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Deep-coverage spatiotemporal proteome of the
picoeukaryote Ostreococcus tauri reveals differential
effects of environmental and endogenous 24-hour
rhythms

)
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The cellular landscape changes dramatically over the course of a 24 h day. The proteome
responds directly to daily environmental cycles and is additionally regulated by the circadian
clock. To quantify the relative contribution of diurnal versus circadian regulation, we mapped
proteome dynamics under light:dark cycles compared with constant light. Using Ostreococcus
tauri, a prototypical eukaryotic cell, we achieved 85% coverage, which allowed an unprece-
dented insight into the identity of proteins that facilitate rhythmic cellular functions. The
overlap between diurnally- and circadian-regulated proteins was modest and these proteins
exhibited different phases of oscillation between the two conditions. Transcript oscillations
were generally poorly predictive of protein oscillations, in which a far lower relative amplitude
was observed. We observed coordination between the rhythmic regulation of organelle-
encoded proteins with the nuclear-encoded proteins that are targeted to organelles. Rhythmic
transmembrane proteins showed a different phase distribution compared with rhythmic
soluble proteins, indicating the existence of a circadian regulatory process specific to the
biogenesis and/or degradation of membrane proteins. Our observations argue that the cel-
lular spatiotemporal proteome is shaped by a complex interaction between intrinsic and
extrinsic regulatory factors through rhythmic regulation at the transcriptional as well as post-
transcriptional, translational, and post-translational levels.
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physiology over the 24 h of the day/night cycle. Before the

advent of -omics techniques, reverse genetic approaches
identified clock genes in multiple organisms and facilitated the
dissection of their auto-regulatory transcriptional-translational
feedback loops (TTFLs) in the different taxonomic groups!. These
feedback loops play a role in the regulation of circadian phy-
siology, metabolism and many other aspects of cellular
physiology?. Genetic and transcriptomic information are the
major source of information upon which models of the cellular
clock have been built. However, abundant evidence also suggests
that post-transcriptional and post-translational processes are
essential to circadian regulation3=>. Indeed, in several different
contexts, circadian rhythms have been observed in the complete
absence of transcriptional feedback®=®. Since changes in protein
activity underlie every biological process, these studies highlight
the importance of studying eukaryotic circadian clocks at the
proteome level when investigating the links between environ-
mental signals, TTFLs and post-translational circadian regulation.
However, functional circadian proteomics pales in comparison
with the detailed characterisation of circadian transcriptomes.

While temporally resolved proteomics datasets exist for a
handful of model species (reviewed in ref. 19), methodological
limitations have meant that the coverage of the theoretical
maximum proteome is substantially lower than for tran-
scriptomics studies. Lowly abundant proteins, cell cycle proteins,
organelle-encoded proteins and transmembrane proteins tend to
be underrepresented!!'12, as sample complexity exceeds the
detection capacity of mass spectrometric analyses. This is reflec-
ted by a maximum of 45% total proteome coverage over circadian
time series in the fungus Neurospora'2, 30% in Drosophila'3, 12%
in Arabidopsis'* and 9% in mouse!®. Furthermore, proteomics
studies have exclusively been performed either under rhythmic
environmental conditions (e.g. light:dark cycles) or under con-
stant conditions. These experimental approaches are fundamen-
tally different, as they either reflect the combined influences of
environmental stimuli and circadian-regulated rhythms, or only
the latter. Therefore, a direct comparison between different
-omics studies is challenging since experimental details frequently
vary!0.

The aim of this study was to provide a detailed analysis of
diurnal versus circadian proteomes in a single study, with high
proteome coverage including organellar and integral membrane
proteins. To reduce sample complexity, we employed the
uniquely minimal cellular and genomic complexity of the model
cell Ostreococcus tauri, a picoeukaryotic alga. This cell type is well
established as a cellular model for circadian rhythms across
eukaryotes”17-19, and is highly amenable to culture under natural
diurnal versus constant circadian conditions. Our results provide
a rare insight into the complex relationship between environ-
mental and circadian regulation of protein abundance across
time, revealing a strikingly differential spatiotemporal proteome
under these two conditions.

Endogenous circadian clocks drive organismal and cellular

Results

A deep coverage diurnal and circadian proteome. To attain a
deeper understanding of how cellular proteomes change over
time, we established extraction procedures to enable increased
coverage of transmembrane and organellar proteins in the
minimal clock model system Ostreococcus tauri'® (Fig. 1a). We
sampled a single day under light-dark entrainment (LD) and
three days under constant circadian conditions (LL; Fig. 1b). The
longer sampling under constant conditions is necessary to detect
repeating patterns and separate true circadian free-running
rhythms from noise, and to allow the quantification of

circadian period over three cycles. As cycles are virtually indis-
tinguishable under LD entrainment (refs. 22! and Supplemen-
tary Fig. 1a), a single cycle was sampled. Based on the negligible
difference between biological repeats observed in a pilot experi-
ment (Supplemental Fig. 1b), biological triplicates were pooled to
essentially generate a single ‘mean’ value, before mass spectro-
metric quantification of the proteome by 11-plex Tandem Mass
Tagging Mass Spectrometry (TMT-MS). This methodology
allowed the detection of 86% of the 7700 nuclear-encoded pro-
teins, of which 79% were detected at all time points (Fig. 1c and
Supplementary Data 1).

