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Abstract

Background: Identifying protein functions is important for many biological applications. Since experimental functional
characterization of proteins is time-consuming and costly, accurate and efficient computational methods for predicting
protein functions are in great demand for generating the testable hypotheses guiding large-scale experiments.“ Results:
Here, we propose Graph2GO, a multi-modal graph-based representation learning model that can integrate heterogeneous
information, including multiple types of interaction networks (sequence similarity network and protein-protein interaction
network) and protein features (amino acid sequence, subcellular location, and protein domains) to predict protein functions
on gene ontology. Comparing Graph2GO to BLAST, as a baseline model, and to two popular protein function prediction
methods (Mashup and deepNF), we demonstrated that our model can achieve state-of-the-art performance. We show the
robustness of our model by testing on multiple species. We also provide a web server supporting function query and
downstream analysis on-the-fly. Conclusions: Graph2GO is the first model that has utilized attributed network
representation learning methods to model both interaction networks and protein features for predicting protein functions,
and achieved promising performance. Our model can be easily extended to include more protein features to further improve
the performance. Besides, Graph2GO is also applicable to other application scenarios involving biological networks, and the
learned latent representations can be used as feature inputs for machine learning tasks in various downstream analyses.

Keywords: protein function prediction; graph neural network; attributed network embedding; representation learning;
multi-modal model

Introduction

Knowledge of protein functions is of great importance to un-
derstanding life at a molecular level, studying disease mecha-
nisms, and helping explore novel therapeutic targets. However,
the experimental identification of protein functions is time-
consuming and expensive, which is not suitable for large-scale
applications. Therefore, high-throughput computational meth-
ods are required for discovering protein functions with reason-

able quality and accuracy [1], and providing testable hypotheses
for targeted experimental validation.

Most existing computational algorithms exploit homology
inference to infer protein functions [2–4], which are based on
the assumption that proteins with similar sequences frequently
carry out similar functions. A standard approach is simply to
transfer annotations from the best-annotated BLAST hit [5].
Some approaches involve the use of protein-protein interaction
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(PPI) networks, based on the fact that proteins closer in the net-
work have a greater chance of sharing similar functions [6, 7].
Some other methods utilize domain content in the sequence
to assign functions [8, 9]. Under the assumption that domains
are protein structural architecture modules, it makes sense that
protein function should be closely related to or determined by
the composite domains. There are also other methods making
use of other sources of information for protein function predic-
tion, such as protein subcellular localization [10, 11] and post-
translational modifications [11], as well as the literature [12].

Given the limited prediction capacity of a single source of in-
formation, many methods have been proposed to combine sev-
eral kinds of information and take advantage of the power of ma-
chine learning techniques. For instance, INGA [13] performs se-
quence similarity and domain architecture searches, and com-
bines them with enrichment analyses on interaction networks
to derive the consensus prediction. Similarly, COFACTOR [14]
consists of three individual pipelines for sequence-, structure-
, and PPI-based predictions by querying the UniProt-GOA [15],
BioLip, and STRING [16] databases, respectively, and it generates
the consensus based on three confidence scores obtained from
the three pipelines. DeepGO [17] uses representation learning
methods to learn features from sequence and interaction net-
works respectively, and then combines them to predict the func-
tion using a deep neuro-symbolic model. Although these meth-
ods could achieve reasonable prediction accuracy, a limitation is
that they only treat multiple kinds of features separately and do
not consider the relationships between proteins for each feature,
which might result in the loss of information contained within
the interactions. A possible solution to take into account the re-
lationships is to use PPI networks to transfer features between
proteins.

Graphs, such as those representing social networks, molecu-
lar graph structures [18], and biological PPI networks, occur nat-
urally in various real-world scenarios and have important appli-
cations in modern machine learning. Modeling the interactions
between entities as graphs has enabled researchers to under-
stand the network system in a systematic manner. For exam-
ple, in a social network application one might wish to predict
the role of a person or recommend new friends to a user [19];
in a clinical application, researchers want to predict new thera-
peutic applications of drug molecules [20]; and basic scientists
are also interested in classifying the roles of a protein in a bi-
ological interaction graph [21]. Mashup [22] is a framework for
scalable and robust multiple network integration, and generates
low-dimensional vectors for nodes by characterizing topological
contexts in heterogeneous PPI networks based on the random
walk with restart method. The key of Mashup is the use of the
random walk with restart method to analyze the network struc-
ture. Researchers also proposed novel methods for dimension
reduction and the integration of heterogeneous networks by
solving optimization problems. DeepNF [23] is a network fusion
method for extracting protein features from multiple heteroge-
neous interaction networks based on multi-modal deep auto-
encoders. DeepNF also utilizes the random walk with restart
to extract information about network structures for individual
PPI networks. DeepNF proposed a different integration method
based on auto-encoders. Both of these two methods adopt a two-
stage model: first generating informative embeddings based on
network structures in an unsupervised manner, then building
a supervised classification model to predict gene ontology (GO)
terms with embeddings as the input. Although both Mashup and
DeepNF can generate embeddings used for downstream protein
function prediction, they only consider the topological informa-

tion contained in multiple PPI networks, while ignoring infor-
mative protein attributes, such as protein sequence or protein
domains; thus, they might lack important information.

