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Cardiovascular diseases (CVDs) are considered to be the predominant cause of death in theworld. Chinese herbmedicines (CHMs)
have been widely used for the treatment of CVDs in Asian countries for thousands of years. One reason of high efficacy of CHMs
in treating CVDs is attributed to their inhibition in atherosclerosis (AS) development, a critical contributor to CVDs occurrence.
Cumulative studies have demonstrated that CHMs alleviate atherogenesis via mediating pathophysiologic events involved in AS.
However, there is deficiency in the summaries regarding antiatherogenic signal pathways regulated by CHMs. In this review, we
focus on the signal cascades by which herb medicines and relevant extractives, derivatives, and patents improve proatherogenic
processes including endothelium dysfunction, lipid accumulation, and inflammation. We mainly elaborate the CHMs-mediated
signaling pathways in endothelial cells, macrophages, and vascular smooth muscle cells of each pathogenic event. Moreover, we
briefly describe the other AS-related factors such as thrombosis, autophagy, immune response, and noncoding RNAs and effects of
CHMs on them in the way of cascade regulation, which is helpful to further illustrate the molecular mechanisms of AS initiation
and progression and discover newly effective agents for AS management.

1. Introduction

Cardiovascular diseases (CVDs) are the most common cause
of health loss at home and abroad, by the fact that more
than 13 million patients die from CVDs annually [1]. It
is demonstrated that atherosclerosis (AS) is the pivotal
pathological basis of CVDs. AS, characterized by formation
of atherosclerotic plaques in the artery intima, could induce
lumen stenosis or occlusion, finally leading to the occurrence
of CVDs [2]. Thus, in order to reduce the prevalence of
life-threatening CVDs, especially ischemic heart disease and
stroke, the prevention and treatment of AS are of vital
importance.

Over the past years, several drugs have been developed
as therapeutic agents for AS and the representative one
is the statin. However, there is evidence indicating that
statin therapy is unable to decrease CVD risks in the
majority of patients [3]. Moreover, liver dysfunction and

myopathy, which are potentially adverse effects of statin
application, make several patients stop receiving statin ther-
apy, especially for those suffering hepatitis [4, 5]. It is
urgent to explore alternative and complementary options
with high efficiency and less side effects for AS manage-
ment.

With a holistic and synergistic way, Chinese herbal
medicines (CHMs) keep the balance of homeostasis in vivo.
It is reported that a variety of herbal drugs and their
extractives such as flavonoid, alkaloid, and terpenoid and
patent products possess superior pharmacological properties
in the prophylaxis and treatment of AS. Considering the
effective clinical application of CHMs (Table 1), a plenty
of studies have concentrated on the mechanisms of action
underlying therapeutic effects for AS [6–8]. In this review,
we will focus on the relevant signaling pathways modified by
which CHMs exert beneficial effects in AS prevention and
therapy.
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Table 1: The classification of compounds from CHMs with anti-AS roles.

Category Compound

Terpenoid Saikosaponin-a, tanshinone IIA, tanshindiol C, ginkgolide B, andrographolide, paeoniflorin, cryptotanshinone,
danshenol A, dihydrotanshinone I, celastrol, 1, 6-di-O-caffeoyl-𝛽-D-glucopyranoside, atractylenolide, 𝛽-Elemene

Saponin Xinxuekang, compound K, ginsenoside Rb1, gypenoside XVII, Ginsenoside F1, glycyrrhizic acid, Diosgenin,
Elatoside C, Celosin

Alkaloid Berberine, trichosanatine, ligustrazine, coptisine,

Flavonoid
Kuwanon G, myricitrin, dihydromyricetin, isoquercitrin, icariin, apigenin, isohamnetin, baicalin, hydroxysafflor

yellow A, hyperoside, quercetin, wogonin, procyanidin, dracocephalum moldavica, rumex acetose L,
delphinidin-3-glucoside, gossypetin

Isoflavonoid Puerarin, Biochanin-A
Phenolic Danshensu, paeonol, salvianolic acid B, luteolin
Stilbenoid Pterostilbene, resveratrol
Iridoid Geniposide, Genipin
Diarylheptanoid Curcumin

2. Mechanisms of Action of CHMs

During the development of atheroma, multiple cells in
the lesion environment including endothelial cells (ECs),
macrophages, vascular smooth muscle cells (VSMCs),
platelets, and lymphocytes are involved [9, 10] (Figure 1).
CHMs have been shown to target specific signaling cascades
in these cells to generate antiatherogenic effects; the detailed
information will be discussed below.

2.1. Amelioration of Lipid Metabolism Disorder

2.1.1. Triterpenoid. Reverse cholesterol transport (RCT) is
a cholesterol metabolism process through regulating the
efflux of cholesterol from lipid-laden foam cells back to
liver for recycling or excretion, which is mediated by signal
molecules such as ATP-binding cassette transporters A1 and
G1 (ABCA1 and ABCG1), peroxisome proliferator-activated
receptor 𝛾 (PPAR-𝛾), and liver X receptor 𝛼 (LXR-𝛼) [11].
One pivotal antiatherogenic mechanism of Saikosaponin-a
(Ssa) is attributable to the promotion of signal transduction
of PPAR-𝛾/LXR-𝛼/ABCA1 cascade, stimulating the outflow
of cholesterol in macrophages [12] (Figure 2), while, with a
LXR-𝛼 independent way, Tanshinone IIA (Tan IIA) increases
the level of ABCA1 and ABCG1 by facilitating extracellular
signal-regulated kinase (ERK)/nuclear factor-erythroid 2-
related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) axis [13]. In
the presence of Tanshindiol C (Tan C), the content of lipids in
macrophages stimulated by oxidized low density lipoprotein
(ox-LDL) is markedly reduced, which is attributed to the
drug-triggered activation of Nrf2 and Sirtuin 1 (SIRT1) and
downstream peroxiredoxin 1/ABCA1 pathway [14].

