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Abstract

Chronic thromboembolic pulmonary hypertension (CTEPH) has been increas-

ingly recognized as a common source of elevated pulmonary vascular resis-

tance and pulmonary hypertension. It is clear that development of pulmonary

thromboemboli is the inciting event for this process, yet it remains unclear

why some patients have persistent pulmonary artery occlusion leading to dis-

tal pulmonary vascular remodeling and CTEPH. Thrombin, a serine protease,

is an integral part of the common coagulation cascade, yet thrombin also has

direct cellular effects through interaction with the family of PAR membrane

receptors. This study is designed to determine the effects of thrombin on Akt

signaling in pulmonary artery smooth muscle cells (PASMC) from normal

humans and pulmonary hypertension patients. Thrombin treatment of

PASMC resulted in a transient increase in Akt phosphorylation and had simi-

lar effects on the downstream targets of the Akt/mTOR pathway. Ca2+ is

shown to be required for Akt phosphorylation as well as serum starvation, a

distinct effect compared to platelet-derived growth factor. Thrombin treat-

ment was associated with a rise in intracellular [Ca2+] and enhanced store-

operated calcium entry (SOCE). These effects lead to enhanced proliferation,

which is more dramatic in both IPAH and CTEPH PASMC. Enhanced prolif-

eration is also shown to be attenuated by inhibition of Akt/mTOR in CTEPH

PASMC. Thrombin has direct effects on PASMC increasing intracellular

[Ca2+] and PASMC proliferation, an effect attributed to Akt phosphorylation.

The current results implicate the effects of thrombin in the pathogenesis of

idiopathic pulmonary arterial hypertension (IPAH) and CTEPH, which may

potentially be a novel therapeutic target.

Introduction

Chronic thromboembolic pulmonary hypertension

(CTEPH) results from migration and persistence of throm-

boemboli, usually from the deep leg veins, into the proxi-

mal pulmonary arterial vasculature (Dartevelle et al. 2004).

Venous thromboembolism represents a common disease

that results when the circumstances of Virchow’s triad
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coalesce: stasis of blood flow, endothelial damage, and

hypercoaguability. Imaging modalities including ventila-

tion–perfusion scintigraphy identify the proximal perfu-

sion defect and pulmonary hypertension is confirmed by

right heart catheterization showing increased pulmonary

vascular resistance (PVR) and mean pulmonary artery

pressure (PAP) (Auger et al. 2012). Thrombi lodged in the

proximal pulmonary arteries lead to increased pulmonary

arterial pressure through both direct consequence of

obstructed blood flow due to the thrombus as well as indi-

rect effects of pulmonary vascular remodeling in distal pul-

monary arteries (Auger et al. 1992; Moser and Bloor 1993;

Burrowes et al. 2011). The incidence of CTEPH occurring

after pulmonary embolism has been shown to be around

3% (Pengo et al. 2004; Ozsu and Cinarka 2013), and

though risk factors have been identified, questions remain

as to the molecular and biochemical factors that predis-

pose to retained thrombi and vascular remodeling rather

than spontaneous resolution (Sacks et al. 2006).

Our recent study examining isolated cells from endarter-

ectomized human tissue has revealed a substantial presence

of both endothelial and smooth muscle progenitor cells

(Yao et al. 2009; Firth et al. 2010). As a common compo-

nent of both the intrinsic and extrinsic clotting cascade,

thrombin plays an important role in thrombus formation,

cleaving fibrinogen to insoluble fibrin. Thus, increased lev-

els of circulating thrombin are expected in association with

thrombotic disease, and its cellular effects may be impli-

cated in the development and/or progression of CTEPH.

Wu and colleagues have shown that thrombin can stimu-

late a procoagulant endothelial phenotype by modulating

T-type calcium channels in pulmonary artery endothelial

cells (PAEC) (Wu et al. 2003). Our previous study has

shown that thrombin treatment for 72 h in PAEC results in

increased [Ca2+]cyt.(Firth et al. 2009) This increased

[Ca2+]cyt is thought to result in endothelial cell dysfunction,

a proposed mechanism for CTEPH development (Sakao

et al. 2011). These cellular effects of thrombin are mediated

by protease-activated receptors (PARs), in which the

N-terminus of the receptor is cleaved by thrombin. This

cleaved receptor can then act as a ligand that has been

shown to mediate cell contraction, proliferation, and

hypertrophy (Hauck et al. 1999; Pawlinski et al. 2007).