A crucial challenge in machine learning on graphs is finding
a way to incorporate multiple types of information about the
structure and attributes of the graph into the machine learn-
ing model. Traditional approaches usually use summary graph
statistics [24], kernel functions [25], or handcrafted features to
represent local neighborhood structures. Nowadays, people seek
to learn representations that encode structural information in a
data-driven way. The idea behind these representation learning
methods is to learn a function that maps nodes in the graph
to points in a low-dimensional vector space. By optimizing this
mapping, the geometric relationships in the learned space can
reflect the original structure of the graph, and the learned rep-
resentation can be used as feature inputs for downstream ma-
chine learning applications [26]. These network representation
learning methods can also make use of node attributes to gen-
erate more informative embeddings, such as user profiles in a
social network and protein signatures in a protein interaction
network [21].

In this paper, we propose Graph2GO, a multi-modal graph-
based architecture, that can make use of several kinds of data
sources in a unified way to predict protein function. Unlike other
consensus methods that we mentioned earlier, we first use PPI
and sequence similarities to build two graphs separately and
use protein sequence information, protein subcellular location,
protein domains, or any other possible information as node at-
tributes in both graphs. Given the attributed graph, we use the
attributed network representation learning algorithm to obtain
informative embeddings for each node in each graph. In the
graph, a node represents a protein. In this way, we manage to
learn representations by modeling both node attributes and net-
work structures comprehensively and simultaneously. Then, we
combine these two embeddings and use them to predict the pro-
tein functions with a feedforward neural network model.

As far as we know, we are the first to use attributed network
representation learning methods to model both an interaction
network and a sequence similarity network (SSN) with node at-
tributes and predict protein functions, and we have successfully
achieved state-of-the-art performance on the benchmark data
set. Besides, our model is extensible to other function-related
information to further improve the performance. Graph2GO
does not rely on any manually crafted features and is en-
tirely data driven. Graph2GO is also applicable to other simi-
lar scenarios, such as predicting new therapeutic applications
of existing drugs, since the learned embeddings can be used
as feature inputs for various downstream machine learning
tasks.

Materials and Methods

Graph2GO consists of two parts: the first part is an unsupervised
graph-based representation model that utilizes both network in-
formation (PPI, sequence similarities) and node attributes (pro-
tein sequence, subcellular location, and protein domains) to
generate unique embedding vectors for each protein; the sec-
ond part is a fully-connected deep neural network (DNN) classi-
fier, which use embeddings as features and gene ontology (GO)
[27] as function labels. GO defines concepts that describe func-
tions and classifies functions on three aspects: molecular func-
tion (MF), cellular component (CC), and biological process (BP)
[27]. We first describe how we obtain and encode different kinds
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Figure 1: Here we use PTEN as an example to show how we encode sequence,
subcellular location, and protein domains features. For sequence encoding, we
use the conjoint triad (CT) method. For subcellular location and protein domains,

we use bag-of-words encoding.

of information, and then describe the detailed model specifica-
tion. In Fig. 1, we use the PTEN gene as an example to detail how
we encode these information. The model architecture is shown
in Fig. 2.

Data set

We use reviewed and manually annotated proteins from Swis-
sProt (release 2018 11) [15]. The data set contains 20,412 hu-
man proteins. The data set provides GO annotations along
with the experimental evidence code. We also obtained protein
sequences, subcellular locations, and protein domains (Pfam)
from SwissProt. We downloaded PPI networks from the STRING
database (v10.5) [16], filtered by the proteins we obtained from
SwissProt.

Data encoding

Protein-protein interaction network
From the network data in STRING, we use the “combined score”
provided by STRING as the confidence score. As shown in Sup-
plementary Figure S2, We perform cross-validation to choose
the threshold of the combined score for building the PPI net-
work, and we only use interactions that have a “combined score”
greater than 300 to construct the adjacency matrix as the repre-
sentation of the network. For interactions with low confidence
and protein pairs with no interactions mentioned in STRING, we
assign the corresponding element in the adjacency matrix as 0.

Sequence similarity network
In order to build a SSN, we use the BLAST program to search
similar sequences for each protein in our data set [28]. We only
select similarity pairs that have an “e-value” smaller than 1e-4
as candidate edges for the similarity network. Detailed cross-
validation results on selecting the threshold are shown in Sup-
plementary Figure S1.

Protein sequence
We encode amino acid sequences following the conjoint triad
(CT) method [29], which has been widely used to represent se-
quences in related fields [30–33]. The 20 kinds of amino acids
are first clustered into 7 classes according to the dipoles and vol-
umes of the side chains, since amino acids within the same class

likely involve synonymous mutations. And then all the amino
acids in the same class are considered as identical. The mapping
between classes and amino acids is shown in Supplementary Ta-
ble S1. Then, we consider any 3 continuous amino acids as a unit
and count the triad frequencies by calculating the occurrence
numbers within the protein sequence. Thus, the dimension of
the CT encoding is 7 × 7 × 7 = 343. Using the CT method, we
manage to convert amino acid sequences into fixed-dimension
representation.

Subcellular location
We obtained subcellular location information from the Swis-
sProt data set. In total, there are 359 different subcellular loca-
tions. We use bag-of-words encoding to represent this informa-
tion; that’s to say, the location is encoded as a binary vector of
length 359 with each element indicating whether the protein is
annotated with this location. Therefore, for a protein without
any subcellular location annotation, it is represented as a vector
of all 0s.

