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Simple Summary: CBL mutations are progressively being described as involved in different clinical
manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum
of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that
includes multisystemic involvement characterized by variable phenotypic expression and expressivity.
In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of
the molecular mechanisms in which CBL exerts its pathogenic role.

Abstract: CBL plays a key role in different cell pathways, mainly related to cancer onset and progres-
sion, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been
reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing
evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called
CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement char-
acterized by variable phenotypic expression and expressivity. This review provides a comprehensive
overview of the molecular mechanisms in which CBL exerts its function and describes the clinical
manifestation of CBL mutations in humans.

Keywords: CBL; CBL syndrome; cancer predisposition; JMML; pediatric oncology

1. Introduction

Over the last years, large-scale genomic studies have uncovered a genetic predisposi-
tion in a large variety of cancers, especially in children [1]. A recent study based on The
Cancer Genome Atlas (TCGA) data set reported that approximately 8% of adult patients
with cancer have a germline predisposing mutation [2]. A similar prevalence of germline
mutations in cancer-predisposing genes has been identified in children and adolescents
with cancer [3]. In addition to providing important insights into diagnostic and prognostic
information, the evaluation of non-tumor or germline material has provided novel informa-
tion on previously unrecognized non-malignant clinical spectrum [4–8]. Casitas B lineage
lymphoma (CBL) is a multifunctional gene codifying for a class of adaptor proteins (CBL
family proteins) implicated in the regulation of signal transduction in many physiological
and pathological processes. Particularly, CBL has been reported to play a role in different
well-known cell pathways, many of those are related to cancer onset and progression,
hematopoietic development and T cell receptor regulation. Growing evidence have defined
the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome, a
cancer-predisposing condition that has been shown to also include multisystemic diseases.
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This review aims to characterize the molecular mechanisms in which CBL exerts its function
and to provide an overall focus on clinical manifestation of CBL mutations in humans.

2. Structure and Function of CBL

CBL proteins are included in a highly conserved family of RING finger (RF) ubiquitin
ligases (E3s). Three CBL member proteins have been described: CBL, CBL-b and CBL-c [9].
CBL and CBL-b are structurally more related, while CBL-c differs by lacking the C-terminal
domains. The structure of CBL protein comprises an N-terminal tyrosine kinase binding
(TKB) domain followed by a linker region, a RING domain, a proline-rich region (PRR), a
C-terminal phosphorylation site and a ubiquitin-association domain (Figure 1).
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Figure 1. Structure of the CBL, CBL-b and CBL-c proteins with the relative functional domains and
main phosphorylation sites. CBL and CBL-b are structurally related while CBL-c lacks the C terminal
domain, including the UBA region and the proline and tyrosine rich region, mediating the binding
to the SH2 and SH3 domain-containing proteins. The highly conserved N terminal region with
the TKB, Linker and RF domains is crucial in the regulation of receptor and non-receptor tyrosine
kinase activity.

The main known function of CBL proteins is the regulation of receptor and non-
receptor tyrosine kinases (RTKs and non-RTKs, respectively), which is implicated in the
transduction of signals from immune receptors (T-cell receptor, B-cell receptors and Fc
receptors). It has been demonstrated that CBL proteins negatively regulate RTKs and non-
RTKs proteins through their ubiquitination and degradation [9,10], mediating the transfer
of ubiquitin from E2 ubiquitin ligase to specific substrates. The CBL protein normally exists
in the cytosol in an inactive state where the catalytic RF domain is masked by the N-terminal
TKB domain. More precisely, the E3 activity tightly depends on a conserved link-helix
region (LHR) tyrosine (Tyr371), that in normal conditions, is anchored to the TKB domain
and constrains the RING domain in an inactive conformation. When stimulated, CBL is re-
cruited to an activated RTK, leading to extensive tyrosine phosphorylation including Tyr371,
which induces conformational changes to activate its E3 activity. This process exposes the
RF domain allowing increased E2 binding to the CBL protein in closer proximity to the
RTK, facilitating the transfer of ubiquitin from the E2 to lysine residues on the RTK. The
ubiquitinated RTK then traffics through the endocytic compartments to the lysosome where
it is degraded [11]. CBL and CBL-b share additional areas of homology in the C-terminal
half of the proteins, including a ubiquitin-association (UBA) domain and more extensive
proline and tyrosine-rich regions, which can be phosphorylated and mediate interactions
with Src homology region 2 and 3 (SH2 and SH3) domain-containing proteins including
GRB2, CD2AP/CIN85, Cool/Pix and p85 subunit of PI3K [12]. These domains play a
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critical role in CBL adaptor function. CBL inhibition occurs through dephosphorylation
mediated by Src-homology-2-containing phosphatase-1 (SH1P) or ubiquitylation mediated
by CBL itself or by the HECT-type E3 ligases atrophin-1-interacting protein-4 (AIP4)/Itch
or NEDD4 [13].

