of HCC
cells need further investigations. A phase I clinical trial of
assessment for IK-930, an oral TEAD inhibitor targeting the Hippo
pathway in advanced solid tumors was ongoing (NCT05228015).
Above all, the clinical assessment of agents targeting Hippo
signaling in HCC is lacked and the off-target effects requires great
attention.

Notch signaling
The mechanisms of the canonical and non-canonical Notch
signaling pathways have been reviewed previously.404,405 Briefly,
Notch signaling is initiated through the binding between a
transmembrane receptor and a membrane-spanning ligand on
adjacent cells. The major components and distinct steps in the
Notch pathway have been widely investigated and are summar-
ized briefly (Fig. 3e). Non-canonical Notch signaling can be started
by a non-canonical ligand, or in the absence of a ligand, or may
not need cleavage of the Notch receptor, or interactions with
other cytoplasmic or cytosolic effectors.406,407 In addition, Notch
signaling crosstalks with others like NF-κB, mTORC, TGF-β, AKT,
Wnt, or Hippo to modulate target gene transcriptions.408–412

Notch pathway can function as both carcinogens and tumor
suppressors depending on the context of cancers and cell
populations. Abnormal activation of wild-type Notch signaling
and its role in carcinogenesis and progression can be observed in
HCC413 and other aggressive tumors.414–416 The oncogenic
function of activated Notch signaling were more frequently found
in HCC.417–419 Notch signaling is overactivated in human HCC and
mouse HCC models, downregulation of Notch1/Jagged1 signaling
attenuated HCC progression in mice.420,421 Notch signaling also
promotes stemness, poor differentiation, epithelial-mesenchymal
transition and tumor metastasis in HCC.422,423 Notably, inhibiting
Notch activity using DAPT causes the differentiation of HCC CSCs
into functional hepatocytes via mesenchymal–epithelial transition,
indicating that targeting Notch in CSCs may be applied as
differentiation therapy for HCC.424 Similarly, blocking canonical
Notch signaling or treatment with the anti-Notch2 antibody in
AKT/Ras mice led to the development of well-differentiated HCC
and loss of intrahepatic cholangiocarcinomas-like lesions.425,426

Nevertheless, pan-Notch blockade in the triple-knockout mice
by using of DAPT resulted in accelerated HCC development and
higher expressions of Notch-related genes, thereby supporting a
tumor-suppressive role for Notch signaling in HCC.424 Recent work
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indicates that a portion of the tumor-suppressive role of Notch in
HCC might not be cell autonomous, and could be associated with
crosstalk with Wnt in liver specific tumor-associated macrophages
(TAMs).427

In general, considering the crucial role of Notch in HCC and
blockade of the Notch signaling exhibits alleviated effect in HCC
progression, it keeps potential to explore clinical therapeutic
effectiveness of targeting Notch signaling in HCC. Diverse classes
of Notch-targeting therapeutics have been developed during the
past decade, and several agents have been evaluated in clinical
trials. Here we sum up the most recent efforts in drug discovery
and development targeting Notch signaling in HCC. Present
targeted strategies in the clinic mainly converge on modulating γ-
secretase and blocking ligand-receptor interaction via related
monoclonal antibodies.428 γ-secretase inhibitors (GSIs) were the
first and most extensively studied small molecule Notch inhibitors,
which were initially developed for Alzheimer disease (AD),429 then
were used as anti-tumor agents due to the target of Notch
signaling.430 Nirogacestat was approved in the USA for use in

adult patients with progressing desmoid tumors who require
systemic treatment. However, no clinical advance in HCC.431

γ-Secretase modulators (GSMs) are small molecules that keep
part of Notch signaling function by modifying the catalytic activity
of γ-secretase.432 Ginsenoside (Rg3), a natural product from Panax
ginseng with GSM properties,433 exerts anti-tumor effect by
inhibiting NOTCH-Hes1 signaling.434,435 It is the only agent
targeting Notch signaling has been assessed in a phase I trial
(NCT02724358). The result showed that the combination of Rg3
and TACE prolonged OS than TACE monotherapy in HCC patients
with high NOTCH1 expression.436 Later, Rg3 presented a
synergistic anticancer effect for sorafenib in HCC cell lines and
mouse model,437 which needs further preclinical and clinical
exploration. ADAM proteases act as ‘sheddases’ for a great many
of membrane proteins including Notch receptors and Jagged 1.
Blocking Notch pathway by ADAM17 inhibitor ZLDI-8 may
sensitize HCC cells to sorafenib in vivo and in vitro by affect
crosstalk between the Notch1 and Integrinβ/ILK signaling path-
ways in HCC in vivo and in vitro.438

Fig. 3 Targeting the other critical signaling pathways in HCC cells. Canonical pathways and pharmacological inhibitors under investigation in
HCC for TGF-β pathway (a), Wnt pathway (b), Hedgehog pathway (c), Hippo pathway (d), Notch pathway (e). The red fonts indicate agents
under clinical assessment in HCC patients, the black fonts indicate agents under preclinical investigations. Figure was created with
biorender.com
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Despite the limited therapeutic advance targeting Notch
signaling, it keeps attractive to evaluate the clinical therapeutic
effectiveness of this signaling combined with other approved
treatments in HCC. Taking into account the multiple roles in the
development and homeostasis of the immune system, the
pharmacological manipulation of Notch has promising applica-
tions in cancer immunotherapy.

Telomere regulation pathway
Telomeres exist in all mammalian cells and their shortening with
cell proliferation promotes cell arrest, senescence and apoptosis.
Telomeres terminate with a 50–200 nucleotide of TTAGGG repeats
single-stranded 3′ overhang that can invade preceding telomeric
dsDNA to form a stable telomere loop (T-loop) structure with
shelterin at each end of chromosome, which prevent against the
loss of telomeres during cell division.439 Telomeres are produced
by telomerase, which consists of telomerase reverse transcriptase
(TERT), the telomerase RNA component (TERC), and dyskerin.440

TERT uses an TERC as RNA template to synthesize single-stranded
TTAGGG repeats and has a crucial role in telomere maintenance.
TERT levels typically act as the limiting factor for telomerase
activity in somatic human cells.
Telomere attrition acts as a barrier to replicative immortality,

dysfunction of which enables cancer cells to overcome the
replicative death, thereby providing a rationale for its therapeutic
application in cancer.439,441 As the most prevalent somatic
mutations, TERTp was observed mutated in up to 60% of human
HCC and has been proved to closely relate to sequential
hepatocarcinogenesis. The reactivation of TERT mainly through
various mechanisms such as mutations in the chromosomal
rearrangements (5–10%), promoter (30–60%) and gene amplifica-
tion, it results in a re-expression and enhanced activity of TERT,
which boosts cell survival and proliferation, and against
senescence.440,442

Targeting telomerase have been developed and assessed as
new therapies in HCC. When the expression of TERT was silenced
with antisense oligonucleotides in human liver cancer cell lines
and in xenograft mouse models, it led to proliferation arrest and
death of tumor cells. This provided preliminary evidence for the
therapeutic potential of TERT inhibition in HCC.443,444 BIBR1532, a
small molecule competitively blocking the active site of telomer-
ase, has been linked to telomerase inhibition and HCC cell death
in preclinical studies.445 However, there is no data in late phase
clinical trials.
There are no agents directly targeting TERT in HCC clinical trial.