Protein domains
In the data set we obtained from SwissProt, there are 5,817
unique protein domains. In order to avoid the curse of dimen-
sionality and to decrease the complexity, we only use protein
domain terms that appear more than 5 times in our data set,
and we are left with 655 terms. The protein domain knowledge
is also encoded by way of bag-of-words encoding.

VGAE model

In the first part of Graph2GO, the core is a variational graph auto-
encoder (VGAE) [34], which can generate latent representations
based on both network structure and node features, as shown
in Fig. 2a. We will discuss this model by problem formulation,
followed by its inference part (encoder) and generative part (de-
coder). The purpose of VGAE is to learn interpretable embedding
for each protein by training the encoder and decoder at the same
time.

Problem formulation
We are given an undirected graph, G = (V, E), with N = |V| nodes.
Here, N is the number of proteins, and each vertex of G repre-
sents one protein, while each edge is one interaction in the PPI
network or a similarity pair in the SSN. The adjacency matrix
A of G and its degree matrix DA are derived from known net-
work information. We enforce self-loops in the graph by simply
adding the identity matrix to A. The input features of each ver-
tex are included in an N × R matrix X which is the concatenation
of protein sequence feature S, subcellular location feature L, and
protein domains feature D, as shown in Fig. 2a. Here, R is the sum
of feature dimensions of matrix S, L, and D.

The model depicted in Fig. 2a is basically an encoder-decoder
model. First the encoder maps each node vi in the graph to a low-
dimensional latent variable zi , based on the node’s position in
the graph, its local neighborhood structure, and its attributes.
Next, the decoder reconstructs the adjacency matrix term Aij

corresponding to the pair of nodes vi and vj. By jointly opti-
mizing the encoder and decoder, the model learns to compress
graph structure information and original node attributes into
the low-dimensional latent space. In principle, the model learns
to propagate features across the proteins based on the network
structure, and the encoder-decoder architecture ensures that
the learned representations in the latent space are meaningful
and informative.
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Figure 2: (a) Architecture of the variational graph auto encoder (VGAE), the first part of Graph2GO. The inputs to VGAE include an adjacency matrix A, representing a

protein-related network, and a node attribute matrix. VGAE is an encoder-decoder approach. The encoder is a two-layer graph convolutional network and the decoder
is a dot product decoder. The mean vector, μi , is the output embedding for classification. (b) Graph2GO pipeline consisting of two VGAE models for PPI networks and
SSN respectively, and the final DNN classifier. The two embeddings generated from the PPI network and SSN are concatenated as the input for the DNN classifier, and
the DNN classifier outputs the probabilities of the protein having each GO term annotation.

Encoder
The inference module is a graph convolutional network (GCN)
encoder [35], which is a function with the goal of a mapping from
the original features X to the latent variable Z with the network
information A. To be more specific, we want to learn a probability
model q(Z|X, A). Here we use GCN g to model this probability:

[μ; log σ ] = g(X, A; φ) (1)

q(Z|X, A) = N (Z; μ, σ 2I) (2)

where q is a function that encodes proteins into latent variables
Z based on network information A and node attributes X, φ is
the parameter of GCN g, and I is an identity matrix. μ and σ are
the mean and variance, respectively, of the Gaussian distribu-
tion corresponding to latent variable Z, and are estimated us-
ing network g from data directly. Then Z can be sampled from
q(Z|X, A). According to the reparameterization trick [36], zi is ob-
tained by:

zi = μ + σ � εi (3)

where � is element-wise multiplication and εi ∼ N (0, I).
Our GCN g is a two-layer network as defined:

g(X, A; φ) = Ã ReLU(ÃXW(0))W(1) (4)

where W(i ) are parameter matrices we need to train, ReLU(·) =
max(0, ·) is the activation function, and Ã = D

− 1
2

A AD
− 1

2
A is the sym-

metrically normalized adjacency matrix [35].
The intuition of GCN is as follows. The multiplication of fea-

ture matrix X and the adjacency matrix A means that, for every
node, we sum up feature vectors of all its neighboring nodes and

itself to update its feature representation. In this way, node at-
tributes are propagated across the graph and the information
associated with each protein is augmented, especially for pro-
teins with little annotation. This graph convolution operation is
similar to Laplacian smoothing, which makes features of nodes
in the same cluster similar [37]. In order to avoid changing the
scale of the feature vectors, A is first normalized so that all
rows sum to 1 by symmetric normalization. Multiplying X with Ã
means taking the average of neighboring nodes’ features. In this
way, GCN can effectively learn embeddings through integrating
neighboring graph features.

Decoder
As our latent embedding already contains both node attributes
and structure information, the generative module we define
here is a simple inner product decoder that aims to reconstruct
adjacency matrix A using learned latent variables zi :

p(A|Z) = ∏N
i=1

∏N
j=1 p(Ai j |zi , z j ) (5)

p(Ai j = 1|zi , z j ) = σ (z�
i z j ) (6)

where σ ( · ) is the logistic function. We use the logistic function–
transformed inner product of zi and z j , shown on the right-hand
side of Equation (6), as the probability of these two proteins hav-
ing interaction. As indicated in Fig. 2a, the output of the decoder
Â is the approximation of adjacency matrix A, and we optimize
the model so as to make them as close as possible.
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Cost function
Similar to variational auto-encoder (VAE) [36], the cost function
is the reconstruction error with a regularizer:

L = Eq(Z|X,A)[log p(A|Z)] − KL[q(Z|X, A)‖p(Z)] (7)

where KL [q( · )‖p( · )] is the Kullback-Leibler divergence between
q( · ) and p( · ). The first term is to minimize the reconstruction
error of the adjacency matrix A. The second term is to mini-
mize the difference between q(Z|X, A) and p(Z). The cost func-
tion is the tradeoff between how accurately our model can re-
construct the input network and how closely the latent variables
can match p(Z). As specified in VAE, we assume p(Z) ∼ N (0, I). We
train the VGAE using stochastic gradient descent to optimize the
cost function with respect to the parameters of the encoder [36].