PAR-2 has recently been shown to be increased in both

human IPAH and experimental animal models of pulmo-

nary hypertension and its inhibition was able to reverse

experimental hypoxia-induced pulmonary hypertension

(Kwapiszewska et al. 2012). Thrombin receptor activation

has indeed been shown to induce a number of downstream

signaling events, including stimulation of endogenous

platelet-derived growth factor (PDGF)-A production (Wu

and Aird 2005). We have shown in a previous study that a

high deposition of PDGF is observed in distal arteries of

patients with CTEPH and increased expression of PDGF

receptor (PDGFR) in cells isolated from endarterectomized

tissues of CTEPH patients (Ogawa et al. 2009).

This study is designed to detect the effects of thrombin

on cellular mechanisms that could potentially lead to the

pulmonary vascular remodeling observed in CTEPH and

IPAH. We are able to demonstrate that thrombin

increases cell proliferation through enhanced, calcium-

dependent Akt/mTOR signaling.

Methods

Chemicals, Antibodies, and Materials

PDGF-BB, EGTA, and cyclopiazonic acid (CPA) were

purchased from Sigma-Aldrich. Human a-thrombin was

purchased from Enzyme Research Laboratories. Rapamy-

cin and Akt inhibitor (VIII) were purchased from Calbio-

chem. Antibodies to mTOR, phospho-mTOR (Ser2448),

p70S6K, phospho-p70S6K (Thr389), Akt, phospho-Akt

(Ser473), 4EBP1, and phospho-4EBP1 (Ser65), eIF4E,

phospho-eIF4E (Ser209), ERK, p-ERK1/2 (Thr202/

Tyr204) were purchased from Cell Signaling Technology.

Antibody for human smooth muscle actin was purchased

from Dako. Antibody to GAPDH and HRP-conjugated

donkey anti-mouse IgG antibody were purchased from

Millipore. Antibodies to PAR1 and HRP-conjugated anti-

rabbit IgG antibody were from Santa Cruz Biotechnology.

Cell preparation and culture

Endarterectomized tissue was obtained from patients with

CTEPH during pulmonary endarterectomy. All experi-

ments were carried out after the approval of our protocol

by the Institutional Review Board of University of Cali-

fornia, San Diego (La Jolla, CA). Written informed con-

sent was obtained from all patients before the procedure.

Cell isolation was performed as previously reported (Oga-

wa et al. 2009). Human PASMC and PAEC from normal

subjects were purchased from Lonza. PASMC and PAEC

were cultured in smooth muscle growth media (Lonza)

and endothelial growth medium (Lonza), respectively.

When serum starvation is needed, 0.1% fetal bovine

serum (FBS) was added to basal medium without adding

other growth factors. All the cells were incubated in a

humidified 5% CO2 atmosphere at 37°C. After reaching

confluence, the cells were subcultured by trypsinization

with 0.05% trypsin-EDTA (Lonza).

Immunohistochemistry

Lung tissue was obtained by autopsy at Okayama Medical

Center. Immunohistochemical studies were performed
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using formalin-fixed paraffin-embedded sections. Histo-

logical sections were stained with Elastica-Masson’s tri-

chrome stain. Immunostaining for PAR1 and smooth

muscle actin was performed with an automated stainer,

BenchMark XT Instrument (Ventana Medical Systems)

using the iView staining kit (Ventana), according to the

manufacturer’s protocol.

Thymidine Uptake Assay

3H-thymidine incorporation assay was performed to

assess DNA synthesis and proliferation of cells. Cells were

seeded in 12-well plates and treated for each experiment.

Twenty-four hours before treatment is finished, 1 lCi
[3H]-thymidine was added to each conditioned media.

After 1 day, cells were washed with cold PBS once and

washed twice with cold 7.5% trichloracetic acid, and then

lysed with 0.5 M NaOH. The radioactivity was measured

in a liquid scintillation counter. The data were obtained

as counts per minutes.

Western blot analysis

The cells were washed with ice-cold PBS, suspended into

lysis buffer (1% Nonidet P-40, 0.5% sodium deoxycholate,

0.1% sodium dodecyl sulfate, 100 mg/ml phenylmethylsul-

fonyl fluoride, phosphatase inhibitors, and protease inhibi-

tors), and incubated for 30 min on ice. The cell lysates

were then sonicated, centrifuged at 12,000 rpm for 10 min,

and the supernatant was collected. Samples were applied on

SDS-PAGE (4–20%) and proteins were transferred onto

nitrocellulose membranes by electroblotting. Membranes

were blocked in 5% nonfat milk, incubated overnight at

4°C with primary antibodies and then with secondary anti-

body. Blots were developed using the SuperSignal West

Pico Chemiluminescent Substrate (Pierce Biotechnology).