3. The Role of CBL in Signaling Pathway Modulation

As previously seen, diverse functions are mediated by the different CBL domains that
interact with many protein targets, giving rise to a complex signaling network (Figure 2).
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Figure 2. Schematic representation of the three main molecular mechanisms of CBL-mediated
signal transduction modulation. (A) CBL is hypothesized to have a dual role in JAK2 signaling.
On one hand, thanks to the interaction with the mediator LNK, CBL controls the ubiquitination
and consequent degradation of JAK2, on the other hand it has been highlighted how the CBL-
mediated ubiquitination at the JAK2 K970 residue causes JAK2 hyperphosphorylation and the
consequent activation. (B) CBL is a well-known regulator of EGFR signaling, being able to induce
EGFR ubiquitination and degradation. CBL binding can be mediated also by other adaptor proteins
such as Grb2 and CIN85. (C) CBL activity also has a high influence on the PI3K/AKT signaling
cascade. Through the interaction with LYN, it promotes the recruitment of PIK3R1 and the subsequent
PI3K phosphorylation and activation.

The TKB domain that mediates the recognition of phosphorylated tyrosine on activated
RTKs, and the RF domain that recruits ubiquitin-conjugating enzymes, are primarily
responsible for CBL ubiquitin-protein ligases function that controls ubiquitylation and
downregulation of RTKs [13]. CBL has been reported to play a role in different well-known
cell pathways, many of which are related to hematopoietic development, immunology and
cancer onset and progression. Its double role as an E3 ubiquitin ligase and multi-adaptor
protein, which is implicated in positive regulatory functions in signaling transduction,
confers a gain of function mechanism in CBL mutant cells, associated with the disruption
of E3 ubiquitin ligase activity. The gain of function phenotype is partly lost when there is
co-occurrent presence of either the wild-type CBL allele or co-transduction of wild-type CBL.
Indeed, this phenotype becomes apparent in the CBL-null background, which supports
the observation that CBL mutations are often found in a homozygous state with loss of the
wild-type allele. CBL mutations are often missense changes at highly conserved amino-acid
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positions within the linker and RF domains, which in turn leads to amino acid deletions
within these domains. Although the E3 ubiquitin ligase activity primarily depends on
the RF domain, the intact linker sequence is also considered structurally essential for an
efficient ubiquitinylation to occur [14].

3.1. CBL and JAK2 Signaling

JAK2 is a tyrosine kinase implicated in the signaling of type II cytokine receptor family,
including interferon, erythropoietin, granulocyte-macrophage colony-stimulating factor
(GM-CSF) and many types of interleukins [15]. Its role is mainly related to the hematopoietic
compartment, where it is involved in hematopoiesis and in immune system regulation.
JAK2 function is regulated through the control of its phosphorylation status. CBL has
been proven to promote GM-CSF-induced JAK2 activation and signaling, promoting its
full phosphorylation after CBL-mediated ubiquitination at K970 residue [16]. On the other
hand, JAK2 poly-ubiquitination occurs through CBL via the adaptor protein LNK/SH2B3,
increasing its proteasomal degradation [17,18]. The CBL–LNK–JAK2 signaling complex
has indeed been proved to regulate JAK2 ubiquitination, stability and activity.

3.2. CBL and EGFR–CBL–CIN85 Axis

CBL is one of the main regulators of the RTK EGFR [10], whose ubiquitination and
consequent downregulation are strictly linked to CBL RING and TKB domain functions.
The interaction between CBL and EGFR can also be mediated by other interactors such as
the adaptor proteins Grb2 and CIN85. CIN85 contains a SH3 domain that is able to bind
CBL promoting RTKs trafficking to endosomes prior to their lysosomal degradation [12].
In normal conditions, CIN85 binds CBL only under growth factor stimulation, while CBL
mutants are able to interact with CIN85 even without any stimuli causing the deregula-
tion of EGFR–CBL–CIN85 signaling and promoting oncogenic transformation. A strong
demonstration of the acquisition of gain-of-function properties by mutant CBL is that the
disruption of interactions between EGFR or CIN85 and mutant CBL reduces the onco-
genic transformation.