Several studies report that PPAR-𝛾 is response for cluster
of differentiation (CD) 36 expression regulated by ox-LDL
and Tan IIA inhibited cholesterol ingestion via suppress-
ing PPAR-𝛾 which transcriptional activates CD36 expres-
sion [15]. Moreover, ox-LDL uptake by lectin-like ox-LDL
receptor-1 (LOX-1) induces production of reactive oxygen
species (ROS) followed by nuclear factor 𝜅B (NF-𝜅B) acti-
vation and subsequent LOX-1 expression, resulting in the

positive feedback of cholesterol inflow in macrophages [16].
It is demonstrated that another mechanism underlying Tan
IIA ameliorates atherogenesis to inhibit ox-LDL-triggered
ROS/NF-𝜅B/LOX-1 loop [17]. Besides, ERK/Nrf2/HO-1 path-
way activated by Tan IIA enables blocking the activity of acti-
vator protein-1 (AP-1) which mediates scavenger receptor-
A (SR-A) expression, reducing SR-A-regulated cholesterol
influx [13] (Figure 2).

It is documented that Tan IIA induces LDL receptor
(LDL-R) production and increase LDL uptake in hepatic cells
through stimulating sterol regulatory element-binding pro-
tein (SREBP) 2 pathway which mediates LDL-R expression
and raising the nuclear Forkhead box O3a (FoxO3a) cascade
which inhibits the expression of proprotein convertase sub-
tilisin/kexin type 9 promoting LDL-R degradation [18].

2.1.2. Phenolic Compound. Danshensu (DSS) could afford a
cholesterol-lowing role in macrophages by virtue of stim-
ulating the PPAR-𝛾/LXR-𝛼/ABCA1 pathway [19]. Similarly,
DSS derivative (DBZ) and paeonol ameliorate foam cell
formation and enhance cholesterol efflux via activation of
LXR-𝛼 and upregulation of ABCA1 [20, 21]. Moreover, it is
proved that DBZ reduces foam cell formation via inhibit-
ing macrophage lipid accumulation by suppressing Toll-
like receptor 4 (TLR4)/NF-𝜅B/adipose differentiation-related
protein (ADRP) cascade [22].

2.1.3. Diarylheptanoid. By impeding the activation of ox-LDL
evoked p38 MAPK (p38)/PPAR-𝛾/CD36 cascade, curcumin
reveals similar effects in diminishing ox-LDL-upregulated
CD36 level [23]. Liu et al. had shown that curcumin was
a cholesterol efflux promoter through activating LXR-𝛼 and
then ABCA1 upregulation [24].

2.1.4. Alkaloid. Berberine (BBR), a kind of cholesterol-lowing
herb extractive, activates ERK1/2 to stabilize LDL-R mRNA,
leading to upregulation of LDL-R protein and decrease
of serum LDL [25]. Additionally, various CHMs attenuate
atheroma formation depending on blockade of triglyceride
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Figure 1: The pathogenesis of atherosclerosis. The endothelial dysfunction, inflammation, and lipid dysbolism induce excessive cholesterol
disposition and leukocytes accumulation into the vascular intima. Then macrophages and neutrophil secret cytokines and T cells release
immune regulatory factors, which promote AS progression. Moreover, macrophages uptake cholesterols and transform into foam cells,
facilitating the formation of lipid core. VSMCs migrate to the subendothelium and release extracellular matrix, leading to the formation
of fibrous cap and vascular remolding. In addition, platelets are activated and aggregate to the injured vascular endothelium, contributing to
the thrombosis.

synthesis in hepatocytes. BBR and ginsenosides metabolite
compound K (CK) have been proved to stimulate liver kinase
B1/AMP-activated protein kinase (AMPK) signaling flow to
phosphorylate acetyl-CoA carboxylase (ACC) and inhibit
SREBP-1c/fatty acid synthase (FAS) axis, which followed by
reduction of lipogenesis [26–28].

2.1.5. Saponin. The liver exerts critical functions in the
process of cholesterol synthesis and triglyceride generation
and is the primary target organ of RCT.High-density lipopro-
tein (HDL), reversely associated with AS development, is
response for transport of effluent cholesterol from peripheral
tissues to the liver for removing. Di’ao Xinxuekang (XXK),
saponin extractives of Dioscorea panthaica Prain et Burkill,
is reported to enhance HDL generation by promoting PPAR-
𝛾/LXR-𝛼/ABCA1 pathway by which XXK improves the RCT
process and alleviates atherosclerotic lesions [11] (Figure 3).

2.1.6. Flavonoid. It has been confirmed that Kuwanon
G is indicated to accelerate cholesterol elimination in

macrophages by enhancing the signal transduction of LXR-
𝛼/ABCA1 cascade [29]. Dong et al. reported that the
hawthorn leave flavonoids (HLF) triggered AMPK/PPAR-
𝛼/carnitine palmitoyl transferase 1 axis to increase the
oxygenolysis of fatty acids, then reducing the generation of
triglyceride.

Furthermore, cumulative data indicate that other CHMs
improve dyslipidemia via diverse pathways. For instance,
Qishen Yiqi pill (QSYQ) accelerates the excretion of bile acids
to facilitate serum cholesterol uptake by liver via activating
LDL-R/LXR-𝛼/ABCG5 pathway [30].