The only clinical application is Telomelysin (OBP-301), a TERT-
driven oncolytic adenovirus that specifically introduces the TERT
promoter into tumor cells, which is being investigated in a phase I
trial in HCC.446 In this study, the therapeutic efficacy of OBP-301
was less than that of other second-line systemic targeted
therapies. However, OBP-301 injection increased infiltration of
CD8+ T cells and <1% PD-L1 expression in tumor, suggesting its
potential in combination with other immuno-therapeutics.
Conclusively, inhibitors targeting the TERT pathway have been

studied in cellular and murine models of HCC (Fig. 4a); however,
they have not yet undergone clinical trials for therapeutic
evaluation, leading to elusive therapeutic effects. Currently, the
only related product in clinical trials is the oncolytic adenovirus
OBP-301, which exploits TERT promoter activity to achieve anti-
tumor effects through virus replication. Nevertheless, its ther-
apeutic effects appear inferior to those of second-line targeted
agents.

Epigenetic pathways
Epigenetic modifications are inheritable variations in gene activity
that do not change the DNA sequence.447 The two primary types
of epigenetic modifications are DNA methylation and histone
post-translational modifications (PTMs). DNA methylation occurs

mainly at CpG sites, primarily found in CpG islands within
regulatory regions of genes. DNA methyltransferases (DNMTs)
introduce methyl groups, while ten-eleven translocation enzymes
(TET1/2/3) actively remove them. Global hypomethylation of DNA
is common in cancer, promoting chromosomal instability and
reactivation of endogenous retroviral sequences.448 The analysis
based on DNA methylation profiles of 304 HCC patients
discovered a CpG methylation signature that is correlated with
patient survival, among which, IGF, PI3K, TGF-β and WNT
pathways were mostly dysregulated in HCC by DNA methyla-
tion.449 DNA is wrapped around histone proteins to form
nucleosomes, where histone proteins undergo various PTMs such
as acetylation, methylation, phosphorylation, and more. These
modifications, along with DNA methylation, regulate chromatin
conformation and accessibility to regulatory elements. Histone
methyltransferases and demethylases, such as EZH2, EHMT2,
SETDB1 and SETD2 were found to be correlated with the clinical
characteristics of human HCC tissues.450 EZH2-mediated
H3K27me3 signifies a major oncogenic chromatin modification
and is involved in sorafenib resistance and HCC growth.451–453

Other specific histone modifications are also dysregulated in HCC.
For instance, the total levels of H3K9me2 and H3K9me3 are
commonly found higher in HCC tissues and positively correlates
with tumor differentiation and poor prognosis.454 Further, specific
DNA methylation and histone methylation can act as diagnostic
biomarkers in HCC screening.455 Histone acetylation, regulated by
histone acetyltransferases (HATs) and histone deacetylases
(HDACs), is associated with gene activation, while histone
deacetylation is correlated to gene repression and silencing.456

Histones acetylation and deacetylation were dysregulated and
play important roles in HCC progression via modification enzymes.
An instance is MOF, a HAT, can promote HCC growth and vascular
invasion via acetylating histone H4K16.457,458 The expression of
the acetylated H3 and H4 reader BRD4 is also elevated in
HCC.459,460

Unlike genetic changes, the epigenetic modifications are
reversible and have a more extensive impact on gene expression
than genetic changes, providing potential new targets with more
efficacy and safety.461,462

Epigenetic drugs in clinical trials for HCC include DNMTi and
HDACi, most of which are in combined with other therapies.
DNMT inhibitor Guadecitabine (SGI-110) (NCT01752933) and
decitabine (NCT01799083) were assessed in phase I/II trial for
pretreated patients with advanced HCC, in which decitabine
showing beneficial clinical response and favorable toxicity
profiles.463 A phase Ib evaluation for combination of guadeci-
tabine with PD-L1 antibody durvalumab (NCT03257761) is
underway. Several HDACs inhibitors are approved by FDA for
the treatment of hematological malignancies, while remained
in early phase clinical trials for HCC. For instance, Belinostat
(PDX-101) exhibited tumor stabilization and generally well-
tolerated in phase I/II study (NCT00321594).463 Belinostat also
achieved complete tumor rejection in a murine HCC model
when combined with CTLA-4 and PD-1 blockades.464 Another
HDACi tefinostat was assessed in phase I/II clinical test
(NCT02759601). Other phase I/II trials also tested the effect of
HDACi when combined with sorafenib, including panobinostat,
resminostat and vorinostat (NCT00823290, NCT00873002,
NCT00943449, NCT02400788, NCT01075113). Vorinostat in
combination with chemotherapy (FOLFIRI) was evaluated in
patients with digestive cancers including HCC (NCT00537121).
However, the results of the completed trials among above did
not show significant and clear improvement over sorafenib
while led to some toxicity in patients.465–467 Other agents and
combined treatments showed therapeutic potential in HCC cell
lines or murine models, such as pharmacological inhibition of
histone methyltransferase EZH2 by GSK343,468 CM272, a dual
inhibitor of DNMT1 and G9a,469–471 combined inhibition of
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DNMT and EZH2 by 5-Aza-CdR (DAC) and GSK126.472 Notably, a
selective HDAC8 inhibitor PCI-34051 was found to stimulate
antitumor immunity, and mice treated with combination of PCI-
34051 and anti-PD-L1 antibody were safeguarded against
subsequent tumor rechallenge and stayed tumor-free for over
15 months.473 Overall, above studies underline the potential of
combining epigenetic inhibitors and ICIs in HCC treatment.
Similar synergistic effect for ICIs were found in other epigenetic
modulation agents, including BRD4 inhibitor (JQ-1,474–476

i-BET762477) and other BET domain inhibitors,478–480 as well as
lysine demethylase 1A (KDM1A)481 and NAD-dependent

deacetylase sirtuin 2,482 while the mechanisms need further
study to provide more clues for therapeutic applications (Fig.
4b).