3.3. CBL and PI3K/AKT/LYN Interaction

Another signaling axis playing a significant role in the gain-of-function phenotype
conferred by CBL mutations is CBL–LYN–phosphatidylinositol 3-kinase (PI3K). CBL mu-
tations have been reported to increase the expression levels of the PI3K/AKT pathway
promoting tumoral onset [19,20]. This effect has been demonstrated to be strictly linked
with the interaction with the LYN protein. In CBL mutant cells, increased LYN activation
and interaction with mutant CBL enhance CBL phosphorylation, PI3K regulatory subunit 1
(PIK3R1) recruitment and downstream PI3K/AKT signaling activation [21].

4. CBL in Human Malignancies
4.1. CBL in JMML

The role of CBL as a cancer-predisposing gene was first identified in myeloid neo-
plasms, particularly in juvenile myelomonocytic leukemia (JMML) [22]. JMML is a rare
clonal hematopoietic disorder that typically affects infants and young children, with a
median age at presentation of 2 years [23]. It is characterized by alterations in the RAS
pathway and about 90% of patients harbor a mutation in one of five genes (PTPN11, NRAS,
KRAS, NF1 and CBL) [24]. Clinically, JMML results in anemia, leukocytosis, thrombocy-
topenia and the infiltration of monocytic and granulocytic cells in different organs, chiefly
the spleen.

Homozygous CBL mutations have been found in around 10% to 15% of all JMML
cases [25,26]. Intriguingly, most of these children have a heterozygous germline CBL muta-
tion. Leukemia development is associated with loss of heterozygosity (LOH) occurring, in
the majority of cases, via a uniparental disomy resulting in 11q isodisomy in hematopoi-
etic stem cells [27–32]. CBL mutations are mainly located throughout the linker and RF
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domains encoded by exons 8 and 9, especially in correspondence with Y371C [26,28],
and consist of missense mutations or splice site variants [33]. The end result is the ex-
pression of a CBL protein with defective E3 ligase activity that constitutively activates
the RAS pathway [31]. CBL mutated JMML presents low DNA methylation levels [34]
and secondary genetic alterations are not commonly found [29,35]. The absence of other
concomitant RAS pathway-associated mutations may indicate that CBL mutations play
a pivotal role in deregulating this key pathway in JMML pathogenesis. Notably, clinical
features and methylation profiling are not able to distinguish JMML with CBL germline
mutations from patients with only somatic mutations [29].

This subgroup of JMML is associated with a relatively good prognosis. Most pa-
tients have a self-limiting indolent clinical course with spontaneous regression of the
myeloproliferative disease without any therapy despite the persistence of LOH and clonal
hematopoiesis [28,36,37]. Some children instead present an aggressive disease character-
ized by severe splenomegaly and platelet-transfusion dependency [28,38,39]. Therefore,
a strict clinical follow-up without therapeutic intervention is recommended immediately
after diagnosis (watch and wait strategy), and allo-HSCT is performed only if chromosomal
aberrations occur or in case of disease progression [39]. If necessary, the choice of bridge to
transplant therapy remains uncertain [39]. Interestingly, in a recent trial, the hypomethylat-
ing agent azacitidine demonstrated to provide a relevant clinical benefit in newly diagnosed
JMML prior to HSCT, but patients with CBL mutations were excluded [40].

Spontaneous regression of the myeloproliferative disease sometimes occurs despite
the persistence of LOH and clonal hematopoiesis [28,36,37]. Regardless, a high rate of stable
mixed chimerism is observed after allo-HSCT [39,41]. Recently, a case of reversion of LOH
after allo-HSCT with primary graft failure was reported in a child with CBL-related JMML.
The patient experienced autologous hematopoietic recovery, but regained heterozygous
mutational status through reversion of LOH and was disease-free at the end of the follow-
up, indicating that hematopoietic reconstitution occurred within cells that did not harbor
the JMML-causing homozygous mutation [42].