DNN classifier

In the second part of Graph2GO, as shown in Fig. 2b, we take
out embeddings μi contained in the matrix μ and train a fully-
connected DNN as the final supervised classifier. DNN has be-
come one of the most popular and powerful techniques for su-
pervised machine learning [38]. It consists of three types of lay-
ers: an input layer, hidden layers, and an output layer. The inputs
to the classifier are embedding vectors for each protein, while
the output layer represents GO terms that we aim to predict.
Hidden layers are stacked between the input layer and output
layer, aiming to learn meaningful abstract features for the task.
To go from one layer to the next, a set of units (neurons) com-
pute a weighted sum of their inputs from the previous layer and
pass the result through a non-linear function (activation func-
tion). By stacking multiple hidden layers, DNN can learn an ex-
tremely intricate non-linear function mapping from the input to
the output, which means it works best when the task is inher-
ently non-linear. Gradient descent algorithm is commonly used
for training neural networks and binary cross-entropy is used as
the cost function in our multi-label classification task.

We train three classifiers: one each for MF, BP, and CC respec-
tively. For each classifier, it is a multi-class, multi-label model,
and the dimension of the output space is the number of GO
terms within each ontology. Each protein may be predicted with
multiple GO terms simultaneously. The classifier predicts the
probabilities of the protein having each GO term annotation.
The performance of the classifier can be excellent without many
complex neural network structures, since the embeddings al-
ready contain enough information and are highly representative
in the learned low-dimensional vector space.

Graph2GO pipeline

As shown in Fig. 2b, the Graph2GO pipeline consists of two VGAE
models for the PPI network and SSN, and the final DNN classifier
for predicting protein functions. Instead of combining two net-
works first and training one VGAE to obtain overall embeddings,
by training an independent VGAE model for each network and
combining their embeddings, we try to avoid introducing noise
and to keep as much information as possible. We compared the
performance of these two ways for integrating two networks and
the detailed results are shown in Supplementary Table S2.

Results
Experimental setup

Graph2GO was implemented using Tensorflow in Python and
took advantage of the powerful computing capacity of a graph-

ics processing unit (GPU). All the simulations were carried out
on the Owens cluster provided by the Ohio Supercomputer Cen-
ter [] with 27 processors and 127 GB memory. The GPU we used
was a NVIDIA Tesla P100 with 16 GB memory. Our source code is
available at https://github.com/yanzhanglab/Graph2GO.

For our experiments, we use SwissProt’s reviewed and man-
ually annotated human proteins (release 2018 11). We only use
proteins that also exist in the STRING database (v10.5), where
corresponding interaction information is available. In order to
use the CT method to encode amino acid sequences, we delete
proteins whose sequence contains ambiguous amino acids, in-
cluding B, O, J, U, X, and Z. After filtering out 5,279 proteins, our
final data set contains 15,133 proteins, along with 1,713,652 PPIs
and 843,212 edges in the SSN. For GO annotations, we only con-
sider the experimental evidence code among EXP, IDA, IPI, IMP,
IGI, IEP, TAS, and IC [27]. If a protein is annotated with a GO term,
we additionally annotated it with all the ancestor terms.

In the first part of our architecture, the encoder is a two-layer
neural network structure with one layer having 400 neurons and
the other having 800 neurons. Using two layers of graph con-
volutional operations is recommended in Kipf and Welling [35]
and Li et al. [37], and we confirm the choice of two layers by per-
forming cross-validation, as shown in Supplementary Figure S1.
We initialize weights as described in Glorot and Bengio [39], and
train the model for 200 iterations using Adam algorithm with
a learning rate of 0.001 [40]. The final prediction classifier is a
three-layer fully connected neural network with each layer hav-
ing 1,024, 512, and 256 neurons respectively. A dropout layer and
a batch normalization layer are used between every set of dense
layers to avoid over-fitting and the dropout rate is set as 0.3.
Adam is used to train the model for 100 iterations with a learn-
ing rate of 0.001.

Evaluation metrics

We use metrics that are similar to those adopted by the Critical
Assessment of protein Function Annotation algorithms (CAFA)
challenge to evaluate our model and compare it with others [1].
The first metric we use is the maximum F-measure (F-max) over
all possible thresholds, defined as follows:

pr(t) =
∑

i
∑

f I ( f ∈ Pi (t) ∧ f ∈ Ti )∑
i
∑

f I ( f ∈ Pi (t))
(8)

rc(t) =
∑

i
∑

f I ( f ∈ Pi (t) ∧ f ∈ Ti )∑
i
∑

f I ( f ∈ Ti )
(9)

Fmax = max
t

{
2 · pr(t) · rc(t)
pr(t) + rc(t)

}
(10)

where pr means precision, rc means recall, I is the indicator func-
tion, f is a GO term, Pi(t) is a set of predicted GO terms for protein
i using the threshold t, and Ti is a set of annotated GO terms for
protein i.