2.2. Improvement of Cell Apoptosis

2.2.1. Saponin. Biologicalmolecules including ox-LDL, TNF-
𝛼, and Ang II are the major driving forces in endothelial
dysfunction linked to atherogenesis, through stimulating
NADPH oxidase (NOX) and disrupting mitochondria res-
piration to generate excessive ROS [31]. Cellular analysis
illuminates that ginsenoside Rb1 (Rb1) prevents ECs from
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Figure 2: The signaling pathways by which CHMs alleviate lipid accumulation in macrophages.

TNF-𝛼-induced insult via disturbing mitochondrial path-
way of apoptosis, given that increment of Bcl-2/Bax ratio
and caspase-3 evoked by TNF-𝛼/c-Jun N-terminal kinase
(JNK)/NF-𝜅B axis is inhibited by Rb1 [32] (Figure 4).

Considerable evidence has illustrated pivotal actions of
PI3K/Akt cascade in cell survival. Gypenoside XVII (GP-
17) is thought to directly suppress the apoptotic pathway by
activating PI3K/Akt accompanied by Bad dysfunction [33].

2.2.2. Flavonoid. It is demonstrated that p53 upregulated by
ROS could aggravate mitochondrial apoptosis, because that
p53 elevation facilitates Bax increase and Bcl-2 reduction.
The protective ability of dihydromyricetin (DMY) against
ECs apoptosis induced by H2O2 is partly attributed to
inhibition of ROS-activated p53 and then improvement of
imbalance of Bcl-2/Bax ratio, cyt-c release, and caspase-3
activation [34]. In addition, on stimulation of PI3K/Akt,
isoquercitrin stimulates, resulting inGSK3𝛽 phosphorylation
accompanied by Mcl-1 activation which blocks apoptosis
of ECs [35]. Laboratory studies suggest that DMY, myric-
itrin, and GP-17 are able to alleviate ox-LDL-induced ECs
apoptosis by activating PI3K/Akt/Nrf2/HO-1 pathway, which
enhance intracellular antioxidative abilities to eliminate ROS
[33, 36, 37]. Owing that endothelial NO synthase- (eNOS-)
synthesized nitric oxide (NO) plays vital roles in maintaining

the integrity of vascular endothelium, CHMs like icariin
and Wenxin decoction (WXD) are found to phosphorylate
eNOS and release NO by inducing PI3K/Akt signaling for
mitigating atherogenic endothelial injury [38, 39].

Zeng et al. supported that ox-LDL maintained the sur-
vival of macrophages by upregulating antiapoptotic protein
plasminogen activator inhibitor 2 (PAI-2) and apigenin
exhibited proapoptotic effects on macrophages via inhibiting
Akt/PAI-2 cascade [40]. However, there are clues showing
that isohamnetin and Danshen granule are able to alleviate
atheroma progression by inhibiting macrophages apoptosis
via activating the PI3K/Akt/Nrf2/HO-1 axis [41, 42].

2.2.3. Diterpenoid. Chen et al. showed that andrographolide
(Andro) was capable of triggering PI3K/Akt and subsequent
Bad inhibition, which impeded the activation of mitochon-
drial apoptotic pathway and then maintained the survival of
ECs [43]. Additionally, in vitro studies report that Tan IIA and
flavonoid myricitrin administration maintain the survival of
ECs via retarding p53 expression, which hinder the pathway
of H2O2/ROS/p53/caspase-3 [44, 45].

2.2.4. Phenolic and Alkaloid. Paeonol and trichosanatine
protect against ox-LDL-triggered ECs injury through abating
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Figure 3: The pathway mechanisms underlying CHMs improve lipid metabolism in liver cells.

LOX-1 expression followed by suppression of ox-LDL/LOX-
1/ROS/p38 signal axis [46, 47]. One principle of paeonol
and Liuwei Dihuang (LWDH) attenuated endothelial dys-
function is inhibiting ER stress, followed by decrease of
unfolded protein response and restoration of C/EBP homol-
ogous protein and NAPDH level, resulting in reduction
of ROS production [48–50]. Moreover, MEK/ERK1/2/eNOS
and AMPK/PPAR-𝛿/eNOS cascades are also likely to be
applied by herb drugs to produce NO, normalize ROS,
and thus abolish oxidative stress-induce ECs apoptosis [38,
48].

2.3. Mediation of Cell Proliferation and Migration

2.3.1. Saponin. Mounting data have confirmed the involve-
ment of ECs in angiogenic process which is critical for
accelerating AS development and exacerbating plaque vul-
nerability [51]. Antiangiogenic functions of CK are associated
with activation suppression of p38 and Akt, which probably
lead to decrease of proliferation proteins cyclin D1 and VEGF
in ECs [52]. Yun et al. demonstrated that Panax notogin-
seng saponins (PNS) ameliorated plaque angiogenesis via

reducing level of NOX4, resulting in decrement of ROS
generation and subsequent VEGF expression [53].

2.3.2. Diterpenoid. It is indicated that aberrant proliferation
and migration of VSMCs aggravate atheroma progression
and restenosis after balloon angioplasty [54]. Tan IIA has
been reported to improve the activation of AMPK/p53/p21
axis to inhibit the expression of cyclin D1 stimulated by
high glucose, finally alleviating the proliferation of VSMCs
[55]. Wu et al. report that the antimigratory action of Tan
IIA on VSMCs occurs by the increase of AMPK activity
and subsequent block of NF-𝜅B cascade, which lower matrix
metalloproteinase- (MMP-) 2 expression [55]. Addition-
ally, suppressing TNF-𝛼-activatedMEK1/2/ERK1/2/AP-1 and
Akt/IKK/NF-𝜅B cascade is another mechanism underlying
Tan IIA reducing MMP-9 induction to decrease the move-
ment of VSMCs [56]. Suh et al. offered evidence that cryp-
totanshinone (CTS) reducedMMP-9 level through inhibiting
TNF-𝛼-induced signal pathway involving inERK1/2, p38, and
JNK and then inactivation of AP-1 and NF-𝜅B [57].