4.2. CBL in Hematological Neoplasms

Homozygous mutations in CBL have been found in a wide variety of myeloid neo-
plasms other than JMML. CBL mutations are frequent in chronic myelomonocytic leukemia
(5–13% of patients) [43,44] and acute myeloid leukemia (AML), particularly forms sec-
ondary to myelodysplastic syndromes (9% of cases), suggesting that CBL mutations may
contribute to leukemia development [9,43]. Furthermore, CBL mutations could also be
found in myelodysplastic syndromes, chronic myelogenous leukemia and other chronic
myeloproliferative diseases [9,43,44]. Similar to what has been described in JMML, the
majority of patients show missense mutations clustering within the linker region and
the RF domain [9]. Less frequently, exon 8 deletions have been reported [9,45]. Inter-
estingly, most missense mutations are homozygous, while exon 8 deletions are usually
heterozygous [9]. Although in vitro studies demonstrated that expression of CBL exon 8
and/or exon 9 deletions in a CBL wild-type context shows a transforming phenotype, in
the AML patients this alteration was found only in concomitance with other aberrations,
particularly CBF leukemia [46]. It is therefore possible to speculate that CBL mutations
may cooperate in the pathogenesis of this form of AML [45,46]. Moreover, the majority
of CBL mutations in myeloid neoplasms have been reported in the absence of RAS or
PTPN11 mutations, highlighting the mutual exclusivity of CBL mutations and other RAS
pathway alterations [9]. The prognostic impact of CBL mutations in myeloid malignancies
is still controversial [9,44,47,48]. To date, no clear clinical association has been established,
and this should be a focus of research in future. Despite somatic mutations in CBL being
found in approximately 5% of myeloid neoplasms [9], leukemia other than JMML have
not been reported frequently in patients with germline CBL mutations. To date, only
two reports exist in the literature of AML developing in patients with CBL syndrome.
Becker et al. described a case of AML in an adult patient with a heterozygous de novo
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germline mutation in CBL codon D390 located in the RF domain [49]. Somatic leukemia
cells presented with homozygous CBL mutations resulting from copy-neutral LOH and an
additional chromosomal gain at 11q. Additional mutations were found in the AML bone
marrow, including inv(16) (p13q22) [49]. Interestingly, the bone marrow maintained CBL
LOH even during complete remission and with normal blood counts, similar to what has
been described in JMML [28,36,37]. In another report, Ali et al. addressed the case of an
adult patient with missense CBL germline familial mutation in exon 8 developing AML.
Leukemia arose due to copy-neutral LOH occurring through uniparental disomy. After
induction chemotherapy, morphological remission was achieved, but atypical monocyto-
sis and homozygous CBL mutation persisted in the absence of the previously detected
AML-associated mutations and chromosomal alterations. After the consolidation course,
the bone marrow still presented the same reported morphological and genetic features.
The clinicians therefore suspected an underlying chronic myelomonocytic leukemia or
pre-neoplastic monocytic expansion, and performed haploidentical allo-HSCT from her
non-CBL-carrying son, achieving complete chimerism and complete remission [50]. A
homozygous somatic mutation in CBL (p.C381R) associated with an 11q-acquired uni-
parental disomy was found in one patient with T-ALL but without evidence of germline
predisposition [51]. Functional analysis revealed activation of the RAS and ERK pathways,
whereas CBL mutations downregulated the NOTCH1 signaling pathway. ERK activation in
cell-expressing p.C381R decreased with increasing wild-type CBL expression, highlighting
the pathogenic importance of the wild-type CBL allele loss [51]. Mutations in CBL have
also been identified in two infant ALL patients with MLL gene rearrangements [52] and in
three children with B precursor ALL [53]. In the latter patients, small deletions affecting
the intron/exon boundaries of exon 8 occurred, leading to the skipping of exon 8 and
abolishing E3 ligase function. Moreover, constitutive activation of the RAS pathway and
sensitivity to MEK inhibitors was found in mutated samples [53].

4.3. CBL in Other Malignancies

The role of CBL in oncogenesis seems to not be limited to hematological malignancies.
Somatic CBL mutations have been reported in lung cancers [54,55] while diffuse teratomas
and embryonal rhabdomyosarcoma have been observed in patients with germline CBL
mutations resulting in LOH in the CBL locus [56,57]. Daniels et al. recently catalogued the
mutational spectrum found in various tumors of the three genes: CBL, CBL-b, and CBL-c in
the TCGA database [58]. The mechanism by which CBL contributes to the pathogenesis of
solid tumors has not been completely clear. Other than the already discussed effect on the
RAS pathway, a fascinating hypothesis is to consider the role of CBL in tumor-mediated
angiogenesis [59]. Tumors of c-CBL knockout mice indeed exhibit increased growth and
higher angiogenesis compared with wild-type mice [60] (Figure 3).