We also use similar term-centric metrics to evaluate the
model, as suggested by CAFA. However, instead of using receiver
operating characteristic (ROC) curves, we choose to consider
precision-recall (PR) curves and calculate the area under the
curve. As pointed out by Davis and Goadrich [41], when dealing
with highly imbalanced data sets, PR curves give a more infor-
mative picture of an algorithm’s performance than ROC curves.
Since this is a multi-label task, we adopt two averaged measures
of area under the precision-recall curve (AUPR) for all terms:

pr f (t) =
∑

i I ( f ∈ Pi (t) ∧ f ∈ Ti )∑
i I ( f ∈ Pi (t))

(11)

rc f (t) =
∑

i I ( f ∈ Pi (t) ∧ f ∈ Ti )∑
i I ( f ∈ Ti )

(12)

https://github.com/yanzhanglab/Graph2GO
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AUPR f = ∑
t(rc f (t) − rc f (t − 1)) · pr f (t) (13)

M-AUPR = 1
Nf

·
∑

f

AUPR f (14)

m-AUPR = ∑
t(rc(t) − rc(t − 1)) · pr(t) (15)

Where prf and rcf are precision and recall for a single GO
term f, AUPRf is the area under the precision-recall curve
(AUPR) for f, and Nf is the number of GO terms used for
evaluation. The macro-averaged AUPR (M-AUPR) is defined
as the unweighted mean of the AUPR for all labels, while
the micro-averaged AUPR (m-AUPR) is calculated globally by
considering each element of the label indicator matrix as a
label.

Comparison between different types of features

In this section, we compare the results of using different net-
work information and node attributes. The purpose is to show
which type of feature is most informative and how we can fur-
ther improve the performance by combining multiple types of
features. In Table 1, we show the results when using different
network types and node attributes. For network types, we test
among only using the PPI network, only using the SSN, and us-
ing the combined network. As for node attributes, we compare
the performance among different attributes (sequence, protein
domains, and subcellular location) and especially compare with
ALL attributes (using all three kinds of attributes together). We
do not consider sequence information as node attributes when
the SSN is used as the network to train the model, because of
the redundancy.

Looking at the performance of using different network types,
the combined network is always better than the other two
single network types across all three ontologies, which indi-
cates that the PPI network and the SSN can provide com-
plementary information for function prediction. Comparing
the effect of the PPI network and the SSN, the PPI net-
work shows better performance than the SSN, except on
MF ontology. We can conclude that the PPI network pro-
vides more function-related information than the SSN, and
that MF ontology has a great correlation with sequence
information.

From the analysis of the effects of using different node at-
tributes, we can conclude that the integration of all node at-
tributes is better than using any single attribute across all three
ontologies, no matter what kind of network type is used. We can
see that using a sequence attribute can achieve reasonable per-
formance for predicting functions in all three ontologies when
combined with the PPI network, proving the importance of se-
quence information. It also shows that the protein domain at-
tribute is the most informative feature for predicting MF func-
tions, while the subcellular location attribute is important for CC
function predictions. Overall, each type of node attribute con-
tributes to the function prediction, and the combination of all
features improves the performance and provides more robust
predictions. Based on the results shown in Table 1, our final
model considers both the SSN and PPI network as our network
information. As for node attributes, we include subcellular loca-
tion and protein domain features as node attributes in the SSN,
and include all three types of features as node attributes in the
PPI network.

Comparison with BLAST

We first compare our method with a baseline model, BLAST,
which is a widely used homology-based method for annotat-
ing protein functions [5]. We randomly split the data set into
80% for the training set and 20% for thre test set. We compare
our method with BLAST under two conditions: (1) the full data
set, using all of the 80% training set; and (2) the partial data set,
removing those training samples with more than 50% identity
with one of the test samples (removing potential homologs). The
training set is used for constructing the database. Then all GO
term annotations of the best hit in the database are assigned
to the query protein in the test set as the predicted functions.
Since BLAST cannot assign probabilities for each prediction, we
use Precision, Recall, and F1 score as the evaluation metrics in-
stead of the M-AUPR, m-AUPR, and F-max we used in the pre-
vious section. For Graph2GO, we use the same training and test
sets and use 0.5 as the threshold to assign predicted labels.

As shown in Table 2, in terms of all metrics, Graph2GO out-
performs BLAST by a large margin across all three ontologies un-
der both comparison conditions, especially for CC and BP, prov-
ing the superiority of our model. We can see that Graph2GO can
achieve significantly higher Precision than BLAST under the full
data set condition. BLAST results in many false positives and
low Precision because of predicting functions simply based on
amino acid sequence information but ignoring other informa-
tive features. Besides, it is shown that BLAST can obtain rea-
sonable performance in MF ontology, which demonstrates that
amino acid sequence information is highly related to the func-
tions in MF ontology again. After removing highly similar se-
quences of the test set in the training set, the performances
of both methods drop accordingly, while Graph2GO shows a
smaller drop and thus outperforms BLAST even more under the
partial data set condition. For BLAST, the performance drops
from the full data set condition to the partial data set condition
in terms of F1 score are 27%, 32%, and 37% for CC, MF, and BP, re-
spectively. As for Graph2GO, the F1 score drops to 9%, 25%, and
17% for CC, MF, and BP, respectively, which are significantly lower
scores than BLAST, exhibiting a more robust performance.