Cell death pathway
The p53 protein encoded by TP53 gene is widely recognized as a
tumor suppressor protein that acts as a stress responder and
transcription factor.483,484 Under physiological and non-stressed
conditions, the expression of p53 is kept at a low level by negative
regulators, especially MDM2 and E3 ubiquitin ligases.485 When
stimulated by stress signals, mostly like DNA damage, p53 can

Fig. 4 Nuclear signaling pathways. Canonical pathways and pharmacological inhibitors under investigation in HCC for pathways intersecting
with nuclear signaling. a Telomere regulation pathway. b Epigenetic modification. c P53 regulation and signaling. The red fonts indicate
agents under clinical assessment in HCC patients, the black fonts indicate agents under preclinical investigations. Figure was created with
biorender.com

Hepatocellular carcinoma: signaling pathways and therapeutic advances
Zheng et al.

20

Signal Transduction and Targeted Therapy           (2025) 10:35 



transcriptionally regulate the expressions of genes to exert
multicomplex functions. The classical and earliest recognized
functions include cell-cycle arrest, apoptosis, and senescence, and
other functions such as metabolism and ferroptosis.485 Mutations
of TP53 typically lead to suppressed activity and occur in the
majority of human cancers,486 which is observed in 31–36.1%
patients with HCC.20,487 TP53mutations are related with decreased
protein levels488 and reduced OS in HCC patients.20,489 Inactivation
of p53 and overactivation of MDM2 are discovered to contribute
to the carcinogenesis of HCC in the context of viral infection and
metabolic disease, and disrupting MDM2-p53 interaction can
liberate p53.490

Targeting p53 is highly appealing for the development of anti-
cancer drugs. The main strategies encompass small molecular
inhibitors restoring its pro-apoptotic activity by inducing the
refolding of the mutant p53 or blocking the abnormal degradation
of p53 through interruption of MDM2-p53 interactions, as well as
reestablishing the expression level and function of p53 with gene
therapy.486,491 To date, several small molecules have been
evaluated in clinical trials for the treatment of solid tumors rather
than specifically HCC, including inhibitors blocking the activity of
MDM2, such as HDM201(NCT04116541), ASTX295 (NCT03975387),
milademetan (NCT05012397), and idasanutlin MT (NCT04589845);
small molecules targeting mutant p53, PC14586 (NCT04585750)
and arsenic trioxide (NCT04869475); and recombinant human
adenovirus gene therapy, Ad-p53 (NCT03544723), which was
approved by the China Food and Drug Administration (CFDA) in
2003 as the first gene therapy for treatment of head and neck
cancer.492 For liver cancer, the combination of Ad-p53 with TACE is
reviewed to enhance OS and quality of life compared to TACE
monotherapy.493 Similar improvements in the clinical outcomes
were observed in the combined therapy of Ad-p53 with
fractionated stereotactic radiotherapy.494

Recently, p53 mRNA delivery by nanoparticles shows potential
anticancer effect alone or in combination with immune check-
point blockade in HCC mouse models.495,496 Targeting p53 is
typically regarded as suppressing tumors through apoptosis and
cell cycle arrest. An example is adiponectin, a wildtype p53
activator that can target p53/TRAIL/caspase-8 axis to attenuate
HCC progression.497 A new molecule, SLMP53-2, can provoke cell-
cycle arrest and apoptosis by activating p53 DNA-binding ability
in vitro.498 Some new extracts from plants can suppress HCC by
promoting apoptosis through activating p53/Bax pathway, such as
oleanolic acid and acetylshikonin.499,500 Although increasing
studies have investigated the therapeutic potential of restoring
the pro-apoptotic effect of p53,486,491,501 no p53-specific drug has
yet been approved by FDA or EMA.486,502 A few anticancer agents
have been investigated in HCC for their direct targeting of
apoptotic pathways through the inhibition of anti-apoptotic BCL-2
family members. For instance, navitoclax plus sorafenib demon-
strated limited efficacy a phase I clinical study in patients with
solid tumor with HCC expansion cohort (NCT01364051).503 Other
Bcl-2 inhibitors, ABT-199 and obatoclax were evaluated in
preclinical studies in combination with Mcl-inhibitor MIK665 and
immune checkpoint inhibitors.504,505 Targeting apoptosis is not
yet under clinical evaluation. Some agents were found to induce
apoptosis in HCC cells by targeting other members of the
apoptosis pathway, such as scutellarein targeting Fas/FasL,506

Garciniaxanthone I,507 Compound 19b and lycorine targeting Cyt-
C.508,509 P53 also transcriptionally regulates the expressions of
cyclins and cyclin-dependent kinases (CDKs), which lead to cell
cycle arrest. The dysregulation of CDKs and cyclins is a hallmark of
cancer, especially CDK4 and CDK6.
Three CDK inhibitors (palbociclib,501 ribociclib510 and abemaci-

clib511 are approved by FDA and EMA for the treatment of breast
cancer, and exhibited antiproliferation activity in HCC cells and
animal models,512–514 but have only been tested in clinical trials
alone or in combination with Regorafenib and Lenvatinib

(NCT01356628, NCT02524119 and NCT03781960) with unavailable
results284 (Fig. 4c).
There are multiple dysregulated signaling pathways are

involved in the development and progress in HCC, except for
the well-known RTK signaling pathway (Figs. 3 and 4). These
common signaling pathways applied for clinical trial keeps limited
(Table 2 and Table 3). Among which, a frequently explored
pathway is PI3K-AKT cascade, several inhibitors (Copanlisib, MK-
2206, RAD001, sirolimus, Onatasertib, Temsirolimus) have been
assessed in Phase II study, though showing limited efficacy. The
majority of agents targeting these signaling axis remain in
preclinical research and some in phase I study for dosage and
safety evaluation. Thus, the main challenges for therapeutically
targeting signaling pathway are preliminary effectiveness and
toxicity. The lack of effectiveness might be related to the intrinsic
and acquired drug resistance, as well as the heterogeneity of
HCC.284

Immune-related signaling pathways
Immune-related signaling pathways refer to the intricate regula-
tory networks that govern the dynamic interplay between the
immune system and malignant cells. These pathways can
influence the immune response against HCC, thereby affecting
tumor growth, progression, and the effectiveness of treatment.