Furthermore, there is evidence showing that Tan IIA
is able to provide protective roles against atherogenesis by
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blocking ECs growth via disrupting the vascular endothelial
growth factor (VEGF)/VEGF receptor 2 (VEGFR2) axis [58].

2.3.3. Flavonoid. Dong et al. clarified that baicalin obvi-
ously inhibited platelet-derived growth factor- (PDGF-)
stimulated proliferation of VSMCs, the mechanism of
which was blocking signal pathway of PDGF receptor 𝛽
(PDGFR𝛽)/MEK/ERK1/2, followed by decrease of cyclin E
and cyclin-dependent kinase 2 (CDK2) activity and increase
of p27 level [59]. Icariin, hyperoside, and monoterpene com-
pound paeoniflorin preventVSMCs fromox-LDL-stimulated
proliferation probably by abrogating LOX-1 expression, ROS
generation, and ERK1/2 activation essential for mitogen-
related cascade flow [60–62].

2.3.4. Alkaloid. With the modulation of cascades linked
to cell growth including Ras/Rac1, AMPK/p53/p21, and
MEK/ERK1/2/Egr-1(c-fos), BBR lowers the expression of cell
cycle-related proteins crucial for VSMCs proliferation [63,
64]. There are observations suggesting that the molecular
basis for the antiproliferative effects of CHMs including
alkaloid ligustrazine and flavonoid hydroxysafflor yellow A
is that these herbs inhibit PDGF-induced activation of signal
factors involved in p38, ERK1/2, and Akt pathway, leading

to the expression depression of downstream cell cycle-
associates molecules including cyclinD1, cyclinE, CDK2, and
CDK4. In addition, ligustrazine and hydroxysafflor yellow A
also enhance NO generation to elevate cGMP for decaying
VSMCs growth, given the evidence of cGMP identified as a
mitogenic suppressor [65, 66]

2.3.5. Phenolic. Salvianolic acid B (Sal B) obviously attenuates
LPS-modulated upregulation of MMP-2 and MMP-9, which
might be ascribed to suppression of LPS-induced signal-
ing of TLR4/MyD88, resulting in disorders of downstream
pathways including ERK1/2, JNK, and COX-2 responsible
for MMPs expression [67]. Moreover, blocking the prolif-
erative signaling of protein kinase C (PKC)/Rac1/ROS and
Ras/Raf/ERK1/2 is the potential mechanism for herb drugs
like paeonol and isoflavonoid puerarin to extenuate diabetes-
induced intimal hyperplasia [68, 69].

2.3.6. Other Groups. Sparstolonin B, an isocoumarin com-
pound, induces cell cycle arrest at G1 phase in ECs and
significantly inhibits cell growth and vasculogenesis, and the
mechanism might result from inactivation of NF-𝜅B and
thereby decrease of cell cycle-promoting proteins [70]. Stim-
ulating Nrf2-related pathway, antrodia salmonea enhances
HO-1 and glutathione expression, favoring the scavenging
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of TNF-𝛼-induced ROS, causing blockade of ROS-mediated
I𝜅B kinase (IKK)/NF-𝜅B/MMP-9 signal transduction and
thereby decrease of MMP-9 level [71]. In addition, cur-
cumin, a kind of diarylheptanoid, has antimigratory roles
in VSMCs by blocking MMP-9 and MMP-13 production
in macrophages via suppressing AMPK/MAPKs and PKC
cascade [72]. Moreover, Tongxinluo (TXL), widely used for
treating CVDs, has been shown to reduce plaque burden and
angiogenesis by decreasing angiogenic factor such as MMP-2
and VEGF through inactivating TNF-𝛼/bone marrow kinase
in chromosome X/NF-𝜅B/MAPKs pathway [73].

2.4. Inflammation Amelioration

2.4.1. Diterpenoid. Upon induction of proinflammatory
substances, the expressions of adhesion molecules and
chemokines of ECs are elevated, favoring macrophages
attachment and transmigration into subendothelium, then
promoting AS lesions [9]. CTS encumbers expression of
vascular cell adhesion molecule-1 (ICAM-1), intercellular
adhesion molecule-1 (VCAM-1), and E-selection forced by
ox-LDL on ECs via suppressing NOX4 to abrogate ox-LDL-
induced ROS generation and sequential IKK𝛽 phosphoryla-
tion, I𝜅B degradation, and NF-𝜅B activation, and by restor-
ing eNOS activity to produce NO [74]. Danshenol A and
dihydrotanshinone I, other components isolated from Salvia
miltiorrhiza Bunge, also lower macrophage adhesion to ECs
triggered by LPS and TNF-𝛼 via hindering NOX4/IKK𝛽/NF-
𝜅B pathway [75, 76]. Moreover, Tan IIA perform antiathero-
genic properties to lessen expression of adhesion molecules
and chemokines in ECs, depending on modulating key
signaling cascades containing Rho/Rho kinase, PI3K/Akt,
Jak/STAT-3, and Wnt pathways [77–81].

In terms of inflammation attenuation of macrophages,
CTS and Tan IIA are able to lessen synthesis and release
of proinflammatory factors by mediating multitargets in
pathways including TLR4/ IKK/NF-𝜅B and TLR4/MAPKs
[82–85]. It is illustrated that compounds fromDanshen could
activate the cascade of PI3K/Akt/Nrf2/HO-1 in macrophages
to enhance the generation of CO that weaken NF-𝜅B activity
and AS development [86–88].