Comparison with other network-based methods

To evaluate the performance of our method, we compare our
method with two popular protein function prediction methods:
Mashup and deepNF, which are also based on the concept of em-
bedding. In their initial implementations, Mashup and deepNF
use support vector machine (SVM) as the classification model. In
order to make the performance more comparable, we also use
DNN that is used by Graph2GO as their classification models.
Each method is evaluated using 5-fold cross-validation, repeated
10 times. We first compare the performance using all GO terms,
as shown in Fig. 3. We also group GO terms into three functional
categories based on the sparsity levels for each ontology, each
containing GO terms with 11-30, 31-100, and 101-300 proteins,
and show the detailed comparisons in Supplementary Figures
S2, S3, and S4.

For both CC and MF ontology, our model outperforms deepNF
and Mashup in terms of m-AUPR and F-max, and achieves com-
parable results with deepNF and Mashup in terms of M-AUPR.
Our model is comparable to Mashup and outperforms deepNF
in BP ontology in terms of m-AUPR and F-max and is slightly
worse than Mashup in M-AUPR. Looking at the detailed com-
parison in three sparsity levels shown in Supplementary Fig-
ure S2, our model can achieve the best performance consis-
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Table 1: Performance comparison among using different network types (sequence similarity network, PPI network, and both) and node at-
tributes (sequence, subcellular location, protein domains, and ALL)

CC MF BP

Network Attribute M-AUPR m-AUPR F-max M-AUPR m-AUPR F-max M-AUPR m-AUPR F-max

location 0.325 0.686 0.639 0.411 0.650 0.624 0.152 0.336 0.388
Sequence domain 0.217 0.594 0.568 0.383 0.669 0.639 0.144 0.357 0.384

ALL 0.348 0.694 0.644 0.465 0.717 0.671 0.185 0.390 0.418
sequence 0.471 0.683 0.639 0.466 0.657 0.626 0.268 0.458 0.472

PPI location 0.448 0.704 0.652 0.398 0.596 0.567 0.233 0.435 0.450
domain 0.443 0.681 0.634 0.476 0.678 0.635 0.258 0.464 0.470

ALL 0.478 0.716 0.644 0.478 0.677 0.623 0.268 0.471 0.471
location 0.465 0.744 0.686 0.499 0.715 0.672 0.239 0.448 0.463

Combined domain 0.426 0.695 0.643 0.520 0.751 0.698 0.253 0.465 0.473
ALL 0.494 0.751 0.686 0.560 0.761 0.718 0.284 0.488 0.490

We use the M-AUPR, m-AUPR, and F-max as the evaluation metric. ALL means using the combination of all features as node attributes, and we do not include sequence
as a node attribute when SSN is used to train the model.

Table 2: Performance comparison between BLAST and Graph2GO in terms of precision, recall, and F1 score under two conditions (full data set
and partial data set after removing homologs)

CC MF BP

Method Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

BLAST (full) 0.540 0.589 0.564 0.633 0.712 0.670 0.373 0.427 0.398
BLAST (partial) 0.396 0.429 0.412 0.421 0.490 0.453 0.234 0.271 0.251
Graph2GO (full) 0.766 0.624 0.688 0.816 0.639 0.717 0.686 0.354 0.467
Graph2GO (partial) 0.731 0.549 0.627 0.698 0.448 0.545 0.595 0.286 0.387

We use 0.5 as the threshold to assign predicted labels for Graph2GO. It should be noted that the F1 score here is different from the F-max used previously, since the
threshold is prespecified for Graph2GO and there is no threshold for BLAST.

Figure 3: Performance comparisons with other network-based methods. Graph2GO is compared with Mashup and deepNF in terms of three metrics: micro-AUPR,
macro-AUPR, and F-max. The figure shows the comparison results on (a) CC, (b) MF, and (c) BP ontology. Each method is evaluated using 5-fold cross-validation,
repeated 10 times to calculate the confidence interval.

tently for MF ontology, across all sparsity levels. As we discussed
above, the MF ontology has a great correlation with sequence
information. Unlike Mashup and deepNF, which only consider
PPI networks, Graph2GO explicitly includes sequence informa-
tion in the model (SSN and sequence in the node attribute),
which improves the performance of our model. As for CC ontol-
ogy, Graph2GO can achieve the best performance for the most
general categories (i.e., annotating between 101 and 300 pro-
teins). For GO terms annotated between 11 and 100 proteins, our
method is not as good as Mashup and deepNF. For BP ontology,

as the number of annotations per GO term increases, the perfor-
mance of Graph2GO gradually improves and becomes compara-
ble with other two methods.

It can be observed that Graph2GO works best for GO terms
with enough annotated proteins, and is not as good as Mashup
for very specific GO terms with few annotations for CC and BP
ontology. In summary, our model can achieve state-of-the-art
performance in both CC and MF ontology, especially as the num-
ber of annotated proteins increases, and can obtain comparable
results in BP ontology. Compared with Mashup and deepNF, we
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can conclude that both the inclusion of discriminating node at-
tributes and the power of attribute propagation across two types
of networks enable Graph2GO to obtain competing results.