Measurement of [Ca2+]cyt

Cells were plated on 25-mm coverslips and placed in a

recording chamber on the stage of an inverted Nikon

Eclipse/TE 200 microscope with the TE-FM epifluorescence

attachment. Cytoplasmic Ca2+ concentration ([Ca2+]cyt) was

measured in each cell using the membrane-permeable Ca2+-

sensitive fluorescent indicator, Fura-2-AM (Invitrogen). The

cells were incubated at room temperature for 30 min in

modified Krebs solution (MKS) containing 4 lmol/L Fura-

2-AM. The loaded cells were then washed with MKS for

30 min to remove excess extracellular dye and allow intracel-

lular esterases to cleave cytosolic Fura-2-AM into active

Fura-2. Fura-2 fluorescence was observed as 510-nm-wave-

length light emission with excitation wavelengths of 340 and

380 nm by using the digital fluorescence imaging system

from Intracellular Imaging. In all experiments, multiple cells

were imaged in a single field, and one arbitrarily chosen

peripheral cytosolic area from each cell was spatially aver-

aged. [Ca2+]cyt was expressed as Fura-2 fluorescence emis-

sion ratio excited at 340 and 380 nm (F340/F380).

Statistical analysis

The data are expressed as means � SEM. Differences

between groups were examined for statistical significance

using Student’s t-test or one-way analysis of variance fol-

lowed by Tukey’s test. Differences were considered to be

statistically significant when P < 0.05.

Results

Thrombin treatment is associated with
transient Akt and mTOR phosphorylation in
PASMC, but not in PAEC

Thrombin (100 nmol/L)-induced marked phosphoryla-

tion of the Akt/mTOR pathway in normal PASMC

(Fig. 1). Cells were serum-starved for 48 h and the effect

of thrombin was assessed over a 24-h time period, repre-

sentative western blots are shown along with summarized

data (Fig. 1A). Thrombin transiently increased phosphor-

ylation of Akt and subsequently caused marked increase

in phosphorylated mTOR, p70S6K, and eIF4E (12.6-, 2.3-

, 5.7-, 3.6-fold increase in 15 min, P < 0.01, 0.05, 0.05,

0.01, respectively) in PASMC. Interestingly, in PAEC,

there is no concurrent increase in the phosphorylation of

Akt in response to stimulation by thrombin when studied

over the same time period as PASMC (Fig. 1B).

Thrombin-mediated Akt activation/
phosphorylation in PASMC is Ca2+

dependent

We examined whether thrombin-mediated Akt phos-

phorylation is dependent on extracellular and intracellu-

lar Ca2+ (Fig. 2). EGTA (2 mmol/L) was added to the

extracellular solution to chelate extracellular Ca2+ for

15 min. In this EGTA-containing media the phosphory-

lation of Akt was completely prevented (Fig. 2A). Like-

wise, pretreatment of the cells with CPA (10 lmol/L)

in the EGTA-containing media to deplete the ER and

SR calcium stores also prevented the phosphorylation of

Akt. The same conditions had no significant effect upon

the phosphorylation of ERK, another kinase, in the

same cells (Fig. 2B), indicating a specificity of this

effect on Akt. Thrombin-induced Akt phosphorylation,

therefore, requires the presence of extracellular and

intracellular Ca2+.
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Long-term serum starvation enhances
thrombin-mediated Akt phosphorylation in
PASMC

Upon chelation of Ca2+ in the media (Fig. 2), we

observed only partial recovery of Akt phosphorylation

could be achieved after replacing the calcium-free media.

We examined the effects of conditioned media versus

fresh media on thrombin and PDGF-induced Akt phos-

phorylation (Fig. 3A and B). Cells were grown in smooth

muscle cell growth media and serum-starved for 48 h

prior to either thrombin or PDGF stimulation. The
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Figure 1. Time course of thrombin-induced Akt/mTOR pathway phosphorylation in PASMC and PAEC. (A) RepresentativeWestern blots with bar graphs

showing time-dependent changes in phosphorylated and total proteins of Akt/mTOR pathway induced by thrombin stimulation in normal PASMC.