Cellular signaling pathways
Mutations or activation of pathways such as CTNNB1/WNT-
β-catenin, TGF-β, MYC, TP53, ARID1A, and CDK20 exert profound
effects on immune responses and immune cell recruitment.4,515

For example, CTNNB1 mutations diminish CCL5 expression,
impairing dendritic cell (DC) recruitment, and reducing NKG2D
ligand expression, thus hindering natural killer (NK) cell-mediated
responses.516,517 About a quarter of HCC harbor β-catenin
mutations, correlating with reduced lymphocyte infiltration and
potential resistance to PD-1 blockade, although clinical validation
is needed. TP53 mutations occur in ~40% of HCCs overall but are
enriched in non-inflamed HCCs, and loss of p53 function promotes
the recruitment of immunosuppressive cell.11,518,519 while ARID1A
mutations have a dual effect on antitumor immunity by affecting
mismatch repair and IFNγ signaling.520 Genetic alterations in PTEN,
RAS, and LBK1 result in lymphocyte depletion and exclusion
phenotypes. MYC overexpression upregulates PD-L1, and CDK20
activation recruits myeloid-derived suppressor cells (MDSCs),521

suppressing T cell activity. Chromosomal gains at 6p21, containing
VEGFA, lead to overexpression of immunosuppressive cyto-
kines.522,523 STAT3 activation leads to the production of cytokines
like TGF-β, interleukin-17 (IL-17), and VEGF.524 Additionally, STAT3
activation can inhibit the immune response orchestrated by T
helper type 1 cells (Th1) and further contribute to ICI resistance.525

These effects collectively promote an immunosuppressive tumor
microenvironment.

ICIs
ICIs are regulators of the immune system. These pathways are
indispensable for self-tolerance, which prevents the immune
system from attacking cells indiscriminately. Inhibitory checkpoint
molecules are targets for cancer immunotherapy due to their
potential for use in multiple types of cancers.
Currently approved checkpoint inhibitors encompasses the

blockade of CTLA-4, PD-1 and PD-L1. while additional immune
checkpoints in HCC, such as TIM-3 (T cell immunoglobulin domain
and mucin domain-3), LAG-3 (Lymphocyte activation gene
protein-3) and TIGIT (T cell immunoglobulin and ITIM domains),
will also be briefly discussed hereafter.

PD-1/PD-L1
The immune checkpoint molecule, belonging to the CD28 family,
dampens T cell activity during the immune response and prevents
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autoimmune injury by binding to its ligands PD-L1 or PD-L2. This
interaction inhibits the stimulation signal of the T cell receptor
(TCR).526 PD-1 is expressed on various immune cells, including
activated T cells, B cells, NK cells, and dendritic cells (DCs).527–529

The expression of PD-L1 can be observed in both tumor cells and
antigen-presenting cells (APCs), whereas PD-L2 is predominantly
expressed on DCs and macrophages.530,531 The expression levels
and impacts of PD-L1 and PD-L2 on immune responses are highly
context-dependent and can vary significantly across different
tissues and disease states.532 The expression of PD-L1 on TAMs
can attenuate the anti-cancer immune response through its
interaction with PD-1 on CD8+ and CD4+ T cells.533 The full
comprehensive of the significance behind PD-L1/PD-1 expression
in immune cells remains elusive.
PD-1 attenuate positive signals from TCR and CD28, affecting

downstream pathways like PI3K-AKT, RAS, and ERK.534 Addition-
ally, PD-1 inhibits T cell function by upregulating transcription
factors such as BATF (Basic Leucine Zipper ATF-Like Transcription
Factor), and modulating metabolic pathways to reduce glycolysis
while promoting lipid degradation and β-oxidation.535 This leads
to decreased cytokine Secretion, thereby aiding cancer cells in
evading immune responses.536 PD-1/PD-L1 expression in Tregs
exacerbates immune suppression and exhaustion in the tumor
microenvironment, influencing Treg differentiation, maintenance,
and function.536

It’s important to note that while PD-1/PD-L1 axis inhibition
primarily affects T cells, the mechanism may differ in B cells. In B
cells, PD-1 activation recruits SHP-2 to dephosphorylate BCR
pathway molecules, inhibiting PI3K, ERK, and PLCγ2 pathways,
disrupting calcium signaling and inhibiting B cell growth.537 PD-1
overexpression in B cells induces T cell dysfunction through an IL-
10-dependent pathway, promoting tumor progression. PD-1+ B
cells inhibit T cell expansion and viability, with PD-L1 blockade
enhancing T cell proliferation and viability.538 HDAC6-depleted
T cells stimulated PD-1/PD-L1 expression and synergistically
sensitized advanced HCC to ICIs, suggesting potential for HCC
immunotherapy.
The specific microenvironment created by tumor-releasing

factors, LPS and hypoxic conditions can induce the expression
of PD-L1 in MDSCs.539,540 The immunosuppressive effects of
MDSCs on T cells activated by anti-CD3 and anti-CD28 are
mediated through the binding of PD-1 on T cells and PD-L1 on
MDSCs, leading to T cell inhibition. Additionally, MDSCs can
activate the PI3K/AKT/NF-kB pathway in B cells via the PD-1/PD-L1
axis, inducing a subset of immunosuppressive regulatory B cells
(Bregs) characterized by the absence of PD-1 and the presence of
PD-L1.541

Overall, the PD-1/PD-L1 axis is indeed a key player in shaping
the immunosuppressive microenvironment of HCC.542 The
removal of immunosuppression by PD-1/PD-L1 inhibitors is
believed to enhance the killing effect mediated by antitumor
T cells, while also promoting T cell proliferation and infiltration
into the tumor microenvironment (TME) for inducing an antitumor
response.543 Additionally, it can enhance CD8+ T cell activation in
tumor-draining lymph nodes (TDLN) and rejuvenating dysfunc-
tional CD8+ T cells within the tumor.543 The anti-PD-L1 antibody,
by activating the mTOR pathway in T cells, enhances the immune
response not only through T cells but also indirectly affects
macrophages. Activated T cells can promote macrophage activa-
tion, leading to their transformation into inflammatory and
proliferative types that can contribute to a more effective anti-
tumor response, which has potential as an alternative cancer
treatment.544,545