To detect ~24h rhythmicity within the proteome, we
compared the methods eJTKZ%, RAIN23 and ECHO?2%. All
methods consistently separated rhythmic proteins from arrhyth-
mic proteins under LD (Supplementary Fig. 2a, ¢). However, a
smaller overlap of rhythmic proteins was observed between
methods when analysing the LL data (Supplemental Fig. 2b, d).
While we provide all results from these three methods in
Supplementary Data 2, we will use the eJTK results for all our
subsequent analyses because that is the most commonly accepted
method in the field and resulted in the more convincing heat
maps when applied to our data set. eJTK detected rhythmicity for
67.2% of proteins under LD (Fig. 1d), and 17.9% under LL
(Fig. 1e), with a substantial overlap between the two (Fig. 1f). The
observation that the Ostreococcus proteome is more rhythmic
under entrained than constant conditions is consistent with
previous observations in mouse?> and the overall percentage of
clock-regulated proteins is within the range observed with other
eukaryotes!1-13, Rhythmic proteins in LL exhibited a mean
period of oscillation of 23.3h (Supplementary Fig. 3a), in line
with previous observations with clock luciferase reporter lines
under similar conditions2°.

Verification of the proteome dataset with alternative experi-
ments. Consistent with previous reports!®27-29, oscillations in
the abundance of the central components of the canonical clock
circuit and light perception system were phased similarly under
the two conditions (Fig. 2a and Supplementary Fig. 3b-c). We
compared the protein profiles of the Ostreococcus clock proteins
CCAl and TOC1 with longitudinal imaging of translational
fusions of these proteins with firefly luciferase. We observed
excellent agreement between luminescent and proteomics-derived
traces in terms of phase and amplitude under both conditions
(Fig. 2b). As in other species®), the circadian clock and cell cycle
are tightly coupled in Ostreococcus and show identical periods!,
leading to the prediction that cell cycle proteins would show
similarly organised oscillations between both conditions. We
identified 44 core cell cycle candidate proteins based on the
Ostreococcus genome (Supplementary Data 1). Whilst more of
these proteins showed significant daily rhythms under LD than
LL, the cell cycle stages inferred from these rhythmically abun-
dant cell cycle proteins are near-identical (Fig. 2a). Our data
suggests that the coupling of the cell and circadian cycles is
established by a handful of rhythmic regulatory proteins that
initiate progression into G1, S, G2 and M phases (Supplementary
Fig. 3d-f). As independent verification of these inferred cell cycle
stages, we monitored cell division under constant conditions and
observed the anticipated relationship (Fig. 2c). Combined, the
clock protein luminescence data (Fig. 2b) and matching cell
division phases (Fig. 2¢) independently validate our proteome
dataset as an accurate description of temporal cellular
organisation.

Limited relationship between entrained and free-running
rhythms. The consistent phase of the circadian and cell cycles
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Fig. 1 Deep-coverage diurnal and circadian proteomes. An overview of the experimental workflow (a) and sampling schedule (b) to obtain a deep-
coverage proteome. Samples were taken every 3.5 h (arrows) for 1 day under entrained conditions (LD) and for 3 days under constant conditions (LL).
¢ The percentage of nuclear-encoded Ostreococcus proteins that were quantified at all time points (blue), some time points (orange) or none (red). d-e
Heat maps showing min-max (red-yellow; Z-scores as indicated) normalised plots for all rhythmic proteins in LD (d) or LL (e). Rows represent individual
proteins, ordered by phase, where each column is a separate time point. f Venn diagram showing the overlap between rhythmic proteins under LL and LD,
along with rhythmicity percentage under each condition. Source data for ¢-f can be found in Supplementary Data 1.

between LD and LL conditions suggested that clock-regulated
output pathways may also be similarly phased. Photosynthesis is
one of the most important clock-regulated outputs, but when
comparing the rhythmicity parameters of photosynthetic proteins
there was little similarity or consistency between the identity or
phase of rhythmically abundant proteins under LD compared
with LL (Supplementary Fig. 4). While this might be surprising at
first sight, the divergence between LD and LL rhythms is clear on
the proteome-wide scale. Firstly, while a substantial overlap is
observed between rhythmic proteins under LD and LL conditions
(Fig. 1f), there is a sizable group of proteins only rhythmic under
one of two conditions, indicating a complex interaction between
endogenous circadian rhythms with environmental inputs. We
observed a significantly higher relative amplitude of oscillations
under LD than LL conditions (Fig. 3a). Although the overall
difference in means is small, the maximum relative amplitude
under LD was 94% versus 38% under LL. Even more notably, the
phase distributions of rhythmic proteins were highly differential
between LD and LL. The single predominant phase of highest
abundance observed under LD was shortly before dawn, while
under LL conditions this is in the early subjective night (Fig. 3b).
While this difference may be explained in part by the incomplete
overlap between proteins rhythmic in LL and LD, the peak
abundance phase is distinct even among those proteins that are
rhythmically abundant under both conditions (Fig. 3c). As
expected, there was no coherence between overrepresented Gene
Ontology (GO) or Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways at different phases under both conditions
(Supplementary Fig. 5). Together, these data show that the
similarly phased cell and circadian cycles under LD versus LL
conditions do not lead to coherent functional proteome-wide
regulation, and therefore that rhythmicity under entrainment
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cannot be inferred from circadian studies under constant con-
ditions alone, or vice versa.