5. CBL in Non-Malignant Clinical Spectrum
5.1. CBL Syndrome

In the last few years, the role of CBL in non-malignant phenotype has been progres-
sively described. CBL genetic mutations can lead to a complex multisystemic syndrome
characterized by variable phenotypic expression and expressivity known as “CBL syn-
drome” (OMIM #165360). It is a Noonan syndrome (NS)-like disorder that can be included
in the vast field of RASopathies, a group of genetic entities caused by germline mutations
in genes of the Ras/MAPK cellular pathway [61]. CBL mutations are thought to account for
<1% of patients with clinical features resembling NS. To date, the increasing application of
next generation sequencing (NGS) is revealing CBL germ-line mutations in 1–6% of patients
who received a clinical diagnosis of NS or NS-like disorders in the absence of mutations
in the known causative genes (e.g., PTPN11, SOS1, KRAS, NRAS) [62–64]. While most of
the reported patients carried heterozygous CBL mutations, various clinical findings have
also been described in patients with homozygous CBL mutations not developing JMML, as
discussed below in detail.
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Figure 3. Known clinical manifestations of CBL mutations. The non-malignant phenotypes are
an expression of germline CBL mutations. Cancers described in patients harboring a germline
CBL mutation are highlighted in red. ALL: acute lymphoblastic leukemia; AML: acute myeloid
leukemia; CML: chronic myelomonocytic leukemia; CNS: central nervous system; JMML: juvenile
myelomonocytic leukemia; MDS: myelodisplastic syndrome.

The first reports of CBL syndrome arose from cohorts of children with CBL-mutated
JMML initially described in the last decade [31]. In a cohort of 21 children diagnosed with
homozygous CBL-mutated JMML, Niemeyer and colleagues identified 17 patients who
harbored heterozygous CBL mutations in normal tissues [31]. In 13 children, autosomal
inheritance was confirmed from parents’ genetic analysis. Dysmorphic facial features
reminiscent of NS with broad forehead, hypertelorism and ear abnormalities associated
with developmental delay, cryptorchidism and impaired growth were reported. Five pa-
tients presented juvenile xantogranuloma. CBL mutations affected the RF domain and
Y371 was the most common mutation site. Functional studies confirmed an impaired
ubiquitylation activity of heterozygous CBL-mutated proteins with defective E3 ligase
activity that constitutively activate the Ras pathway [31]. Other authors confirmed these
similar findings [26,32]. In the same period, Martinelli et al. analyzed the DNA samples
of 365 patients who presented a phenotype consistent with RASopathy without a known
causative mutation [62]. Six patients harbored four different heterozygous mutations in
the CBL gene. The four mutations affected residues located within the RF domain or the
adjacent linker domain, critical for the E3-ubiquitin ligase function. Similar to the other
studies [31], in vitro analysis showed that these mutations resulted in impaired ubiqui-
tylation and degradation of cell-surface receptor (e.g., EGF receptor) and dysregulating
intracellular signaling through RAS pathway alteration. The clinical phenotype was highly
variable and only one patient fulfilled diagnostic criteria for NS [65]. In addition to dys-
morphisms and developmental delay, patients showed ectodermal and musculoskeletal
features, particularly cafè-au-lait spots, thin-sparse hair, hyperextensible joints and thorax
anomalies. Three children exhibited cardiac defects and none of the patients developed
hematologic malignancies [62]. In a recent publication by the same group, five patients with
five different pathological variants were identified in a large cohort of 349 patients exhibit-
ing NS-like features, showing characteristic dysmorphic facial features and developmental
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delay together with neurosensorial alteration resulting in hearing or visual loss and cardiac
defects, particularly pulmonary valve stenosis [66]. It has also been reported in a wide
range of central nervous system alterations, including delayed myelination, corpus callo-
sum abnormalities, cerebellar vermis hypoplasia, Arnold–Chiari malformation type I, mild
left cerebral atrophy, widened cisterna magna and particularly moyamoya disease [62,66].