In VSMCs, Andro counteracts LPS/IFN-𝛾-elicited upreg-
ulation of iNOS and MMP-9; the mechanism underlying
is the enhancement of nSMase/ceramide/PP2A cascade that
abolish LPS/IFN-induced IKK/NF-𝜅B axis [89]. Moreover,
Chen et al. showed that the relief of TNF-𝛼-stimulated NF-
𝜅B activation and then iNOS expression was due to Andro-
regulated inflammation restriction in VSMCs by virtue of
inhibiting JNK/Akt pathway [90].

2.4.2. Saponin. Ginsenoside F1 could upregulate zinc finger
protein A20 to weaken ox-LDL-elicited LOX-1/ROS/NF-𝜅B
pathway for lowering levels of ICAM-1, MIP-1𝛿, and IL-1𝛼
[91]. The inducible expression of VCAM-1 in response to
ox-LDL is abolished in ECs with PNS and Rb1 precondi-
tioning; this effect is primarily due to activation of Nrf2
followed by elevation of HO-1 and superoxide dismutase,
causing intervention of ROS/TNF-𝛼/p38 cascade [92]. Yu et

al. demonstrated that the therapeutic utility of XXK in AS
plaques had been partially ascribed to the anti-inflammatory
ability of blocking transduction of TLR4/MyD88/IKK/NF-𝜅B
cascade in macrophages [93]. Moreover, Diosgenin precon-
ditioning diminishes level of adhesion molecules in VSMCs
exposed to TNF-𝛼 via restraining the ROS/MAPKs and
ROS/Akt pathway and downstream NF-𝜅B activation [94].

2.4.3. Flavonoid. It is deciphered that quercetin has pharma-
cological efficacies on diminishing level of proinflammatory
cytokines through prohibiting TLR/NF-𝜅B signal pathway
in ECs [95]. Wogonin and Bushenningxin decoction have
been indicated to activate the estrogen receptors on ECs
to upregulate eNOS expression and heighten NO synthesis,
leading to blockade of proinflammatory NF-𝜅B signaling
[96, 97]. Additionally, Lee et al. reported that wogonin was
effective in ameliorating inflammation state in macrophages
by suppressing Ca2+/STAT signal axis in macrophages, as
seen by decrease of cytokines including IL-1𝛽, MCP-1, and
MIP-1𝛼 [98]. Disrupting transcription activity of p50-p65
heterodimer, procyanidins decline macrophage-produced
IL-6 and COX-2 via blocking LPS-initiated TLR4/NF-𝜅B
pathway [99]. Ingredients in dracocephalum moldavica nor-
malize the levels of VCAM-1 and ICAM-1 in VSMCs by
suppressing TNF-𝛼-triggered NF-𝜅B signaling [100]. More-
over, icariin reverses LPS-induced NF-𝜅B activation and
cytokines production in macrophages via boosting PI3K/Akt
pathway, whereas saponin glycyrrhizic acid and triterpenoid
Ssa restrain inflammation by encumbering PI3K/Akt cascade
[12, 101, 102]. This discrepancy might be attributed to the
complex of signal networks and the difference of compound
category, which is needed to be further elucidated.

2.4.4. Alkaloid. The reduced attachment of macrophages
to ECs after pretreatment with BBR is due to diminution
of ROS-inducible adhesion molecules expression caused by
AMPK/nuclear respiratory factor 1/uncoupling protein 2 axis
[103]. Wu et al. illustrated that the revulsive expression of
IL-6 and iNOS on stimulation with LPS was abolished in
macrophages with coptisine coincubation, and the mecha-
nism underlying this effect results from inhibiting MAPKs
and Akt signaling and subsequent NF-𝜅B activation [104].

2.4.5. Isoflavonoid. Biochanin-A, a bioactive isoflavonoid, is
shown to reduce LPS-elicited TNF-𝛼, IL-1𝛽, and IL-6 expres-
sion in macrophages through inhibiting TLR4-dependent
p38/ATF2 andNIK/IKK/NF-𝜅B pathway [105]. Furthermore,
red clover extracts-enhanced PPAR-𝛼 and BBR-activated
PPAR-𝛾 have the similar function in terminating trans-
duction of inflammatory pathways, seeing that signaling
of PPAR-𝛼 and PPAR-𝛾 abolishes I𝜅B degradation, NF-𝜅B
activation, and binding to DNA regions inmacrophages [106,
107].

2.4.6. Monoterpenoid and Triterpenoid. The decrease of IL-6,
IL-1𝛽, and TNF-𝛼 production in VSMCs after paeoniflorin
treatment is ascribed to alleviation of TLR4/MyD88/NF-
𝜅B cascade [108]. Gu and colleagues found that celastrol
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reduced macrophages expression of iNOS, TNF-𝛼, and IL-
6 via mitigating ox-LDL-evoked LOX-1/NOX/ROS/NF-𝜅B
cascade [109].

2.4.7. Another Class. Capsaicin augments Ca2+ dependent
PI3K/Akt/eNOS pathway to boost NO generation, which
maintain the stability of I𝜅B and combination with NF-𝜅B
upon LPS stimulation, leading to levels of ICAM-1, VCAM-
1, and MCP-1 back to normal [110]. Meng et al. reported that
curcumin exhibited anti-inflammatory actions in VSMCs by
abating LPS-provoked TLR4/NOX/ROS cascade accompa-
nied by blockade of ERK1/2 and p38 signaling and NF-𝜅B
inactivation, as explained by decrease of MCP-1 and TNF-𝛼
[111].