Limited correlation between transcript and protein abundance
rhythms. Publicly available transcriptomic data in Ostreococcus is
currently limited to a single microarray study, sampled as three
replicate days under entrained LD 12h light/12h dark
conditions?!. The gene models used for that study>? have more
recently been updated33, and upon re-assessment of the probe
sequences, we found that 5925 out of 8056 probes map to a
unique mRNA. We subjected the microarray data for these
probes to the same rhythmicity tests as our proteome dataset and
found that nearly all transcripts (98%) exhibited significant
rhythms in abundance under diurnal conditions (Fig. 4a), while
we found that only 67.2% of proteins are rhythmically abundant
under these conditions. The peak phase distribution of transcript
rhythms reveals an astonishing bimodal distribution, with peaks
in phase around ZT9 and ZT20 (Fig. 4b) just before dusk and
before dawn. This previously undetected double wave of tran-
scriptional regulation is consistent with the canonical model of
circadian rhythmicity, in which TTFLs allow cells to prepare for
the differential demands of day and night through anticipatory
changes in gene expression. Implicit to this model is the
assumption that mRNA abundance determines protein abun-
dance. However, we observed that the latter shows only a single
dawn-phased peak during 24 h (Fig. 3b). This implies that only
the pre-dawn peak in gene expression leads to a subsequent peak
in protein abundance.

To resolve this apparent paradox, we examined the temporal
relationship between those rhythmically abundant proteins that
are encoded by rhythmically abundant mRNAs, since it seemed
plausible that the transcripts peaking pre-dusk might not encode
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Fig. 2 Proteome data accurately represent cellular rhythmicity. a Diagrams depicting the key rhythmically abundant proteins of the circadian and
photoperception systems (white) or the cell cycle (grey), expressed on a 24 h clock face based on their peak phase under LD or LL. b The relative
abundance of TOCT and CCAT1 in LD (0-24 h) and LL (48-120 h) as determined by proteomics (data points, right Y-axis) or luciferase results (lines, left
Y-axis; mean of n =30 (TOC1-LUC) or n= 48 (CCAT1-LUC)). ¢ The cell cycle phases inferred from proteomics, overlaid with observed cell division events
under LL. Source data for proteomics results can be found in Supplementary Data 1.
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Fig. 3 No clear relationship exists between entrained and free-running temporal proteomes. a The relative amplitude of rhythmic proteins under LD or
LL, expressed individually or as frequency distributions. b Circular histograms showing the number of rhythmic proteins in LD and LL that peak at each
1-hour phase interval. ¢ Phase distribution under LD or LL of proteins that were significantly rhythmic in both. Statistics reflect Mann-Whitney tests and
Cohen's d. Source data can be found in Supplementary Data 1.
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Fig. 4 Partial correlation between transcript versus protein abundance. a Heat map showing min-max (red-yellow; Z-scores as indicated) normalised
plots for all rhythmic transcripts following a reappraisal of published data2! under entrained conditions. b Circular histogram showing the number of

rhythmic transcripts in LD at each 1-hour peak phase interval. ¢ Frequency distribution of protein or transcript peak phase under LD conditions, for those
where both gene products were rhythmic. d One-for-one phase harmonics between rhythmic proteins and their rhythmic transcript, expressed as peak
phase of transcript minus peak phase of protein. The mean value is indicated by a dotted line, and values that correlate with a protein peaking in a 2-6 h
window after the transcript are indicated with a shaded box. e-f Relative amplitude values (e) and frequency distribution of relative amplitude (f) of

transcripts versus proteins under LD conditions. Statistics reflect Mann-Whitney tests and Cohen's d. Source data can be found in Supplementary Data 1.

rhythmic proteins. We identified 3249 such genes among the
4896 genes for which both transcript and protein abundance data
are available. Again, we observed 2 daily peaks of transcript
abundance but only one for protein abundance (Fig. 4c). In a
gene-by-gene comparison of the phase relationship between each
transcript with its encoded protein (transcript phase — protein
phase), the modal group of proteins peaked 4h after their
transcripts (Fig. 4d). Clear harmony was observed for the protein
peak following the transcript peak of the canonical clock protein
TOC1 and the photoreceptor LOV-HK, likely involved in
entrainment (Supplementary Fig. 6a). These observations are
consistent with findings from other organisms!!, and support the
canonical model of linear information flow in genetic systems
(gene > mRNA > protein). However, only about 30% of the
proteins peaked between 2 and 6h following their cognate
transcript, meaning that the majority of proteins did not (Fig. 4d).
For example, the transcript and protein peaks of the key cell cycle
kinase Weel were nearly antiphasic to one another (Supplemen-
tary Fig. 6b). This corresponds with observations in other
organisms that fewer than half of rhythmic proteins are encoded
by rhythmic mRNAs under entrained conditions?>34. Finally,
transcriptional rhythms showed an average relative amplitude of
78.8%, with transcript levels oscillating by as much as 5-fold
(Fig. 4e-f). This contrasts with the mean relative amplitude of
7.3% observed for protein levels under the same conditions, with
no proteins exceeding a 1-fold change.

Considering these differences between transcript- and protein-
level rhythmicity, we hypothesised that there may be differences
in biochemical properties of rhythmic versus arrhythmic proteins
that confer a propensity or recalcitrance to circadian regulation.
However, no clear differences were observed in protein isoelectric
point, predicted disordered regions, hydropathy, protein size, or
mean protein abundance under either LD or LL conditions
(Supplementary Fig. 7): p values were >0.01 and Cohen’s d

statistic values were small, indicating an insignificant proteome-
wide effect size. Therefore, it seems unlikely that any of these
factors contribute to protein-level rhythmicity. The more
parsimonious explanation is that in addition to rhythmic
transcriptional information, the light-dark cycle and circadian
system affect proteostasis at the post-transcriptional and post-
translational levels.