Protein expression was assessed at 0.25, 3, 12, and 24 h after thrombin treatment. Summary data (mean � SE, n = 3) were quantitated and compared

at each time point with the control being without thrombin treatment. *P < 0.05 and **P < 0.01 versus Control (Cont) bars. (B) RepresentativeWestern

blots showing no phosphorylation of Akt induced by thrombin (100 nmol/L). Blots were representative of 3 independent sets of experiments.
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effects of thrombin and PDGF on Akt phosphorylation

in conditioned growth media was compared to fresh

growth media. Thrombin-induced Akt phosphorylation

was only seen when prepared in conditioned media as

opposed to fresh media, while PDGF was able to stimu-

late Akt phosphorylation in both conditioned and fresh

media. As shown in Fig. 3C, thrombin had no significant

effect on Akt phosphorylation in the presence of 10%

fetal bovine serum, while in serum deprived conditions

(0.1% FBS), there was an increase in Akt phosphoryla-

tion after thrombin stimulation. Interestingly serum

deprivation was not required for thrombin-induced ERK

phosphorylation, though a greater increase in thrombin-

induced ERK phosphorylation was seen with 0.1% FBS

conditions (Fig. 3D). We next assessed the time course

of serum deprivation that was required for thrombin-

induced Akt phosphorylation. As shown in Fig. 3E,

serum starvation without thrombin stimulation was not

associated with Akt phosphorylation. Thrombin and
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PDGF (as a positive control) were added for a period of

15 min subsequent to serum starvation for the indi-

cated time periods. Thrombin-induced Akt phosphoryla-

tion is shown at 36 h of serum deprivation and further

deprivation leads to increased Akt phosphorylation

through 72 h. PDGF, on the other hand, was able to sig-

nificantly induce the phosphorylation of Akt at each time

point with no significant differences in phosphorylation

up to 72 h.

Thrombin induces Ca2+ entry and enhances
SOCE in PASMC

Thrombin causes a transient rise of [Ca2+]cyt in PASMC

(Fig. 4A). Store-operated calcium entry (SOCE) was

elicited by passive ER calcium store depletion with

CPA (10 lmol/L), while maintaining low extracellular

[Ca2+] (first peak). Upon repletion of extracellular [Ca2+]

(1.8 mmol/L), there is an increase in intracellular [Ca2+]

(second peak) through store-operated calcium channels

(SOCC). Thrombin (100 nmol/L) pretreatment for 24 h

in human PASMC resulted in enhanced SOCE compared

to untreated cells (Fig. 4B).

Thrombin treatment increases proliferation
in PASMC from both IPAH and CTEPH
patients

In cell proliferation assays, cells were serum-starved for

48 h and the effect of thrombin (100 nmol/L) was

assessed over a 24-h time period (Fig. 5). In normal

PASMC, thrombin did induce a small but significant

increase in proliferation, while PASMC derived from

patients with IPAH and CTEPH had significantly higher

proliferation responses to thrombin (Fig. 5A). Interest-

ingly, thrombin-induced proliferation was significantly

greater in CTEPH cells than both IPAH and normal

PASMC (Fig. 5B).

PAR1 is present in CTEPH tissue

In lung tissues of CTEPH, Elastica-Masson staining shows

layers of organized thrombi and multiple recanalized

channels in the thrombi (Fig. 5C). PAR1, a thrombin

receptor, staining was positive not only in endothelial cell

layer but also in the cells in organized thrombi (Fig. 5D).

PAR1 positive cells in the organized thrombi were also

positive for smooth muscle actin staining (Fig. 5E).

Thrombin treatment is associated with
transient Akt and mTOR phosphorylation in
CTEPH PASMC

Consistent with the previous experiments in normal

PASMC, CTEPH PASMC treated with thrombin tran-

siently increased Akt and subsequently mTOR phosphory-

lation (Fig. 6). Cells were serum-starved for 48 h and the

effect of thrombin (100 mmol/L) was assessed over a

24 h time period.