Daotan decoction has been corroborated to counteract
TNF-𝛼-induced ICAM-1 on ECs via multipathway mode,
evidenced by encumbrance of p53/p21, JNK, andp38 cascades
[112, 113]. Zheng et al. manifested that Longxuetongluo
capsule played atheroprotective roles by curtailing contents
of COX-2, VCAM-1, and MCP-1 via restraining ox-LDL-
provoked ERK1/2(p38)/IKK/NF-𝜅B signal [114]. Sun et al.
showed that Tianxiangdan granule afforded antiatherogenic
actions by inhibiting inflammatory p38/NF-𝜅B signal path-
way in ApoE-/- mice [115]. With the encumbrance of IRS-
1/PI3K/Akt signal flow, Shenyuandan capsule blocks activa-
tion of NF-𝜅B and then expression of IL-6 and TNF-𝛼 in
aortas [116].Thus, the above herb drugs execute anti-AS roles
through diverse signal pathways, and NF-𝜅B represents the
convergence of most of these cascades, hinting that NF-𝜅B
acts as a pivotal target of CHMs for AS management.

2.5. Alleviation of Thrombogenesis

2.5.1. Terpenoid. Asnormal blood flow is decided by platelets,
clotting factors, and fibrinolytic molecules, dysfunction of
them could facilitate thrombus formation in the site of plaque
lesions, contributing to atherogenesis and related complica-
tions occurrence. Fu and colleagues find that triterpenoid
substances from callicarpa nudiflora hook have antiplatelet
roles by eliminating ADP and TXA2-induced platelet acti-
vation and aggregation via inhibiting PI3K/Akt/GSK3𝛽 and
RhoA pathway, respectively [117] (Table 2). Chen et al. pro-
vided initial proof that Atractylodes lactone compounds were
antithrombotic because of their effects on lessening platelet
accumulation and secretion triggered by agonists via block-
ing p38 and Akt signaling [118]. After Andro administration,
collagen-induced platelet activation is restrained, the mech-
anism is Andro-regulated augmentation of eNOS/NO/sGC
signal flow, which in turn catalyze synthesis of cGMP
required for reducing activities of p38, IKK𝛽, PI3K, and
PLC𝛾2 implicated in the process of collagen-regulated Ca2+
elevation [119, 120]. Investigation into mechanisms reveals
that Tan IIA suppresses platelet activation and TF expression
via mediating multiple pathways including ER𝛼/PI3K/Akt,
ROS/NF-𝜅B, and ERK-2 [121–123]. Moreover, 𝛽-Elemene,
which belongs to sesquiterpenoid, is indicated to induce
the PI3K/Akt/eNOS pathway to increase NO level, thereby
suppressing platelet activation and aggregation [124].

2.5.2. Saponin. Given that inflammatory factors are con-
tributors to upregulation of TF for accelerating AS devel-
opment, gypenoside XLIX and extracts of red yeast rice
restore TF level and weaken AS progression via impairing
NOX/ERK1/2/NF-𝜅B and boosting PPAR-𝛼 pathway, respec-
tively [125, 126]. Pan et al. stated that Rb1 andRg1 encumbered
platelet accumulation and thrombosis via increasingNO syn-
thesis by triggering PI3K/Akt and CAT-1/L-arginine cascade
[127].

2.5.3. Other Compounds. Other CHMs like lignin Gomisin
J, flavonoid rumex acetose L, and isoflavonoid puerarin also
enhance eNOS activity andNOgeneration bymeans ofmedi-
ating diverse cascades including Ca2+/CaMI, ER/PI3K/Akt,
and CaMKII/AMPK, indicating their implication in encum-
bering thrombosis and AS progression [128–130]. Sal B is
shown to prevent TNF-𝛼-dependent ERK1/2/AP-1 and NF-
𝜅B cascade, leading to decrease of PAI-1 level and restoration
of malfunction of fibrinolytic system [131].

2.6. Improvement of Autophagy

2.6.1. Flavonoid. It is well established that autophagy exerts
vital roles in regulating endothelial function, macrophage
lipid metabolism, VSMCs phenotypic conversion, throm-
bosis, and angiogenesis which are involved in atheroma
development [132, 133]. Jin et al. provided evidence that
enhanced autophagy, resulting from AMPK/SIRT1 signal
pathway induced by delphinidin-3-glucoside, attenuated ox-
LDL-elicited injury in ECs [134] (Table 3). Gossypetin, a
type of flavonoid, effectively weakens ox-LDL-caused ECs
damage and this phenomenon is explained by drug-mediated
inhibition of class I PI3K/Akt cascade and activation of class
III PI3K/Beclin-1/microtubule associated protein light chain
3 (LC3) pathway, thus leading to upregulation of autophagy
[135].

2.6.2. Stilbenoid. The involvement of autophagy in
pterostilbene- (PT-) mitigated ECs apoptosis is crucial,
because that Ca2+/CaMKK𝛽/AMPK pathway induced by PT
reduces TUNEL labeled cells [136]. Resveratrol, classified
as a autophagy activator, is capable of boosting autophagic
processes to ameliorate inflammation and injury in ECs
elicited by TNF-𝛼 and ox-LDL, and the mechanism is
attributed to accentuation of cAMP/AMPK/SIRT1 cascade
followed by elevation of LC3II and reduction of p62 [137, 138].

2.6.3. Alkaloid and Saponin. BBR is identified to suppress
level of inflammatory factors in macrophages by activat-
ing AMPK, which blocks the autophagy inhibitor mam-
malian target of rapamycin (mTOR), leading to initia-
tion of autophagy responsible for inhibiting NF-𝜅B activity
[139]. Inducing ROS to restrain PI3K/Akt/mTOR cascade,
BBR-mediated sonodynamic therapeutics contribute to the
autophagic processes which raise ABCA1 expression, favor-
ing the inhibition of cholesterol uptake in macrophages
[140]. Furthermore, ECs apoptosis promoted by ox-LDL is
abolished in the presence of increase of Beclin-1 and LC3II
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Table 2: The signal pathways underlying CHMs inhibit the thrombosis.