Inhibitors of PD-1/PD-L1
In the advanced liver cancer field, there are currently FDA-
approved PD-1/PD-L1 inhibitors, including nivolumab (PD-1
inhibitor), pembrolizumab (PD-1 inhibitor), camrelizumab (PD-1

inhibitor), tislelizumab (PD-1 inhibitor), durvalumab (PD-L1 inhi-
bitor), atezolizumab (PD-L1 inhibitor) and durvalumab (PD-L1
inhibitor). Nivolumab is the first anti-PD-1 drug used for HCC,
showing promising efficacy and safety in the CheckMate 040 trial,
a global phase III clinical study. It demonstrates good outcomes
among patients with advanced liver cancer, regardless of whether
they received prior sorafenib treatment, without triggering viral
outbreaks in patients with HCV or HBV hepatitis.546 Compared to
sorafenib, nivolumab fail to enhance OS but demonstrated
remarkable clinical efficacy, exceptional safety profile, and a
notably higher rate of complete response, thereby improving
patients’ quality of life.547 However, for individuals unable to use
TKI or antiangiogenesis drugs, especially those at significant risk,
nivolumab remains a viable treatment option. Ongoing trials, such
as monotherapy in checkmate-9dx (NCT03383458) and combina-
tions with ipilimumab (NCT01658878), continue to assess nivolu-
mab’s potential as adjuvant therapy and in combination
treatments for HCC.
In cohort 1 of the Keynote-224 clinical trial, another PD-1

inhibitor, Pembrolizumab, initially demonstrated efficacy and
tolerability in patients with advanced HCC who had previously
received sorafenib treatment, leading to FDA approval.548

Keynote-394 represents a milestone as the first and only phase
III trial globally to achieve positive results using PD-1 inhibitor
monotherapy for advanced HCC, providing a new treatment
option for HCC.
Camrelizumab (SHR-1210), another human (immunoglobulin)

IgG4 monoclonal antibody targeting PD-1, was evaluated in a
multicenter, open, randomized phase 2 trial in China.549 Among
217 patients treated with camrelizumab, the objective response
rate (ORR) was 14.7%, with a median progression-free survival
(PFS) of 2.1 months and a median OS (mOS) of 13.8 months. The
OS rate at 6 months was 74.4% (3%).
The monoclonal antibody Atezolizumab, targeting PD-L1, has

demonstrated remarkable efficacy in the phase III
imbrave150 study. When combined with bevacizumab, it exhib-
ited a staggering 56% reduction in the risk of mortality (OS) and
an impressive 40% decrease in the risk of disease progression or
death (PFS), surpassing sorafenib’s performance. Furthermore, this
combination therapy of Atezolizumab and bevacizumab was
found to be exceptionally well-tolerated with manageable
toxicity.30

Importantly, Durvalumab, a humanized IgG1 monoclonal anti-
body targeting PD-L1, has been recommanded as the first-line
treatment for HCC in the 2022 edition of NCCN guidelines. This
recommendation is based on its preliminary efficacy observed in
patients with non-resectable HCC550 Specifically, the Himalaya
Phase III study demonstrated that both durvalumab monotherapy
and its combination with tremelimumab (D+ T) significantly
improved OS compared to sorafenib. This evidence supports the
inclusion of durvalumab in treatment regimens for HCC, high-
lighting its potential to offer significant clinical benefits.551

CTLA-4
In the tumor microenvironment, CTLA-4 is predominantly
expressed in Treg cells, with some effector T cells also expressing
CTLA-4. Thus, CTLA-4 not only directly induces T cell function
downregulation but also contributes to Treg-mediated suppres-
sion of anti-tumor immune responses.552 Treg cells have complex
functions including direct suppression of DC cell function,
inhibition of effector T cells, secretion of TGF-β, and competition
for IL-2 and other cytokines through CD25. Tregs are central
inhibitory cells in the tumor microenvironment and exhibit high
CTLA-4 expression.553 Therefore, by blocking the checkpoint CTL4-
4, CTLA-4 inhibitors managed to repair the collapsed immune
surveillance system.
The CTLA-4 antibody, Ipilimumab, binds to CTLA-4 on effector

T cells, thereby alleviating inhibition and exerting its ADCC
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function to eliminate Tregs. Tremelimumab was the first CTLA-4
inhibitor used for HCC treatment.554

Tremelimumab is a fully human IgG2 monoclonal antibody that
blocks the interaction of CTLA-4 with its ligands CD80 and CD86.
The concurrent utilization of PD-1 and CTLA-4 may potentially
yield synergistic alleviation of inhibition and complementary
elimination
The initial concerns regarding the potential for ICIs to trigger

viral outbreaks in HCC patients with HCV or HBV were addressed
in the first pivotal trials, which unequivocally demonstrated the
safety of ICIs in these populations. In a groundbreaking move,
researchers evaluated the antiviral activity of a CTLA-4 blocker in
HCV-infected patients and observed no cases of fulminant
hepatitis, establishing the favorable safety profile of ICIs.555

Similarly, in the Checkmate-040 trial’s phase 1/2 dose escalation
and expansion cohort, no patients with HBV infection experienced
hepatitis attacks. This marked the first inclusion of chronic HBV
patients in clinical trials of immune checkpoint blockers, setting
the stage for subsequent efficacy assessments of immunotherapy
in HCC.556

TIM-3/LAG-3/TIGIT
TIM-3, also known as hepatitis A virus cellular receptor 2 (HAVCR2),
is an immune inhibitory surface molecule expressed on various
immune cells, including T cells, Treg cells, DCs, NK cells,
macrophages, and cancer cells. Activation of TIM-3 leads to
immune exhaustion of CD8+ T cells and can induce macrophage
polarization towards the M2 type, thereby promoting tumor
growth through increased secretion of interleukin-6 (IL-6).
LAG-3 is another immune checkpoint that inhibits T cell

function and is expressed on tumor-infiltrating lymphocytes
(CD4+ and CD8+ T cells), Treg cells, NK/T cells, B cells, NK cells,
plasmacytoid DC (pDCs), and TAMs. The expression of TIM-3 and
LAG-3 are associated with a poor prognosis in human cancers.
TIGIT is expressed on activated NK and T cells, as well as on Treg
and Th cells under resting conditions.
Several TIM-3 and LAG-3 agents are currently in clinical

development, TIM3 monoclonal antibody TSR-022
(NCT03680508) and with a phase II study combined with anti-
PD-1 antibody in HCC patients and mainly include INCAGN02385
(NCT03538028, monotherapy), Relatlimab (NCT04567615) and
LAG-3 monoclonal antibody XmAb22841 (NCT03849469 com-
bined with PD-1. At ESMO 2022, LAG-3 monotherapy
INCAGN02385reported good tolerability for further investigation
in phase Ib/II studies (NCT04370704, NCT05287113) in combina-
tion with other immunotherapies. TIGIT antibody Tiragolumab
with atezolizumab and bevacizumab showed 2.83-fold higher
objective response rate compared to the control therapy.