Differential proteostasis of transmembrane and soluble pro-
teins. We next compared proteins with predicted transmembrane
helices (TM, 1423 proteins) to those without (Soluble, 6276
proteins). A slightly higher proportion of soluble proteins were
rhythmic compared with TM proteins under LD (55% vs. 50%) as
well as LL conditions (11% vs. 8%). This observation contrasts
with comparisons in the mouse liver proteome, in which trans-
membrane proteins were more rhythmic than soluble proteins!!.
Conversely, TM proteins were more heavily phosphorylated and
more rhythmically phosphorylated than soluble proteins (Sup-
plementary Fig. 8). The highly conserved clock kinases CK1, CK2
and GSK3 are involved in «circadian regulation in
Ostreococcus’3>36, yet they were not differentially abundant.
These results would correlate with previous studies in mammals
showing rhythmic phosphorylation state but constant protein
levels for clock-related kinases37-38,

Interestingly, the peak phase distribution of rhythmic trans-
membrane proteins was different from rhythmic soluble proteins:
in LD, the phase distribution of TM proteins was bimodal with
peaks late in the day and late in the night, whereas soluble
proteins peak only at the latter phase (Fig. 5a). Under LL
conditions, TM proteins peaked in the middle of the subjective
day, whereas soluble proteins peak during the subjective night
(Fig. 5b). Peak phases of soluble proteins match the overall
proteome peak phases, consistent with soluble proteins dominat-
ing the total proteome, while TM protein phases clearly deviate.
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Fig. 5 Proteins with transmembrane helices are differentially regulated from soluble proteins. Circular histograms showing the number of rhythmic
transmembrane or soluble proteins in LD (a) or LL (b) at each 1-hour peak phase interval. ¢ The frequency distribution of the relative amplitude of
transmembrane versus soluble proteins in LD and LL. Statistics reflect Mann-Whitney tests and Cohen's d. Source data can be found in Supplementary

Data 1.

The mean relative amplitude of rhythmic TM and soluble
proteins was not significantly different (Fig. 5c). Together, we
conclude that transmembrane proteins are possibly less likely to
be rhythmically abundant than soluble proteins, but are more
subject to post-translational regulation, which might facilitate
circadian regulation of transmembrane transport activity. Addi-
tionally, the phase separation between TM and soluble proteins
suggests a rhythm in membrane protein biogenesis or degrada-
tion that occurs by completely different and previously
undetected process to soluble proteins.

Coordinated regulation of the organellar proteomes. Following
the surprising phase separation of TM versus soluble proteins, we
next analysed the organellar proteomes to deepen our under-
standing of spatial proteome regulation. Ostreococcus cells con-
tain a single chloroplast and a single mitochondrion, containing
autonomous genomes of 72 and 44kb, respectively®®. We
detected 79% of the chloroplast-encoded and 63% of the
mitochondrial-encoded proteome (Fig. 6a and Supplementary
Data 2). Under LD, 48% of the detected chloroplast-encoded
proteins were rhythmic (Fig. 6b). The majority of these were
ribosomal proteins that peak in the first half of the day, following
the two chloroplast-encoded RNA polymerases that peak just
before dawn. A smaller number of chloroplast-encoded proteins
were rhythmic under LL (Fig. 6b). In contrast, only 26% of
mitochondrial-encoded proteins were rhythmic in LD (Fig. 6¢),
and only two of those were rhythmic in LL (Fig. 6¢). This indi-
cates that the circadian system exerts less control over mito-
chondrial than nuclear or chloroplast gene expression, and that
the observed rhythms under entrained conditions are likely to
largely result from environmental inputs. Indeed, that would be
consistent with the observation that the majority of rhythmic
mitochondrial-encoded proteins under entrained conditions
peaked around dawn.

The majority of the organellar proteome is made up of nuclear-
encoded proteins that are translocated, rather than from
organelle-encoded proteins. Therefore, we selected nuclear-

encoded proteins carrying a signal peptide targeting it for
chloroplast or mitochondrial localisation. The peak abundance
phase of nuclear-encoded proteins (solid line in Fig. 6b) with a
chloroplast Target Peptide or thylakoid lumen Target Peptide was
highly consistent with the phase of chloroplast-encoded proteins
(data points in Fig. 6b) under LD as well as LL. Nuclear-encoded
sigma factors are required for transcription initiation in the
chloroplast and have been shown to confer timing information to
the chloroplast in Arabidopsis®?. We observed a rhythmically
abundant sigma factor (SIG6) phased at ZT2 under LD
conditions and CT10 under LL conditions that could potentially
mediate the environmental and circadian control over chloroplast
gene expression in Ostreococcus (Supplementary Fig. 9). Nuclear-
encoded proteins carrying a mitochondrial Transit Peptide
(mTP) peaked around dawn under LD conditions or in the early
subjective night under LL conditions (solid lines in Fig. 6¢) at
highly similar phases as chloroplast-targeted proteins, indicating
coordinated regulation of chloroplast and mitochondrial protein
abundance.