5.2. Vascular Pathology

A small proportion of patients in the cohort described by Niemeyer et al. [31] pre-
sented vascular disorders, including Takayasu arteritis. Other reports later described
vasculopathies primarily affecting cerebral blood vessels, such as moyamoya disease in pa-
tients with germline CBL mutations [37,67]. Recently, heterozygous somatic CBL mutations
have also been reported in patients with cerebral arteriopathy of unknown origin [68,69].
Moyamoya disease is a cerebral vasculopathy characterized by a progressive stenosis of
the terminal internal carotid arteries with subsequent development of abnormal collateral
vessels, leading to ischemic and hemorrhagic stroke in both children and adults. The term
moyamoya syndrome is used for patients with characteristic vasculopathy and specific
associated genetic conditions [70]. The role of CBL mutations in the genesis of vascu-
lar anomalies remains to be fully uncovered. Studies on animal models revealed that
Cbl-knockout in mice T and B cells causes lymphocyte vascular infiltration with vascular
damage [71,72]. Moreover, impaired Cbl-mediated signaling through the RAS-MAPK
pathway leads to uncontrolled VEGF stimulation promoting angiogenesis. Myofibroblast
migration and proliferation seems to also be enhanced, possibly determining vascular occlu-
sion. Interestingly, these effects are corrected with MAPK pathway inhibitor therapy [71,72].
No case of vasculitis has been reported in patients who received transplantation, suggesting
a key role of lymphocyte dysregulation in the genesis of vascular pathology [31] (Figure 4).
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Moreover, children transplanted for JMML frequently experienced stable mixed chimerism
that apparently results sufficient to restore an adequate immune system control [31,61]. One
patient transplanted for JMML also showed correction of the associated moyamoya disease
without progression of the vascular disease after transplant [67]. This evidence suggests
the presence of a pathological role of mutated CBL for moyamoya and vasculitis, and thus
HSCT might represent an efficacious therapy for both.

5.3. Immunological and Hematological Manifestations

Among reported patients with CBL germline mutations, a large part experienced
variable immunological and hematological features. Splenomegaly is frequent in patients
with CBL mutations even in the absence of JMML. Coe et al. reported splenomegaly as the
presenting feature of CBL syndrome in a child but pointed out that it was not possible to
rule out an undetected episode of JMML during infancy with spontaneous resolution but
persistent splenomegaly later in life [73]. In a large family carrying Y371C CBL mutation,
one member presented hepatosplenomegaly with granulocytic hyperplasia of the bone mar-
row while two other presented monoclonal indolent gammopathy and monocytosis [74].
This family also pointed out the presence of CBL germline mutation without any clinical
manifestations. Splenomegaly was also described in two patients with CBL syndrome
before adult-onset AML. The authors hypothesized that an undiagnosed transient myelo-
proliferative disorder or JMML with spontaneous remission may have occurred during
childhood [49,50]. Interestingly this latter patient also presented a history of autoimmunity,
namely rheumatoid arthritis and immune thrombocytopenia [50]. Autoimmune uveitis
was also reported in a patient with CBL-mutated JMML presenting an indolent course of
the malignancy without any treatment [75]. Interestingly, uveitis was successfully treated
with anti-TNF adalimumab [75]. Regarding immunological dysregulation in a large cohort
of pediatric patients with Evans Syndrome (ES), a rare severe autoimmune disorder charac-
terized by bilinear cytopenia, one patient exhibited a germline CBL mutation suggesting
a role in the pathogenesis of the autoimmune phenotype [76]. As previously mentioned,
specific immunological and hematological features have been reported in patients with
homozygous mutations not developing JMML. Three patients with homozygous mutation
derived by LOH all showed a clonal proliferation of homozygous CBL-mutated cells in
peripheral blood. The homozygous mutation persisted in blood cells in long-term surveil-
lance even after clinical resolution. These patients also presented splenomegaly and mild
monocytosis associated with moyamoya diseases, neutrophil and monocyte proliferation
and severe hemophagocytic syndrome secondary to EBV infection [37]. A recently de-
scribed 1-year-old boy with homozygous CBL mutation with LOH in peripheral blood cells
developed lymphoid proliferation with cytopenia, hepatosplenomegaly, lymphocytic lym-
phocytosis and B-cell expansion [77]. Recently, a patient with known moyamoya disorder,
cryptorchidism, dysmorphic features, splenomegaly and thrombocytopenia who developed
atypical hemolytic uremic syndrome was found to carry heterozygous mutation in CBL.
He also displayed evidence of myeloproliferation and subclinical JMML with expansion of
clones harboring homozygous mutation of CBL due to LOH across chromosome 11q [78].