Gut microbiota
The human gastrointestinal tract harbors over 100 trillion
microorganisms including bacteria, fungi, viruses and archaea
that make up the gut microbiota. The gut microbiota carries out
critical functions for its host.557 As the first organ to encounter
enterally absorbed nutrients and microbial metabolites, the liver
and the gut microbiome interacted on bile acids conversion and
metabolism.558

The intricate relationship between gut microbiota and HCC is
increasingly recognized, with various studies highlighting its role
in both HCC development and treatment response. Microbiota
profiles have been linked to clinical-pathological characteristics of
HCC patients, such as AFP, ALT, and AST levels, and have shown
predictive value for HBV-related HCC microvascular invasion.559,560

Additionally, the presence of specific gut microbes, such as B.
longum, has been associated with improved liver function
recovery in HCC patients during the perioperative period.561

Moreover, aberrations in gut microbial-derived metabolite
signaling pathways, including toll-like receptor (TLR) and farnesoid

X receptor (FXR) signaling, have been implicated in hepatocarci-
nogenesis.562–564 Gut microbiota also serve a role in regulating
hepatic NKT cells and anti-tumor immunity, affecting both primary
and metastatic liver tumors.565–567 Gut microbiota profiles holds
promise as non-invasive biomarkers to predict treatment response
and guiding therapeutic interventions in HCC patients.568

The modulation of gut microbiota is feasible through diet,
probiotics, prebiotics, and antibiotics may affect the therapeutic
effect of ICIs.569 Preclinically, depletion of the microbiota by gut
sterilization or antibiotics administration protected against HCC
development upon HCC animal models.

517,562,566,570,571 Lactoba-
cillus brevis and B. pseudolongum are promising probiotic for
metabolism-related HCC prevention.572,573 Except above potential
treatment, administration of atorvastatin, a cholesterol-lowering
drug, and gut microbiota manipulation may also be effective
strategies for NAFLD– HCC prevention.574 Furthermore, gut
microbiota composition or their metabolites has been linked to
treatment response and outcomes in HCC patients undergoing
immunotherapy, such as with nivolumab and pembrolizu-
mab.575,576 Antibiotic treatment can modulate the gut microbiota,
affecting bile acid metabolism, hepatic inflammation, and anti-
tumor immunity, ultimately impacting the development and
progression of HCC.577–579 Preclinical studies suggest that
antibiotic therapy may reduce secondary bile acids associated
with hepatic inflammation and metabolic HCC development,
which can enhance anti-tumor immunity.580

In the context of immunotherapy, conflicting results have been
observed with antibiotic administration at the begining of ICI
treatment, with some studies reporting decreased efficacy of ICIs
while others show longer progression-free survival
(NCT02021253). Probiotic BIFICO during the preoperative phase
of HCC patients was capable of accelerating postoperative liver
function recovery (NCT05178524). Above all, the clinical thera-
peutic effectiveness of probiotics in HCC patients is undefined and
must considering the issue of dose- and time-finding. New
strategies fecal microbiota transplantation (FMT) is becoming a
novel, direct and more effective approach to restore gut home-
ostasis and potentially improve ICI efficacy.

The immune microenvironment and HCC etiology
HCC often arises in the setting of chronic liver inflammation,
primarily triggered by innate immune activation. HCC caused by
different factors may exhibit distinct immune dysfunctions. For
instance, chronic viral infections can lead to pro-inflammatory
innate immune responses and aberrant adaptive immune reac-
tions, while non-viral HCCs may involve specific subsets of cells
and immune cells. Studies suggest a distinctive pro-tumorigenic
adaptive immune response in non-viral HCC, characterized by
CXCR6+CD8+ T cells with low FOXO1 expression triggering auto-
aggression in response to metabolic stimuli in NASH.581,582

Therefore, understanding the unique contributions of different
HCC causes in shaping the tumor microenvironment is crucial for
identifying potential mechanisms that could be targeted for
effective immunotherapy strategies (Fig. 5).

Virus-HCC
Immune responses to HBV and HCV can either promote or inhibit
carcinogenesis.583–586 Platelets and HBV-specific T cells play dual
roles in driving or inhibiting HCC development, respectively.
Chronic HBV infection commonly induces a tolerogenic micro-
environment in the liver characterized by upregulation PDL-1 and
IL-10 in Breg, increasing susceptibility of HBV-specific T cells to
apoptosis induced by TIGIT+NKG2D+NK cells, limiting effective
anti-tumor immunity.587 Highly suppressive PD-1hi Treg cells
selectively enrich in HBV-related HCC and correlate with poor
prognosis.588 In contrast, HCV evades immune surveillance by
inducing dysfunctional CD8+ T cells and upregulating immune
checkpoint proteins. These cells exhibit reduced production of
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IFNγ and expression of CD127, impaired proliferation, and
increased expression of PD-1316. HCV-infected cells can promote
the upregulation of TIM3 expression in CD8+ T cells by releasing
exosomes, stimulating monocytes to secrete galectin 9.589

Additionally, chronic HCV infection may deplete IL-2-producing
CD4+ T cells and increase suppressive CD4+CD25+ Treg cells and
virus-specific, IL-10-producing CD8+ T cells, which may contribute
to hepatocarcinogenesis.590,591 Viral escape mutations and HCV
core proteins acting as immune evasion proteins, interfering with
MHC I-dependent antigen presentation, may also play roles in
HCV-related HCC immune evasion.
Metabolic dysregulation also contributes to virus-related HCC

pathogenesis. Disruptions in cholesterol homeostasis, driven by
high expression of sterol O-acyltransferase 1 (SOAT1), promote
tumor cell proliferation and migration in HBV-related HCC.592

Targeting these metabolic pathways presents a novel avenue for
immunotherapeutic intervention.
In summary, chronic HBV and HCV infections drive hepatocarci-

nogenesis through complex interactions involving immune
dysregulation and metabolic alterations. Understanding these
mechanisms is crucial for developing effective preventive and
therapeutic strategies for virus-related HCC.