Performance on other species

In order to demonstrate the power and robustness of Graph2GO,
we downloaded data from SwissProt and the STRING database
for another 5 species (fruit fly, mouse, rat, Saccharomyces cere-
visiae, and Bacillus subtilis), and tested the performance of
Graph2GO on these species. For each species, we followed the
same procedure as when we tested on a human data set, and
the performance was evaluated in each species individually. Ta-
ble 3 shows the results in terms of macro-AUPR, micro-AUPR,
and F-max. We observe that Graph2GO can achieve consistently
decent performance on all 5 species in terms of these evaluation
metrics, which proves the robustness of our method. It should
be noted that the performance on Saccharomyces cerevisiae and
Bacillus subtilis is a lot better than on other species.

Graph2GO web server

We also developed a web server based on Shiny app in R that
supports protein function query on-the-fly: https://integrativ
eomics.shinyapps.io/graph2go/. Currently, the web server sup-
ports 15,133 human proteins that are trained by our model. Net-
work information (SSN and PPI network) and node attributes
(subcellular location and protein domains) are displayed in our
web server. The function prediction results are ranked by the
probability score for each ontology separately, and users can
specify the threshold to control the confidence of the results.

A promising application of our model is to utilize the latent
representations to perform downstream analyses, since the gen-
erated representations already summarize various kinds of in-
formative features. We support downstream clustering analysis
for the query protein, where similarities are measured based on
latent representations. Most similar proteins can be detected for
the query protein to constitute a network module. A GO enrich-
ment analysis can be performed on all proteins in the network
module to analyze functions of the module. In the future, we are
going to extend the server to include more proteins from other
species.

Discussion
Feature transfer for solving annotation bias

A challenge in protein function prediction is the lack of anno-
tated features for proteins, which are crucial for machine learn-
ing models. This is due to the bias in the experimental annota-
tion of proteins and has impeded the development of biomed-
ical research to some extent [42, 43]. In our experiment on the
human data set, among 15,133 proteins, 5,716 proteins lack an-
notation of protein domains, while 2,364 lack annotation of sub-
cellular location. Even with lots of missing values, when only us-
ing protein domains or subcellular location as node attributes,
Graph2GO can still achieve reasonable results, as shown in Ta-
ble 1. To demonstrate the power of Graph2GO to predict on
these sparsely annotated proteins, we divide the test set into
two groups: the sparsity group (without any subcellular loca-
tion or protein domain annotation) and the non-sparsity group.
We compare Graph2GO with a convolutional neural network
(CNN) model. This CNN model uses the same node attributes
as Graph2GO, but does not utilize networks to propagate pro-

tein attributes on these two groups separately. The detailed de-
scription of this CNN model is in the Supplementary Materi-
als. The comparison results are shown in Supplementary Table
S3. It is anticipated that the performance on the sparsity group
should be worse than that of the non-sparsity group, due to the
lack of features. We calculate the ratio between the performance
of the sparsity and non-sparsity groups to measure how well
Graph2GO and CNN handle the lack of features. The averaged ra-
tios in terms of F-max for CNN are 74%, 44%, and 73% for CC, MF,
and BP, respectively, while for Graph2GO, the averaged ratio are
101%, 84%, and 111%, respectively. We can see that when lacking
features, the performance of CNN would drop significantly com-
pared to the non-sparsity group. However, the performance of
Graph2GO is much more stable when facing a lack of features. In
some cases, the performance in the sparsity group is even better
than the non-sparsity group. This is due to the feature transfer of
Graph2GO, where node attributes are transferred between nodes
in the graph to augment the information of each protein. Since
proteins are connected in the interaction network, nodes with-
out any attributes can still update their representations based
on attributes of neighboring nodes, which solves the problem of
missing values to some extent.

The encoding of original features into the model is of high
importance to Graph2GO, not only for preserving information as
much as possible, but also for feature transfer. We represent pro-
tein domains and subcellular location using the bag-of-words
encoding method, which best preserves the original informa-
tion and supports the addition of features that the feature trans-
fer relies on. As for protein sequence, the CT encoding method
loses sequential information and is not well suited for the addi-
tion operation. To solve this, we also utilize the similarity net-
work to represent the sequence information, and we discover
that the inclusion of both types of sequence representations is
better than either of them alone, which might indicate that they
can provide some complementary information.

Extensibility and future work

Compared to other methods that also use multiple protein fea-
tures [13, 14, 17], an advantage of our method is that it is conve-
nient to incorporate other function-related information. Within
the network architecture, all the features are regarded as node
attributes and can be treated equally. In this paper, we found
the integration of all these node features and the network in-
formation provides the best prediction performance. The model
can be easily extended to take into account additional informa-
tion, such as post-translational modifications, protein structure,
or any other protein features. It’s also worth incorporating more
networks and finding a better way to integrate them. For exam-
ple, we may use the seven channels in the STRING database sep-
arately instead of using the combined PPI network, as adopted
by Mashup.

The architecture we proposed in this paper can not only be
used to predict protein functions, but can also be applied to
other tasks that involve biological networks, since the learned
embeddings are informative and can be used as feature inputs
for various downstream machine learning tasks. For example,
one can predict the interactions between any two proteins, pre-
dict new therapeutic applications of an existing drug, or run
a clustering algorithm to cluster genes into modules based on
learned embeddings.