5.4. Coagulative Disorders

Coagulative disorders were described in patients with CBL germline mutations and in
two patients with moyamoya disease. The first presented transient alterations, namely pro-
longed prothrombin time and elevated kaolin clotting time (KCT) ratio, that progressively
normalized at 10 years of age. The second was diagnosed of antiphospholipid syndrome
(APL) with persistent elevated cardiolipin and anti-β2GP1 antibodies together with ele-
vated KCT ratio. APL syndrome has not been previously described in CBL syndrome, but
seems to represent a common finding in other RASopathies [79]. In addition, the case of a
patient with adult-onset AML and CBL syndrome with an history of coagulopathy during
childhood was reported, specifically low levels of FVII, X, XII and XIII [49].
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5.5. Prenatal Manifestation of CBL Germline Mutations

Prenatal and neonatal manifestations of CBL germline mutations include hydrops fetalis,
fetal pleural effusions and congenital hydro-chylothorax and have been reported in one study.
Similar prenatal manifestations have been associated with other RASopathies, suggesting
a role of CBL mutations in perturbing the lymphangiogenesis signaling [80]. For instance,
primary lymphedema has been described in a patient with germline CBL mutation [57].

6. Therapeutic Potential of CBL Targeting

The ubiquitination–proteasomal system represents a fundamental cell process which
has attracted intense attention as a potential drug target. Many preclinical and clinical
trials are indeed underway to test a wide range of compounds for pathologies such as
blood and solid cancers [81–83]. In this context, CBL represents an ideal candidate as it is
widely expressed in lymphoid and myeloid cells. Nonetheless, its involvement in different,
even contrasting, functions requires attention in evaluating potential solutions. Overall, the
important role of CBL in positively regulating major cellular functions questioned how to
achieve its activation as a therapeutic target. Its constitutively autoinhibited conformation
requires a phosphorylation of Tyr371, which in turn suggests that by targeting kinases
or phosphatases modulating this phosphorylation, CBL could be manageable as a drug
target, maximizing the benefits while reducing off-targets. The targeting of downstream
signaling cascades could be another intriguing option, including JAK/STAT, PI3K, as
well as RAS/extracellular signal-regulated kinase (ERK) cascade [14]. Recently, Belizaire
and colleagues [19] demonstrated that LYN inhibition by dasatinib effectively diminished
the expansion of CBL mutant cell lines and primary CMML samples in vitro and in vivo.
This potential of LYN-targeted therapies in patients with CBL-mutated myeloid disease
was observed by Bunda et al. as well in a study on chemo-resistant CBL mutant JMML
cells. Their results supported the potential benefit of combining LYN-PI3K/Akt signaling
modulation with traditional chemotherapy agents in the management of this disease.
Indeed, the pharmacologic inhibition of Src family kinases with PP2 or dasatinib was able
to reverse the GM-CSF sensitivity of JMML cells [84] to attenuate the hyperphosphorylation
of CBL (Y371H) and p85 recruitment, thus inhibiting the subsequent Akt phosphorylation
and activation.

Because the oncogenic action of mutant CBL proteins depends on their intact binding
to target kinases, inhibition of this binding would be a potential approach, especially when
the inhibition is specifically directed to mutant CBL and CBL-c, but be saved for CBL-b.
Recently, piceatannol, a naturally occurring phenol stilbenenoid, was shown to induce loss
of the CBL family proteins including mutant CBL and a broad spectrum of tyrosine and
serine-threonine kinases [85].

7. Conclusions and Future Directions

CBL germline mutations are responsible for a complex multisystemic disease with
an increased risk for developing malignances, recently defined as CBL Syndrome. Even
though the clinical manifestations have been progressively characterized in recent years,
the complete clinical spectrum seems far from being entirely described. Further cases are
needed to exactly define the whole spectrum of CBL mutations. A complete clinical and
molecular characterization is highly awaited since this would have profound implication
in patients’ clinical management. Expert opinion-based recommendations for patients
with CBL-mutated JMML are already available [39], while those for CBL syndrome are
still lacking. Patients with molecularly confirmed CBL germline mutations should receive
cancer surveillance and a full screening to assess cardiac, vascular and hematological
alterations. On the other hand, clinical indications for the investigation of CBL mutations
in specific conditions, such as early-onset moyamoya disease should be provided. In
conclusion, CBL may be the key to an intriguing network of molecular mechanisms in a
wide clinical spectrum and might represent a promising therapeutic target.
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