Aflatoxin-HCC
Aflatoxin, recognized as one of the most potent naturally
occurring human hepatocarcinogens, was classified as a “group
1” human carcinogen.593

Aflatoxin contamination is frequently observed in improperly
stored food such as maize, peanuts, and tree nuts, significantly
augmenting the incidence of HCC.594 The identification and
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elimination of these risk factors have substantially reduced its
occurrence among young adults, underscoring the significance of
aflatoxin control as a preventive measure.
The mutational landscape of Aflatoxin-HCC is characterized by

frequent mutations in driver genes, including previously impli-
cated genes such as TP53, RAS, c-fos and ADGRB1.595–598 AFB1
causes human HCC by forming a 249Ser mutation in p53. In the
early stage of liver cancer, AFB1 induced mutations of the ras
oncogene in liver tissues, which mainly occurred in the GG
position of codons 12 and 13, most of which were the transversion
of G:C to T:A. Aflatoxin can cause the overexpression of c-fos in
tree shrew liver tissue, and promote the occurrence and evolution
of liver cancer. Among them, ADGRB1 exhibits the highest
frequency of mutation in the aflatoxin-associated cohort.
Aflatoxin-associated HCCs display a distinctively high mutation
rate primarily consisting of C/A mutants, which often leads to a
significant increase in the generation of mutation-associated
neoantigens (MANAs).595 Importantly, this elevated mutational
burden is closely correlated with sensitivity to anti-PD-1/PD-L1
therapy.599 ICIs hold great potential as an effective therapeutic
option for AF-HCCs originating from high-risk regions and the
general population.
HBV can increase the risk of HCC in people exposed to AFB1 by

30 times. Exposure to high concentrations can cause acute
hepatitis, therefore, chronic exposure can lead to the develop-
ment of liver cancer. the single most effective way to reduce HCC
risk in regions where AFB1 and HBV co-occur is to vaccinate
against HBV in order to eliminate the synergistic effect on risk.600

NASH/NAFLD HCC
Non-alcoholic fatty liver disease (NAFLD) is globally prevalent and
can progress to NASH, significantly increasing the risk of HCC.601

Unlike viral hepatitis, which features organized inflammatory foci,
inflammation induced by NAFLD/NASH typically involves scat-
tered inflammatory infiltrates.582 Preclinical evidence suggests
that NAFLD/NASH-related HCC is characterized by reduced CD4+
T cell activity within tumors, loss of tumor surveillance function by
CD8+PD-1+T cells, and pro-tumorigenic functions of NKT cells
and Th17 cells. Responses to ICIs are weaker compared to viral
HCC. Additionally, CD4+IL-17A+TH17 cells contribute to NAFLD/
NASH-induced HCC by promoting neutrophil recruitment and
accumulation of fatty acids.602 IgA+ plasma cells with high
expression of PD-L1 and IL-10 accumulate in NASH, inhibiting CTL
activation and promoting HCC. These findings suggest that PD-
L1+B cells, possibly a subset of Bregs, exert potent immunosup-
pressive effects on T cell responses.
Moreover, obesity, commonly associated with metabolic

disorders, may reduce the effectiveness of anti-VEGF therapy,
although clinical evidence remains complex. Antiplatelet therapy
has shown promise in reducing the development of NASH and
NASH-related HCC, mediated through platelet-specific glycopro-
tein Ib-α (GPIbα) and its interactions with platelets and
inflammatory monocytes. This is supported by a nationwide
cohort study showing long-term use of aspirin is associated with
reduced HCC risk.603

In summary, understanding the complex interactions between
immune cells and hepatocytes in the development of NASH-
related HCC is crucial for devising effective prevention and
treatment strategies. Targeting platelet-mediated inflammation,
immune dysregulation, and metabolic pathways holds promise in
combating the occurrence of NASH-induced liver cancer.

Alcohol HCC
Alcohol intake contributes to up to 30% of the global burden of
HCC. Alcohol increases gut permeability, facilitating the entry of
immunomodulatory microbiota-derived molecules like LPS into
the liver,604 where they have the potential to suppress hepatic
immune responses, potentially affecting resident macrophages.605

Alcoholic steatohepatitis (ASH) is marked by the intrahepatic
accumulation of pro-tumorigenic, immunosuppressive granulocy-
tic MDSCs and inhibition of T cell recruitment to the liver and
neutrophils in the liver parenchyma.606 Cytokines like IL-1 and IL-
17 are implicated in the pathogenesis of ASH-related HCC.607,608

Thus, The presence of ASH is likely to induce profound alterations
in the repertoire and states of immune cells, as well as
modifications in the hepatic cytokine milieu, potentially impeding
effective adaptive immune responses against HCC.

THE MANAGEMENT UPDATE OF HCC
Diagnosis
HCC often shows characteristic imaging features, but approxi-
mately 10% of tumors, especially those 1-2 cm in size, may lack
these hallmarks, posing diagnostic challenges. Diagnosis typically
involves examining resected tissue or biopsy samples. Recently,
liquid biopsy has gained traction for HCC diagnosis. Components
like ct-ncRNA, cfDNA, ctDNA, CTCs, and extracellular vesicles (EVs)
are released into body fluids, enabling fluid biopsy.609–611

Analytical methods that isolate cells, proteins, nucleic acids, and
vesicles from fluids, could aid early diagnosis and monitor HCC
progression.609 Despite its potential, challenges remain in
component separation and sequencing target selection.
Molecular diagnosis is the embodiment of accurate diagnosis in

precision medicine. Diagnosis of HCC is further supported by
immunohistochemistry for markers glypican-3 (GPC3:
NCT05003895, NCT05103631), epithelial cell adhesion molecule
(NCT05028933, NCT03013712), MET (NCT01755767), mucin 1
(NCT02587689), MHC1 (NCT05195294), and TERT (NCT05595473),
are being incorporated into these clinical trials. The presence of
two or more of these markers increases the diagnostic specificity
to 100%. The morphology of HCC has been associated with
specific molecular alterations. Radiomics can serve as a clinician
decision-making tool for constructing HCC diagnosis models,
potentially reducing radiologist error rates.612 However, clinical
application faces challenges like imaging consistency, radiomics
standardization, and predominantly retrospective research. Artifi-
cial intelligence (AI), particularly deep learning, shows promise in
extracting diagnostic, prognostic, and predictive insights from
radiological data, achieving over 90% accuracy in classifying
lesions with typical features.613 Despite potential as clinical
decision support, large-scale validation is needed for differential
diagnosis of hypervascular liver lesions. Advances in under-
standing HCC’s molecular mechanisms and technology will likely
optimize diagnostic methods and introduce new detection
techniques, enhancing early diagnosis and prognosis.