Ingredient Herb medicine Object Stimulus Role related pathway
1,
6-di-O-caffeoyl-𝛽-
D-glucopyranoside

Callicarpa
nudiflora Hook Platelet ADP, AA 𝛼IIb𝛽3, 5-HT, TXA2, platelet

aggregation↓ PI3K/Akt/GSK3𝛽, RhoA

Atractylenolide Atractylodes
macrocephala Platelet ADP, collagen,

thrombin
platelet aggregation and

secretion↓ p38, PI3K/Akt

Andrographolide Andrographis
paniculata Platelet Collagen

platelet aggregation, Ca2+,
TxB2↓

eNOS/NO/sGC/cGMP,
PI3K/Akt/p38/cPLA2,
PLC𝛾2/DAG/PKC

platelet aggregation, Ca2+↓ eNOS/NO/sGC/cGMP,
p38/ROS/IKK𝛽/NF-𝜅B/ERK2

Gomisin J Schisandra
chinensis EC None eNOS, NO↑ Ca2+/CaMI, PI3K/Akt

𝛽-Elemene Curcuma
Wenyujin EC None eNOS, NO↑ PI3K/Akt

Puerarin Pueraria lobata EC TNF-𝛼 eNOS, NO↑ ER/PI3K/Akt,
CaMKII/AMPK

Tanshinone IIA Salvia miltiorrhiza
Bunge

Macrophage Ox-LDL TF↓ ROS/NF-𝜅B
Platelet None Platelet activation↓ ER𝛼/PI3K/Akt
Platelet ADP Platelet activation↓ ERK-2

Xuezhikang Red yeast rice Macrophage Ox-LDL TF↓, SOD↑ NOX/ROS/ERK1/2/NF-𝜅B

Gypenoside XLIX Gynostemma
pentaphyllum Macrophage LPS TF↓ PPAR-𝛼

Salvianolic acid B Salvia miltiorrhiza
Bunge EC TNF-𝛼 PAI-1↓ ERK1/2/AP-1 (NF-𝜅B)

Table 3: The signal pathways responsible for CHMs-induced regulation of autophagic processes.

Agent Herb
medicine Object Stimulus Role related pathway

Delphinidin-3-
glucoside Grape seed EC Ox-LDL Cell viability ↑, apoptosis↓;

LC3II↑, p62↓ AMPK/SIRT1

Gossypetin Hibiscus EC Ox-LDL
LDH, cleaved caspase-3 and

PARP-1↓; LC3II and Beclin-1↑,
p62↓

PTEN/class I PI3k/Akt, class III
PI3K/Beclin-1

Pterostilbene Blueberry EC Ox-LDL TUNEL-positive cell↓; LC3II↑,
p62↓ Ca2+/CaMKK𝛽/AMPK/mTOR

Resveratrol Grape EC TNF-𝛼 ICAM-1, COX-2, MMP-9↓;
LC3II↑, p62↓ ATP/cAMP/AMPK/SIRT1

EC Ox-LDL Cell vability and SOD↑;
LC3II/LC3I↑, p62↓ AMPK/SIRT1

Elatoside C Aralia elata
Seem EC Ox-LDL

TUNEL-positive nuclei, Bax,
caspase-9 and -3, ROS↓, Bcl-2↑;

LC3II and Beclin-1↑, p62↓

FoxO1/Beclin-1,
LOX-1/NOX/ROS/Caspase

Berberine Coptis
chinensis macrophage Ox-LDL MIP-1𝛼, RANTES↓, IL-10↑;

LC3II/LC3I↑, p62↓ AMPK/mTOR

None ABCA1, ROS↑; LC3II/LC3I↑,
p62↓ PI3k/Akt/mTOR

Arglabin Artemisia
glabella macrophage LPS IL-1𝛽, IL-18↓; LC3II↑ unknown

Celosins Celosia
argentea L. macrophage Ox-LDL CD36, SR-A1↓, ABCA1, ABCG1↑;

LC3II/LC3I↑, Beclin-1↑ unknown
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Figure 5: The schematic flowchart of diverse pathogenic mechanisms of AS and the intervention exerted by CHMs.

modulated by elatoside C-induced FoxO1 overexpression
[141]. With autophagy activation, celosin and polyphenolic
luteolin also alleviate lipid accumulation inmacrophages and
then restrain AS expansion [142, 143].

2.7. Other Related Mechanisms

2.7.1. Modulation of Immune Response. Cumulative papers
attempt to comprehend how immune system participates
in the pathogenic processes of atherogenesis, as innate and
adaptive immunity are validated to be correlated with all
stages of AS [144]. It is confirmed that some CHMs impede
atherogenesis via mediating immune response. For example,
TXL is shown to induce the regression ofAS, at least partly via
inhibiting ox-LDL-evoked DCs maturation, as illustrated by
reduction of membrane CD40, CD86, and CD1a [145]. More-
over, one property of baicalin and geniposide ameliorating
AS is ascribed to the gathering blockade of DCs in plaque
areas that launch proatherogenic immune reactions [146].
Owing that regulatory T cells (Tregs) hinder T helper (Th)
cells-induced inflammation, QSYQ and amygdalin increase
the content of Tregs in vascular lesions which delay the
development of AS [30, 147]. Additionally, QSYQ directly
inhibit Th17 cells in AS areas and then lower the release of
IL-17, a proatherogenic cytokine [30].