Discussion

We explored the spatiotemporal regulation of a eukaryotic cel-
lular proteome at high depth of coverage. The analysis of such
large datasets can be performed in one of several ways, and it is
excessively clear that differences in analysis methods can lead to
different interpretation of results and therefore different conclu-
sions. We attempted to contribute to constructive debate by
assessing protein rhythmicity by three of the main commonly
accepted methodologies, and reporting these results and the
overlap between them (Supplementary Fig. 2; Supplementary
Data 2). While one method is not necessarily better than others, a
choice of methods should be based on the requirements and
constraints the dataset provides!®, and plotting heat maps of both
the rhythmic and the arrhythmic proteins provides an excellent
way to visually assess the performance of methodologies on a
given dataset. We chose to use eJTK results for our main figures,
but this is ultimately a subjective choice, and therefore we provide
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under diurnal or constant conditions. Purple dots represent ribosomal proteins, blue RNA polymerases and orange photosystem components. Overlaid is
the frequency distribution (black line, right Y-axis) of peak phase for rhythmic nuclear-encoded proteins carrying a chloroplast Transit Peptide (cTP) or
thylakoid lumen Transit Peptide (ITP). ¢ Phase versus amplitude of rhythmic mitochondrial-encoded proteins (data points, left Y-axis) under diurnal or
constant conditions, overlaid with the frequency distribution (black line, right Y-axis) of nuclear-encoded proteins carrying a mitochondrial Transit Peptide

(mTP). Source data can be found in Supplementary Data 1.

the full results of other analyses. Would the main conclusions of
our paper be different when a different choice was made? Yes and
no. The p values of our results would be different using data
generated from different methods, which might make some
results flip below or above an arbitrary significance threshold.
However, when comparisons between large groups of proteins are
made (for example rhythmic proteins versus arrhythmic) the
numbers involved are exceptionally large, which can lead to
statistical significance of differences which in fact have such a
small effect size that they are unlikely to be biologically relevant.
The effect sizes will not change dramatically between analysis
methods (i.e. a large difference is equally observable in the data
generated by either of the three methods). For this reason,
Cohen’s d statistics are provided to accompany all p values (d
values above 0.2 are considered small but clear, above 0.5 are
medium and above 0.8 large).

Valid conclusions that can be made regardless of analysis
method are that complex interactions are observed between
clock-regulated rhythms and daily environmental cycles, with a
larger number of proteins regulated by the latter. We found little
consistency between transcript and protein rhythmicity.
Although our proteomics data and the mined transcriptomics
data originate from different labs with different growth condi-
tions, the large effect sizes mean that differences in sampling or
culturing are unlikely to explain the full divergence between
transcript and protein rhythms. We also identified a previously

unknown disconnect between the peak abundance phases of
transmembrane and soluble proteins. Conversely, the peak
abundance phases of organelle-encoded and organelle-targeted
proteins show a high degree of synchrony. Taken together, the
key observation that permeated through all our analyses was that
no single variable was able to account for protein abundance
rhythms. Therefore, rhythmic regulation of protein abundance
most likely involves both specific as well as more general
mechanisms that together determine the relative balance between
protein synthesis versus turnover of each protein.

That conclusion is not controversial, given the large number of
processes that exert a documented influence on shaping the
spatiotemporal proteome. The rates of transcription, translation,
post-translational modification, protein transport and protein
degradation are all subject to regulation by transcript-level cir-
cadian rhythmicity = and by  light-dark-dependent
regulation!”#1-4>. These considerations necessitate a more
inclusive view of what we consider to be the fundamental bases of
cellular rhythms. The canonical circadian model suggests that
circadian regulation of cell function is driven solely by rhythmic
gene expression, established by transcriptional/translational
feedback in the core clock. This model assumes linear flow of
information: rhythmic regulation of gene expression leads to
rhythmic mRNAs, which leads to rhythmic protein levels and
rhythmic function. Certainly, the evidence for rhythmic regula-
tion of transcript abundance and the role of clock proteins within
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that is irrefutable. However, rhythmic transcription cannot be
assumed to elicit comparable changes in protein abundance or
activity. Instead, evidence from this study as well as other
eukaryotes shows that rhythmicity of protein abundance cannot
always be inferred from rhythms in transcript abundance344446,
This is consistent with a growing number of studies from outside
the circadian context that prove that mRNA abundance is poorly
predictive of protein abundance or activity*’-4°. In addition, a
growing body of evidence for circadian timekeeping without daily
cycles of transcriptional activation/repression®, argues that
transcript rhythmicity is not the only physiologically relevant
mechanism of timekeeping.

A revised canonical model that might incorporate some of
these insights assumes that rhythmic translation of existing
mRNA leads to proteome-wide rhythms, which in turn drive
rhythmic function. In this model, any mRNA rhythms would be
of secondary importance so long as sufficient template is present
for each protein’s translation. There is sufficient evidence to
support that global translation rates are indeed rhythmically
regulated!”>1-23. Our dataset contains a large number of rhyth-
mic ribosomal proteins, which could potentially link transcrip-
tional rhythms to translational rhythms. However, rhythmic
translation alone would predict similar peak abundance phases
and a far higher overlap between the identity of rhythmic proteins
under entrained and constant conditions. Additionally, it cannot
explain the different phase of transmembrane versus soluble
proteins, nor the coordination of organelle-encoded with
organelle-targeted proteins.