Thrombin-induced proliferation is
attenuated by both Akt and mTOR
inhibition in CTEPH PASMC

As described previously, thrombin treatment is associated

with increased thymidine uptake in CTEPH PASMC,

indicating increased DNA synthesis and proliferation. To

determine the contribution of Akt signaling to this effect,

we used inhibitors of both Akt and mTOR (Fig. 7). A

commercially available Akt inhibitor previously validated

as a selective Akt 1/2 inhibitor (Calleja et al. 2009) was

able to attenuate thymidine uptake. Rapamycin, which is

known to have a primary effect of mTOR inhibition

(Brown et al. 1994; Edinger et al. 2003), was also able to

attenuate thymidine uptake in CTEPH PASMC. These

findings indicate that each of these agents inhibit the

proliferative effects of thrombin on CTEPH PASMC.
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Discussion

The current results highlight the potentially important

role that thrombin plays on Akt phosphorylation in

PASMC and the implications of this mechanism in dis-

ease pathogenesis of IPAH and CTEPH. We have impli-

cated Akt phosphorylation in the effects of thrombin on

both normal PASMC and CTEPH cells with transient

increased Akt phosphorylation peaking around 3 h.

Intracellular calcium regulation is shown to be an impor-
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tant mediator of the effects of thrombin as Akt phos-

phorylation can be blocked by chelation of extracellular

[Ca2+] in the growth media or passive depletion of intra-

cellular [Ca2+] by CPA, yet there is no similar effect on

ERK phosphorylation, a parallel kinase pathway. Serum

starvation appears to be an important mediator of

thrombin’s activity on Akt phosphorylation with the

greatest effects seen after 72 h of serum starvation, an

effect that is distinct from other similar pathways such

as PDGF. Consistent with previous data (Wu et al. 2003;

Firth et al. 2009), thrombin is also associated with a

transient rise in intracellular calcium in PASMC, our

current results show that this rise is at least in part due

to enhanced SOCE.

As a part of the common coagulation cascade, throm-

bin plays an important role in thrombosis, an essential

event in the development of CTEPH. Furthermore,

thrombin is known to exert direct effects on intracellular

signaling pathways in the pulmonary vasculature, which

has previously been demonstrated to contribute to vascu-

lar injury (McNamara et al. 1993; Ghigliotti et al. 1998;

Schror et al. 2010). Thrombin has been shown to mediate

endothelial cell contraction and increased cell gap

formation leading to direct PASMC exposure to thrombin

(Vogel et al. 2000). Intracellular effects of thrombin are

mediated through cleavage of the extracellular domain of

protease-activated receptors (PARs); G-protein coupled

receptors at the cell membrane (Vu et al. 1991; Coughlin

2000). PARs have been shown to impact downstream

effects by phosphorylation of ERK and Akt in platelets

and various vascular SMC (Madamanchi et al. 2001;

Hunter et al. 2009; Smyth et al. 2009; Chung et al. 2010),

yet limited data exist in PASMC (Gorlach et al. 2005).

Here, we have shown the presence of PARs in CTEPH tis-

sue and colocalization with SMaA staining that suggests

smooth muscle cells, and smooth muscle progenitor cells,

are presenting these receptors. We have shown that

thrombin-induced proliferation is greater in IPAH versus

normal PASMC and that it is further increased in cells

derived from CTEPH patients after pulmonary endarter-

ectomy (PEA). Our previous study has shown this
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CTEPH tissue to contain a substantial presence of pro-

genitor cells (Yao et al. 2009; Firth et al. 2010). We have

identified smooth muscle alpha-actin (SMaA) positive

cells account for >85% of the total cell population, yet

the diversity of staining density and pattern suggest an

early, not fully differentiated smooth muscle cell line in

the CTEPH thrombi. RT-PCR results have confirmed

early smooth muscle differentiation markers SMaA and

transgelin along with intermediate filaments nestin and

vimentin. Therefore, we have identified both similarities

and differences between thrombin stimulation of normal

PASMC, IPAH PASMC, and CTEPH PASMC in this

study.

The intracellular signaling effects of thrombin have

not previously been studied in CTEPH. Increased

PASMC proliferation in and around CTEPH tissue will

lead to vascular remodeling, a critical event leading to

increased pulmonary vascular resistance and increased

pulmonary arterial pressure (Moser and Bloor 1993).

Similarly, IPAH is thought to confer a hypercoaguable

state, with in situ thrombosis being a long-known, yet

poorly understood pathogenic characteristic of this dis-

ease (Pietra et al. 1989). Therefore, thrombin may likely

play a pivotal role in IPAH as well as CTEPH and our

data presented here implicate its importance in vascular

remodeling.

A ubiquitous pathway in the human body, Akt/mTOR

was first described in cancer research as an antiapoptotic

mechanism (Vivanco and Sawyers 2002; Morgensztern

and McLeod 2005). This pathway has since been shown

to have multiple downstream effects in different cell types

with cell survival shown to be an important global func-

tion (Datta et al. 1999; Mangi et al. 2003; Liu et al.