2.7.2. Regulation of Noncoding RNAs. Noncoding RNAs
(ncRNAs), a group of RNAmoleculesmainly containing long
noncoding RNAs (lncRNAs) and microRNAs (miRNAs), are
capable of affecting pathogenic processes of AS by mediating
lipidmetabolism, cellular apoptosis and proliferation, inflam-
mations, etc. [148, 149]. Tan IIA accelerates the clearance
of cholesterol in the vasculature by abolishing HFD-evoked
miR-33a expression to elevate ABCA1 level in the liver,
resulting in upregulation of HDL secretion and RCT pathway

[150]. Genipin impedes lipid deposition via boosting level
of miR-142a-5p, which in turn lessen the lipogenesis path-
way of SREBP-1c/ACC(FAS) in hepatocytes [151]. Following
paeonol treatment, a decrease in ECs apoptosis and TNF-𝛼
production is seen, probably explained by paeonol-mediated
suppression of miR-21/TNF-𝛼 axis and subsequent apoptotic
cascade [152]. Moreover, TXL mitigates the inflammation via
triggering Akt accompanied by reduction of miR-155 and
then TNF-𝛼 expression [153]. LncRNA TUG1 overexpression
is implicated in ECs apoptosis induced by ox-LDL, and
tanshinol improves ECs damage via reducing TUG1 level
which is followed by upregulation of miR-26a and decrease
of TRPC6 responsible for calcium overload [154]. In AngII-
stimulated ApoE-/- mice, Xiaoxianggou administration res-
cue miR-203 downregulation to reduce generation of Ets-2
which potentiates angiogenesis and autoimmunity, causing
the regression of AS plaques [155].

3. Conclusions

As a representative of complementary and alternative
medicine, CHMs have been prescribed to patients for thou-
sands of years in Asian countries for preventing and treating
diseases. In this review, we place the emphasis on the
signal pathways by which CHMs produce antiatherogenic
functions.We find that several herb medicines could regulate
one signal pathway to provide multiple roles against AS
and an herb drug is able to exhibit one anti-AS action by
mediating two or more cascades, suggesting the pleiotropic
and multitargeted effects of CHMs in AS alleviation. Besides,
apart fromdirectly improving the cascades of lipid dysbolism,
endothelium injury, and inflammation response, herb drugs
afford atheroprotective actions through mediating the pro-
cesses of thrombosis, autophagy, immune reaction, and ncR-
NAs expression, majority of which converge on the pathways
of the above three AS contributors (Figure 5). However,
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there are several limitations existing in the research field of
CHMs which we cannot ignore. At first, the counterevidence
proving the anti-AS roles of CHMs-induced signal pathways
is deficient in several literatures, especially in animal studies.
So, rigorous logical thinking and experimental design are
recommended. Moreover, most of the CHMs-related studies
are published in Chinese journals and the theories of ancient
traditional Chinese medicine are obscure to the western
world, both of which impede the development of CHM
research field in the globe. Thus, it is imperative to present
more pharmacological and therapeutic findings of CHMs to
the international anti-AS study organization and use modern
scientific ways to clarify the theory of CHM. Additionally, the
majority of the herb drugs like Tan IIA, icariin, BBR, paeonol,
and curcumin have been proved to be effective in suppressing
AS progression by preclinical experiments, but relevant
clinical trials to investigate the safety and effectiveness are
scarce. So, it is urgent to perform plentiful well-designed
clinical studies with standard and strict procedures to afford
reliable and sufficient evidences for the clinical application of
these herb drugs. Furthermore, some patent drugs such as
Shexiang Baoxin pill have been widely used to treat CVDs in
the clinic, whereas the underlying therapeutic mechanisms
are poorly understood [156]. Uncovering the antiatherogenic
mechanisms of these medicines is helpful to enhance the
theoretical basis of their clinic application. In addition,
with the development of modern biological technology like
bioinformatics analysis and network pharmacology, more
and more bioactive compounds from herbs and relevant
signal pathways offering protective roles against AS will be
discovered.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Authors’ Contributions

Li Lu and Xiaomei Guo designed and wrote the manuscript;
Xiaodong Sun and Yating Qin performed the figures and
tables.

Acknowledgments

This study was supported by the National Natural Science
Foundation of China (no. 81270353).

References

[1] G.A. Roth, C. Johnson, andA.Abajobir, “Regional, andnational
burden of cardiovascular diseases for 10 causes,” Journal of the
American College of Cardiology, vol. 70, no. 1, pp. 1–25, 1990.

[2] C. Weber and H. Noels, “Atherosclerosis: current pathogenesis
and therapeutic options,” Nature Medicine, vol. 17, no. 11, pp.
1410–1422, 2011.

[3] M. D. Shapiro and S. Fazio, “From Lipids to Inflammation:
NewApproaches to Reducing Atherosclerotic Risk,”Circulation
Research, vol. 118, no. 4, pp. 732–749, 2016.

[4] J. D. Spence and G. K. Dresser, “Overcoming challenges with
statin therapy,” Journal of the American Heart Association, vol.
5, no. 1, Article ID e002497, 2016.

[5] J. M. Backes, J. F. Ruisinger, C. A. Gibson, and P. M. Moriarty,
“Statin-associated muscle symptoms—Managing the highly
intolerant,” Journal of Clinical Lipidology, vol. 11, no. 1, pp. 24–33,
2017.

[6] C. Liu and Y. Huang, “Chinese Herbal Medicine on Cardio-
vascular Diseases and the Mechanisms of Action,” Frontiers in
Pharmacology, vol. 7, 2016.

[7] L. Li, X. Zhou, N. Li, M. Sun, J. Lv, and Z. Xu, “Herbal
drugs against cardiovascular disease: traditional medicine and
modern development,” Drug Discovery Therapy, vol. 20, no. 9,
pp. 1074–1086, 2015.

[8] D.Wang, J.Wang, Y. Liu, Z. Zhao, and Q. Liu, “Roles of Chinese
herbalmedicines in ischemic heart diseases (IHD) by regulating
oxidative stress,” International Journal of Cardiology, vol. 220,
pp. 314–319, 2016.
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