A third model for circadian rhythms is that a post-translational
oscillator drives rhythmic cell function through rhythmic protein
modification and/or degradation rhythms. Here rhythms in
transcript abundance result from rhythmic protein activity
instead of the other way round, i.e. rhythms in any mRNA or
protein abundance are not the cause but a consequence of
rhythmic post-translational activities. Prior evidence in Ostreo-
coccus for rhythmic regulation in the presence or absence of
rhythmic gene expression includes redox-sensitive post-transla-
tional modification rhythms and rhythms of Mg?*t and K+
transport over the plasma membrane. The observed enrichment
for transmembrane transporters among rhythmically phos-
phorylated proteins likely accounts for these previously reported
ion transport rhythms, which is underlined by the low prevalence
of transmembrane transport proteins among rhythmic proteins.
Integration of our study with the wider current scientific litera-
ture provides support for the idea that a combination of tran-
scriptional, translational and post-translational regulation
including protein turnover and subcellular trafficking accounts
for how ~24 h regulation of eukaryotic cell biology is achieved,
similarly to the cyanobacterial circadian system>*. For example,
while the degradation rate of Ostreococcus CCAl protein is
rhythmically regulated by the circadian clock, the degradation
rate of TOCI is instead regulated by dark-to-light transitions*3.
Rhythmic protein degradation rates, either of specific proteins or
globally, could affect proteome rhythms. Inhibition of proteasome
activity delays the Ostreococcus clock at any given phase?3, unlike
inhibition of transcription or translation”. In mouse liver, protein
degradation is highest during the day phase as a result of
rhythmic global autophagy, chaperone-mediated autophagy and
proteasomal activity>>. In addition to rates of protein synthesis
and turnover, rhythmic localisation within cells is another
interesting phenomenon that could influence subcellular protein
abundance. We observed a coordinated upregulation of protein
abundance among organelle-targeted proteins during the early
subjective night. This striking similarity between the peak abun-
dance phases of organelle-encoded and organelle-targeted pro-
teins peak abundance phases indicates a purposeful and

coordinated temporal regulation of chloroplast and mitochon-
drial function. Our cell cycle analysis (Fig. 2c) suggests that this
observed peak phase for organellar proteins is consistent with the
time of organelle duplication, ahead of cell division later in the
night. Clock-dependent coordination of nuclear-encoded,
mitochondrial-targeted protein rhythmicity was also observed in
mice®®, while nuclear-targeted proteins peak throughout the 24 h
cycle®”.

However, the small relative amplitude of rhythmic proteins
that we observed (~5%) certainly begs the question of whether
protein abundance rhythms are in fact a functionally relevant
output of transcriptional rhythms at all. It seems more likely that
transcript rhythmicity presents a means of achieving proteostasis,
to counteract a rhythmic requirement driven by rhythmic func-
tion and associated rhythmic protein turnover. This interpreta-
tion would be supported by the recent observation in mammalian
cells that more rhythmic proteins are observed without a tran-
scriptional core clock than are observed with one®$. Perhaps
rhythmic function generates rhythmic gene expression as a con-
sequence of rhythmic post-translational regulation and protein
degradation, leading to a back to front transcriptional/transla-
tional clock model. Ultimately, to fully understand eukaryotic
cellular timekeeping, a complete picture of circadian post-tran-
scriptional, translational and post-translational regulation is
needed alongside transcriptional regulation. To obtain compre-
hensive models of the cellular circadian landscape, it will be
necessary to integrate different levels of organisation by multi-
omics approaches. This integration relies on high-quality data-
sets, and by contributing the highest-coverage proteome data over
full diurnal and circadian time series available across Eukaryota,
we have provided a step in this direction.

Methods

Sample collection and preparation. All cell lines (WT, CCA1-LUC and TOC1-
LUC) are Ostreococcus tauri OTTHO0595 (RCC745) and were obtained from the
Bouget lab (Laboratoire d’Océanographie Microbienne). Ostreococcus tauri cells
were cultured in artificial seawater (ASW) and entrained under cycles of 12 h light:
12 h dark (LD) as reported previously!” for 6 days. Twenty-four hours prior to the
first sampling point, cultures were either transferred to constant light (LL) or kept
in LD cycles (LD, Fig. 1a). Samples were collected in triplicate every 3.5 h for 3 full
cycles in LL (22 time points) and one full cycle in LD (8 time points). For each time
point whole cells were collected at 4000 rpm for 20 min. Media was discarded and
each cell pellet was gently resuspended in 0.9 ml ASW. Cells were collected at
4000 rpm for 10 min and the media discarded. After adding two chrome beads
(3 mm) to each pellet the samples were snap-frozen in liquid N,. Samples were
stored at —80 °C until all time points were collected. Resuspension buffer (50 mM
Hepes, pH 7.5, 150 mM NaCl, protease inhibitors (Roche)) was added to each
frozen pellet on ice. Cells were lysed using a Tissue Lyser (Eppendorf) in precooled
blocks (1 min at 30/s). Whole lysates were centrifuged at 50,000 g for 30 min at 4 °C
in a Beckman Optima MAX ultracentrifuge. Pellets were kept on ice and were
washed once carefully with resuspension buffer. Pellets were resuspended in 8 M
urea buffer (8 M urea, 20 mM Tris-HCI, pH 8) by vortexing. Samples were then
sonicated in a Bioruptor (Diagenode) for 30's on/30 s off (x5). All samples were
centrifuged at 17,000 g for 10 min to remove unsolubilised debris. Triplicate
samples per time point were pooled, samples were randomised and 50 ug of each
time point was analysed by 3 sets of 11-plex TMT.