2008). Our current data suggest that thrombin mediates

increased Akt phosphorylation in PASMC, which we pro-

pose will promote the pathogenesis of both CTEPH and

IPAH through increased PASMC proliferation leading to

medial hypertrophy and vascular remodeling. Recent

study has shown the Akt/mTOR pathway to be important

to PASMC proliferation in experimental animal models

of PAH and hypoxia-induced PASMC proliferation in

vitro (Humar et al. 2002; Paddenberg et al. 2007; Agard

et al. 2009; Houssaini et al. 2013). Our previous data

suggest that this pathway plays an important role in

store-operated calcium entry and subsequently PASMC

proliferation in endarterectomized tissue from CTEPH

patients (Sacks et al. 2008; Ogawa et al. 2009). Our

current data further provide evidence that the Akt/mTOR

signaling pathway is necessary for thrombin-mediated

increases in proliferation in CTEPH PASMC.

This study examines the effects of thrombin on differ-

ing cell lines and under unique conditions. In PAEC, Akt

phosphorylation has been associated with increased NO

synthesis, a mechanism of vasorelaxation (Hisamoto et al.

2001; Morales-Ruiz et al. 2001), yet our data that throm-

bin fails to lead to Akt phosphorylation in PAECs would

lead us to believe that thrombin-induced Akt phosoph-

orylation is cell-specific in the pulmonary vasculature

leading to detrimental vascular remodeling rather than

the protective effects that would result from NO synthe-

sis. Calcium-dependent phosphorylation is also shown to

be specific to Akt in PASMC, with the parallel ERK

pathway showing calcium-independent phosphorylation.

Previous study has shown both calcium-independent and

calcium-dependent mechanisms of ERK and Akt phos-

phorylation (Shah and Catt 2002; Takahashi and Mendel-

sohn 2003; Schmitt et al. 2004; Li and Malik 2005; Xiang

et al. 2010), and the current data suggest that these mech-

anisms are distinct among different stimuli and possibly

in different cell lines. By understanding the predominant

mechanism of injury, we can better target specific cell

lines and kinase pathways either separately or synergisti-

cally.

The effects of thrombin on PASMC in this study

appear to require serum deprivation for at least 24 h in

order to phosphorylate Akt, a specific effect that was not

seen with thrombin-mediated ERK phosphorylation. We

suggest that target receptor upregulation, cofactor secre-

tion, or depletion of thrombin inhibitors may be involved

in the requirement of serum deprivation for this effect.

Previous study has also shown growth arrest-specific gene

6 (Gas6) to be a cofactor that enhances thrombin-induced

proliferation in rat PASMC, yet lacks intrinsic activity

alone (Nakano et al. 1995; Goruppi et al. 1996; Nagata

et al. 1996). It will be interesting to evaluate if thrombin

receptors, including PARs, are upregulated after serum

deprivation or other secreted factors such as Gas6 may be

working in conjunction with thrombin in order to medi-

ate the phosphorylation of Akt. It must also be consid-

ered that an inhibitor of thrombin activity, such as

antithrombin III, found in bovine serum is present that

degrades over time.

We conclude that thrombin treatment induces cell pro-

liferation and Akt phosphorylation in IPAH and CTEPH

PASMC. We still are limited with our conclusions due to

the fact that these CTEPH cells have not been clearly

identified, yet appear to resemble immature SMC.

[Ca2+]cyt appears to be required for phosphorylation of

Akt, yet the Akt/mTOR pathway also enhances the rise of

[Ca2+]cyt in PASMC through SOCE. Thrombin is known

to be important in clotting and thrombus formation, but

our data would implicate that thrombin may play a criti-

cal role in pathogenic vascular remodeling of both IPAH

and CTEPH and may be a novel therapeutic target. Direct

thrombin inhibitors have recently been used clinically as

anticoagulants to treat acute venous thromboembolism
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and to prevent thrombosis in atrial fibrillation (Di Nisio

et al. 2005; Schulman et al. 2009). The current data

would suggest that there may be further effects that these

medications have on intracellular signaling pathways in

the pulmonary circulation. We hope to shed new light on

these mechanisms in order to provide further evidence

for use of these medications in both IPAH and CTEPH.

We further show that Akt/mTOR is affected by and has

important effects on [Ca2+]cyt in PASMC, which has

important implications in vascular remodeling of IPAH

and CTEPH.
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