In principle, predicting GO terms is a hierarchical classifica-
tion problem, since GO terms are organized in a hierarchy and
are interacting with each other [44]. Currently, Graph2GO as-

https://integrativeomics.shinyapps.io/graph2go/
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Table 3: Performance on other 5 species in terms of macro-AUPR, micro-AUPR, and F-max metrics

CC MF BP

Species M-AUPR m-AUPR F-max M-AUPR m-AUPR F-max M-AUPR m-AUPR F-max

Human 0.494 0.751 0.686 0.560 0.761 0.718 0.284 0.488 0.490
Fruit fly 0.570 0.764 0.729 0.599 0.710 0.693 0.388 0.531 0.530
Mouse 0.480 0.743 0.681 0.583 0.763 0.710 0.262 0.482 0.483
Rat 0.461 0.701 0.652 0.577 0.743 0.699 0.267 0.429 0.448
Saccharomyces
cerevisiae

0.677 0.848 0.781 0.597 0.740 0.689 0.481 0.647 0.620

Bacillus subtilis 0.709 0.860 0.803 0.620 0.742 0.693 0.577 0.665 0.651

sumes the independence of all GO terms, which might cause in-
consistencies between the prediction of leaf GO terms and the
corresponding parent GO terms. In the future, we will consider
adding some constraints on the output layer of our classifica-
tion model to force the prediction to be consistent between leaf
nodes and parent nodes. We will also try to incorporate the GO
hierarchy into the model as 1 of the network structures to inform
the training process.

Conclusion

In this work, we present Graph2GO, a graph-based deep learn-
ing model that can make use of heterogeneous information in
a unified way to predict protein functions. Our network repre-
sentation learning method can take into account both network
structure and protein attributes, to make predictions by organiz-
ing proteins into an attributed network architecture. Graph2GO
achieves state-of-the-art performance on the benchmark data
set and can easily be adapted to solve other tasks involving bi-
ological networks, such as link prediction, node classification,
and sub-network discovery.

Supplementary Data

There is an additional Supplementary Materials file containing
additional information. It includes the following figures and ta-
bles:
Supplementary Figure 1. Cross-validation results of choosing
different number of layers for the GCN model. The performances
on all three ontologies are best when using two layers of graph
convolutional operators. As the number of layers becomes larger
the performance gets worse, because applying a graph convolu-
tional operator repeatedly may mix node features from different
clusters and make them indistinguishable.
Supplementary Figure 2. Performance comparison with other
state-of-the-art methods in CC ontology for three different spar-
sity levels. Graph2GO is compared with Mashup and deepNF in
terms of three metrics: micro-AUPR, macro-AUPR, and F-max.
There, three figures show the results of 3 sparsity levels: [11-30],
[31-100], and [101-300]. Each method is evaluated using 5-fold
cross validation, repeated 10 times to calculate the confidence
interval.
Supplementary Figure 3. Performance comparison with other
state-of-the-art methods in MF ontology for three different spar-
sity levels. Graph2GO is compared with Mashup and deepNF in
terms of three metrics: micro-AUPR, macro-AUPR, and F-max.
There, three figures show the results of three sparsity levels:
[11-30], [31-100], and [101-300]. Each method is evaluated using
5-fold cross validation, repeated 10 times to calculate the confi-
dence interval.

Supplementary Figure 4. Performance comparison with other
state-of-the-art methods in BP ontology for three different spar-
sity levels. Graph2GO is compared with Mashup and deepNF in
terms of three metrics: micro-AUPR, macro-AUPR, and F-max.
There, three figures show the results of three sparsity levels:
[11-30], [31-100], and [101-300]. Each method is evaluated using
5-fold cross validation, repeated 10 times to calculate the confi-
dence interval.
Supplementary Table 1. Classification of amino acids according
to their dipoles and volumes of the side chains based on the CT
method.
Supplementary Table 2. Performance between the model where
we train an independent VGAE for each network and combine
their embeddings (referred to as “individual”) and where we first
combine the networks and train one VGAE to obtain the over-
all embedding (referred to as “combined”) in terms of M-AUPR,
m-AUPR, and F-max. The experiment procedure is the same as
other experiments performed in the “Results” section and is de-
scribed there.
Supplementary Table 3. Performance of Graph2GO and CNN on
sparsity group and non-sparsity group of the test set in terms
of F1 score. Here, “sp” means the sparsity group, while “non”
means the non-sparsity group.

Availability of source code and requirements
� Project name: Graph2GO
� Project home page: https://github.com/yanzhanglab/Graph

2GO
� Operating system(s): Platform independent
� Programming language: Python, R
� Other requirements: not applicable
� License: MIT
� RRID: SCR 018726
� biotoolsID: biotools:graph2go

Availability of supporting data and materials

All data are publicly available in our Github project home page.
An archival copy of the code and supporting data are available
via the GigaScience database, GigaDB [45].

Abbreviations

AUPR: area under the precision-recall curve; BLAST: Basic Lo-
cal Alignment and Search Tool; BP: biological process; CAFA:
Critical Assessment of protein Function Annotation algorithms;
CC: cellular component; CNN: convolutional neural network; CT:
conjoint triad; DNN: deep neural network; GCN: graph convo-
lutional network; GO: gene ontology; GPU: graphics processing
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unit; MF: molecular function; M-AUPR: macro-averaged area un-
der the precision-recall curve; m-AUPR: micro-averaged area un-
der the precision-recall curve; PPI: protein-protein interaction;
ROC: receiver operating characteristic; SSN: sequence similarity
network; SVM: support vector machine; VAE: variational auto-
encoder; VGAE: variational graph auto-encoder.
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