TMT peptide labelling. Samples were randomised before allocating to TMT runs,
and the operator was blinded to the sample IDs. Samples were trypsin-digested as
reported previously®®. Lyophilised peptides were resuspended in 20 pl of 175 mM
triethylammonium bicarbonate and labelled with a distinct TMT tag, 12 pl, from a
stock prepared as per manufacturer’s instructions (Thermo Scientific), for 60 min
at room temperature. The labelling reaction was quenched by incubation with
2.2 ul 5% hydroxylamine for 30 min. Labelled peptides from 10 time point samples
and 1 pool were combined into a single sample and partially dried to remove
MeCN in a SpeedVac (Savant). Samples were desalted and the eluted peptides were
lyophilised.

Basic pH reverse-phase HPLC fractionation and LC-MS/MS. The TMT labelled
peptides were subjected to off-line High-Performance Liquid Chromatography

(HPLC) fractionation®®. The fractionated peptides were analysed by LC-MS/MS using
a fully automated Ultimate 3000 RSLC nano System (Thermo Scientific) fitted with a
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100 pm X 2 cm PepMap100 C18 nano trap column and a 75 um x 25 cm reverse-phase
NanoEase M/Z HSSC18 T3 column (Waters). Samples were separated using a binary
gradient consisting of buffer A (2% MeCN, 0.1% formic acid) and buffer B (80%
MeCN, 0.1% formic acid), and eluted at 300 nL/min with an acetonitrile gradient. The
outlet of the nano column was directly interfaced via a nanospray ion source to a Q
Exactive Plus mass spectrometer (Thermo Scientific). The mass spectrometer was
operated in standard data-dependent mode, performing a MS full-scan in the m/z
range of 380-1600, with a resolution of 70,000. This was followed by MS2 acquisitions
of the 15 most intense ions with a resolution of 35,000 and Normalised Collision
Energy (NCE) of 33%. MS target values of 3e6 and MS2 target values of 1e5 were used.
The isolation window of precursor ion was set at 0.7 Da and sequenced peptides were
excluded for 40s.

Spectral processing and protein identification. Raw files were processed using
MaxQuant®® v 1.6.6.0. MS/MS spectra were quantified with reporter ion MS2 and
searched against the nuclear-encoded proteome obtained from the Ostta V2.2
database33%0 plus the mitochondrial and chloroplastic genomes>®. Carbamido-
methylation of cysteines was set as fixed modification, while methionine oxidation,
N-terminal acetylation and phosphorylation of serine, threonine and tyrosine, were
set as variable modifications. Protein quantification requirements were set at 1
unique and razor peptide. In the identification tab, second peptides and match
between runs were not selected. Other parameters in MaxQuant were set to default
values. The MaxQuant output file was processed with Perseus (v1.6.6.0). Identifi-
cations from the reverse database were removed, only identified by site, potential
contaminants were removed, and we only considered proteins with >1 unique and
razor peptide. All columns with an intensity “less or equal to zero” were converted
to “NAN” and exported as a.txt file. The MaxQuant output file with phosphor
(STY) sites table was also processed with Perseus software (v1.6.6.0). The data was
filtered: identifications from the reverse database were removed, potential con-
taminants were removed and we only considered phosphopeptides with localisa-
tion probability >0.75. Then all columns with intensity “less or equal to zero” were
converted to “NAN” and exported as .txt file.

Normalisation. Since an equal amount of protein was used for each TMT labelling
reaction, sample loading normalisation was performed by taking the sum of all
intensities for each time point, and normalising to the mean of these. Internal
reference scaling (IRS)®! was then carried out to allow for comparisons between
TMT experiments: the mean abundance for each protein in each of the three pools
was calculated. The mean of these means was calculated and used to normalise the
value for each protein between the three TMT runs. In instances where a protein
was missing from a pool sample, the mean of the remaining 2 pool samples was
used to normalise. For all except five proteins in the dataset, if a protein was
missing from the pool sample it was also missing from every individual time point
in that TMT run. Peptides that are not unique to one protein were removed, as
were proteins that were detected at too low levels to reliably quantify. Time points
were then de-randomised to obtain the final data set.

Circadian parameter estimations. The JTK_cycle algorithm with empirical cal-
culation of p-values (eJTK)2? was performed using BioDare262. All time points
were included in the rhythmicity analysis, with linear detrending of input data for
LL and no detrending for LD, and parameters as preset for ‘¢JTK Classic’. The cut-
off for rhythmicity was at p < 0.05, as customary for eJTK. The RAIN method?3 was
implemented using the rain() function in the R/Bioconductor software package.
For LD data, ‘period’ was set to 24’, ‘period.delta’ was ‘0" and ‘method’ was
‘independent’. For LL, ‘period’ was set to 24, ‘period.delta’ was ‘4’ and ‘method’
was ‘longitudinal’. For both conditions, ‘deltat’ was 3.5’ and ‘nr.series’ was ‘1’. All
other parameters were left as default. The cut-off for rhythmicity was at p < 0.05, as
customary for RAIN. ECHO was implemented using the echo.find() function in the
ECHO R package®*. For LD data, both ‘low’ and ‘high’ were set to 24’ and
‘is_de_linear_trend’ was left as ‘FALSE’. For LL, Tow’ was set to 20" and ‘high” was
set to 28, while ‘is_de_linear_trend’ was “TRUE’. For both conditions, ‘begin’ and
‘end’ were set to the corresponding time points for the time series, ‘resol’ was ‘3.5’
and ‘num_reps’ was ‘1’. All other parameters were left as default. The cut-off for
rhythmicity was at p <0.05, as customary for ECHO.