Therapeutic advances
Advancements in HCC therapy face challenges from complex
tumor environments and resistance mechanisms. Innovations like
hepatic arterial infusion chemotherapy (HAIC) combined with anti-
PD-1 immunotherapy and TKI show promising transformative
potential.614 The regimens included triple combination therapy (t-
CT: lenvatinib, TACE, plus toripalimab) before surgery should be
recommended for HCC patients with macrovascular invasion.615

Targeted protein degradation (TPD) with techniques such as
intramolecular biovalent glues like CC-122 (Avadomide) in clinical
trials with nivolumab or sorafenib suggests new treatment
avenues.616

Antibody-drug conjugates (ADCs) targeting GPC3 and CD24
demonstrate anticancer activity, through mechanisms like
antibody-dependent cellular cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC).617,618 CAR-T cell ther-
apy targeting GPC3 shows efficacy, with ongoing enhancements
using IL-7 and CCL19 to boost intratumoral activity.619 Addition-
ally, CAR-T cells targeting CD147 and CD133 (NCT02541370) are
also beneficial targets for the treatment HCC patients.620,621 The
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adoptive transfer of HBV-TCR-T cells into patients with advanced
HBV-related HCC was generally well-tolerated and demonstrated a
favorable safety profile. Observations of clinical efficacy provide
support for the ongoing development and eventual implementa-
tion of this treatment strategy in individuals with advanced HBV-
associated HCC (NCT03899415).622 DC vaccines loaded with
neoantigens improve disease-free survival in post-surgery
HCC.623 Innovative personalized cancer vaccines (e.g., GNOS-
PV02) encoding neoantigens and immune-modulating agents
demonstrate strong antitumor activity in advanced HCC, high-
lighting potent T cell responses (NCT04251117).624

In conclusion, these emerging therapies— HAIC combined with
dual immunotherapy, TPD approaches like intramolecular biova-
lent glues, ADC development targeting specific markers, and
advanced CAR-T cell therapies — are pivotal in expanding HCC
treatment options. Continued research and clinical trials are
critical to validate and optimize these approaches for improved
patient outcomes.

Prognosis
During the last decade, there has been an obvious improvement
in the five-year OS for HCC, from 18% to 22%.1,625 This mainly
attributed to early detection of HCC, as well as the recent
development of systemic drugs such as Lenvatinib and T+A
(Tecentriq+Avastin). However, the prognosis of HCC with different
etiology varies quite a lot. For exmaple, diagnosis for HCC caused
by obesity or non-viral are not currently sensitive enough.
Although new detection methods develop, The clinical evidence
is limited.
Research indicates that HBV has the most significant impact on

OS, followed by HCV, metabolic disorders, and alcoholic liver
disease.626 A SEER study in 2020 reported median survival after
HCC diagnosis as 10.3 months for HBV, 8.3 months for HCV,
7.6 months for metabolic disorders, HBV, 8.3 months for HCV,
7.6 months for metabolic disorders, and 6.1 months for alcohol-
related causes. Alcohol and metabolic-related HCCs exhibit higher
mortality rates potentially due to delayed diagnosis rather than
inherent aggressiveness.627 Among liver-related deaths in the
United States between 2008 and 2018, there was a substantial
decline observed in HCV-related deaths. The prevalence of NAFLD-
associated HCC increased from 2.6% in the period of 1995-1999 to
19. 5% during 2010–2014, while the proportion attributed to HCV
decreased from 43.6% to 19.5%.628 This highlights the effective-
ness of HBV vaccination and HCV antiviral therapy in preventing
virus-associated liver cancer; however, no strategy currently exists
for chemoprevention of non-viral liver diseases.
The prognosis of HCC is gender-dependent, age-dependent and

regional-dependent. Across nearly every country, HCC incidence
and mortality differ by sex, with rates 1.2–3.6 times higher in men
than in women.629,630 The mortality rates are higher among
elderly patients with HCC. HCC patients in various countries has
different outcomes. Treatment choices also influence prognosis of
HCC. Lenvatinib has been shown to prolong survival among non-
viral HCCs and MAFLD.631 While microwave ablation may offer
superior long-term recurrence rates when compared to radio-
frequency ablation.632

Challenges and directions
There are still several challenges in the field of HCC. Firstly, many
of the signaling pathways and targeted inhibitors that have been
summarized above exhibit reduced efficacy specifically in HCC
compared to other types of cancers, possibly due to the unique
characteristics of HCC. Secondly, the absence of clearly defined
biomarkers for HCC hinders accurate treatment strategies for
patients including targeted therapy or immune therapy,633–637

especialliy in ICI. Traditional markers like PD-L1 expression have
failed to predict response to nivolumab and pembrolizu-
mab.547,548,638,639 Other potential biomarkers, such as high tumor

mutational burden (TMB) or microsatellite instability (MSI), are
limited in HCC. Tumor heterogeneity and clonal evolution are the
underlying mechanisms.640,641 Emerging evidence suggests that
activated Wnt/ β-catenin signaling is associated with primary
resistance to immunotherapy, particularly in ‘cold' tumors lacking
T-cell infiltration. Identifying predictive biomarkers are critical due
to optimize treatment outcomes in advanced HCC.642–645 Further-
more, future clinical applications for treating HCC will likely
involve combinations of two or more drugs to overcome the
resistance. In additon to the agents, ICI also combined with TACE,
radiotherapy and ablation. These have been tested in the clinical
phase III. While determining the optimal combination and
sequence of FDA-approved or investigational ICIs, as well as other
treatment modalities are difficult. Specifically, the classical
approach to first surgically remove resectable lesions and/or
regional lymph nodes, followed by postoperative (adjuvant)
therapy, is gradually giving room to treatment schedules in which
neoadjuvant (chemo) immunotherapy is administered before
surgery. However, there is a lack of clarity regarding the optimal
combination methods, administration sequence, and timing;
hence exploring new adjuvant treatment options over the next
few years becomes crucial to enhance patient response rates.
Lastly, With the rapid development of cellular immune technology
and genetic engineering technology, application of adoptive cell
therapy, CART, oncolytic virus and vaccine in HCC will benefit
more HCC patients. Recent advances related to cancer genomics,
proteomics, systems biology and AI suggest new perspectives in
precision medicine.

CONCLUSION
This review provides valuable insights into the treatment land-
scape of HCC and its potential application across different cancer
types and pathological subtypes. Novel treatment regimens have
shown promise in improving survival rates and reducing severe
toxicities in HCC patients. Ongoing studies hold the potential to
refine therapeutic strategies and identify predictive markers for
favorable outcomes. While small molecular inhibitors remain in
high demand due to their moderate adverse effects, further efforts
are needed to enhance treatment response. Comprehensive
research efforts continue to expand our understanding of HCC
mechanisms, offering potential avenues for prevention and
treatment. The clinical translation of new inhibitors remains
critical, and combination therapies involving novel agents and
traditional regimens hold significant promise in advancing HCC
treatment outcomes.
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