For all rhythmic proteins, BioDare262 (biodare2.ed.ac.uk) was used to calculate
all circadian parameters. The MFourFit algorithm was used for absolute phase and
amplitude calculation with amplitude and baseline detrending. Data were log,
transformed prior to all rhythmicity and parameter calculations, except for
amplitude values. LD data were concatenated to be able to approximate these
parameters, and the period was constrained to 23.5-24.5 h. The MESA algorithm
with amplitude and baseline detrending was used for period calculation of the LL
data, constrained to 18-34 h. To transform absolute phase to circadian phase,
absolute phase predictions by MFourFit were divided by 24, and multiplied by the
period as estimated by MESA. Proteins with any missing values in the LD dataset
were omitted from the analysis but kept in the data set with circadian parameters as
Not Determined (ND). For the LL dataset, a maximum of 1/3rd of missing values
was allowed, equating to those missing values for one out of three TMT runs.
Phosphosite data were normalised as described above. For LL, phosphosites

detected in two-thirds of time points were kept in the dataset, and for LD only
those present in all time points were retained. Prior to rhythmicity and circadian
parameter analyses, the phosphosite data were normalised to their protein
abundance across the time points. Phosphosites for which the protein had not been
detected in the dataset were removed. Rhythmicity and circadian analyses were
carried out as above.

Biological verification experiments. Raw luminescence data for Fig. 2 was
detrended by subtracting a rolling average of luminescence readings for the fol-
lowing 24 h?. For cell proliferation analyses, cultures subjected to the identical
conditions as described for the proteomic analyses were sampled every 2 h on the
second day of constant light. Cells were counted under a light microscope using a
haemocytometer. Two biological replicates were performed, with 5 technical
replicates for each time point.

Transcript analysis. The probe sequences from a publicly available O. tauri
microarray study under entrained LD conditions?! were originally designed using
outdated gene models and were therefore blasted against the O. tauri genome V2.2
on the Orcae service3300, This resulted in usable microarray data for 5925 of the
7700 genes in the genome. Circadian parameters were estimated as outlined for the
proteome dataset above, using eJTK without detrending for rhythmicity analysis
and MFourFit for phase and amplitude calculation, with period constrained to
23.5-24.5h.

Structural and functional protein data. Gene ontology and KEGG pathway
analyses were performed in R v3.6.1. The enrichGO and enrichKEGG functions
from the clusterprofiler R package®® were used to compare a target dataset to
background. Transmembrane helices in proteins were predicted using web tool
TMHMM server 2.064, Proteins with at least 1 predicted transmembrane helix were
considered ‘transmembrane’ in subsequent analyses. The Sequence Manipulation
Suite web tool was used to calculate protein molecular weight and isoelectric
point®. N-terminal presequences in the entire nuclear-encoded proteome were
identified with TargetP-2.0%. Those containing a predicted mitochondrial transit
peptide (mTP) were used to generate a ‘mitochondrial proteome’, and those
containing either a chloroplast transit peptide (cTP) or thylakoid luminal transit
peptide (IuTP) were used for the ‘chloroplast proteome’. Hydrophobicity and
intrinsic disorder of proteins were calculated by local CIDER package®” in Python
3.x, with the get_kappa and get_uversky_hydropathy functions used for intrinsic
disorder and hydrophobicity, respectively®®?. A low kappa value implies a pro-
pensity to form random coils and therefore higher intrinsic disorder. Radial plots
were created using the ggplot2 R package. Venn diagrams were generated using the
eulerr R package. To generate heat maps, the rhythmic proteins/transcripts were
ordered by their calculated phase (absolute phase for LD proteins/transcript or
phase in circadian time for LL proteins). The abundance of each protein was
normalised by the time course mean of the protein, and values were centred around
0 using the scale function in R before applying the heatmap.2 function from the
pvclust R package”V. Relevant proteins from different biological processes were
depicted in diagrams based on the following cell categories: cell cycle?!3!, light
signalling and clock?7172, photosynthesis and chloroplast biosynthesis’3, and
organelle-encoded proteins®. Bioinformatic analyses to identify potential candi-
date proteins were conducted using Standard Protein Basic Local Alignment Search
Tool (BLAST) of known protein sequences from other model systems as Arabi-
dopsis thaliana and Homo sapiens using the Ostreococcus genome ORCAE V290,
Graphs, density plots and histograms were plotted and statistics were calculated
using GraphPad Prism v8, R v3.6.1. Figure la and Supplementary Fig. 3b, d-e,
4a-d were made with BioRender.

Statistics and reproducibility. Where data followed normal distribution, we used
two-tailed ¢ tests. Where data did not follow normal distribution, we used
Mann-Whitney U two-tailed tests. Cohen’s d was calculated for all. Sample sizes
are reported on the figure in each case, and refer to numbers of proteins/genes (the
full proteomics experiment was performed once).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE7# partner repository with the dataset identifier PXD025009.
Supplementary Data 1 contains the source data for all main figures except Fig. 2c, and for
Supplementary Figs. 3, 4, 6, 7, 8a-b, and 9. Supplementary Data 2 contains source data
for Supplementary Fig. 2.
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