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Simple Summary: Machine learning in radiology of the central nervous system has seen many
interesting publications in the past few years. Since the focus has largely been on malignant tumors
such as brain metastases and high-grade gliomas, we conducted a systematic review on benign
tumors to summarize what has been published and where there might be gaps in the research.
We found several studies that report good results, but the descriptions of methodologies could be
improved to enable better comparisons and assessment of biases.

Abstract: Objectives: To summarize the available literature on using machine learning (ML) for the
detection and segmentation of benign tumors of the central nervous system (CNS) and to assess the
adherence of published ML/diagnostic accuracy studies to best practice. Methods: The MEDLINE
database was searched for the use of ML in patients with any benign tumor of the CNS, and the
records were screened according to PRISMA guidelines. Results: Eleven retrospective studies
focusing on meningioma (n = 4), vestibular schwannoma (n = 4), pituitary adenoma (n = 2) and
spinal schwannoma (n = 1) were included. The majority of studies attempted segmentation. Links to
repositories containing code were provided in two manuscripts, and no manuscripts shared imaging
data. Only one study used an external test set, which raises the question as to whether some of the
good performances that have been reported were caused by overfitting and may not generalize to data
from other institutions. Conclusions: Using ML for detecting and segmenting benign brain tumors
is still in its infancy. Stronger adherence to ML best practices could facilitate easier comparisons
between studies and contribute to the development of models that are more likely to one day be used
in clinical practice.

Keywords: machine learning; deep learning; benign brain tumor; vestibular schwannoma; meningioma;
pituitary adenoma

1. Introduction

Whilst an increase in computational power and the development of more user-friendly
software libraries have accelerated the adoption of machine learning (ML) techniques in
both neuro-radiology and neuro-oncology, much of the research that is being published
focuses on malignant tumor entities, such as high-grade gliomas or brain metastases [1].

A possible explanation for this phenomenon lies in the availability of data that are
required to train, validate and test ML models. While almost any hospital will have a
sufficient number of cases for epidemiologically significant entities such as brain metastases,
this is not the case for central nervous system (CNS) tumors with lower incidences, such as
many benign brain tumors [2].
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In addition, most publicly available imaging datasets are comprised of malignant enti-
ties. The popular Brain Tumor Segmentation (BraTS) Challenge dataset consists exclusively
of gliomas, which also applies to most of brain datasets that are available as part of The
Cancer Imaging Archive (TCIA) [3,4].

Despite these obstacles, there have been publications investigating the use of ML for
benign CNS tumors [5,6]. This review will therefore summarize the research that has been
conducted on this topic in systematic fashion and assess the quality of the studies that have
used ML for tumor detection and segmentation, as has been done previously for malignant
CNS tumors [7,8]. The goal is to create a point of reference that other researchers can use
to identify gaps in the research that are worthy of further investigation and to identify
possible shared issues regarding methodologies or their descriptions so that they can be
addressed by future publications.

While there are numerous potential benefits to having machine learning techniques tak-
ing over parts of the radiology workflow or serving as automated second opinions, this re-
quires common reporting standards to identify approaches that are worthy of being pursued
further with the goal of possibly translating them into routine clinical practice someday.

2. Methods
2.1. Literature Search

The review was conducted according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [9]. Studies published in English after
2000 that used any kind of machine learning technique for the detection or segmentation
of benign tumors of the CNS were included. Studies using semi-automatic segmentation
requiring manual user input prior to creating the segmentation were not included. Since
studies using segmentation only as a means to predict clinical or pathologic features
frequently provide little detail on the segmentation methodology, so these studies were not
included as well. No limits regarding size of the patient collective or length of follow-up
were applied.

The Medical Literature Analysis and Retrieval System Online (MEDLINE) database
was searched on 14 June 2021 via the PubMed interface. The query was designed to include
all studies that contained one or more words from two groups, one group comprised of
words that indicate the usage of an ML technique (automated, computer aided, computer-
aided, CAD, radiomic, texture analysis, deep learning, machine learning, neural network,
artificial intelligence) and the other group comprised of words associated with benign brain
tumors (meningioma, meningiomas, schwannoma, schwannomas, craniopharyngioma,
craniopharyngiomas, ganglioglioma, gangliogliomas, glomus, pineocytoma, pineocytomas,
pilocytic, pituitary, benign brain tumor, benign brain tumors).

The complete search query that was used was therefore:
“((automated[title]) OR (computer aided[title]) OR (computer-aided[title]) OR (CAD[title])

OR (radiomic[title]) OR (radiomics[title]) OR (texture analysis[title]) OR (texture analyses[title])
OR (textural analysis[title]) OR (textural analyses[title]) OR (deep learning[title]) OR (ma-
chine learning[title]) OR (ML[title]) OR (neural network[title]) OR (NN[title]) OR (artifi-
cial intelligence[title]) OR (AI[title])) AND ((meningioma[title]) OR (meningiomas[title]) OR
(schwannoma[title]) OR (schwannomas[title]) OR (craniopharyngioma[title]) OR (cranio-
pharyngiomas[title]) OR (ganglioglioma[title]) OR (gangliogliomas[title]) OR (glomus[title])
OR (glomera[title]) OR (pineocytoma[title]) OR (pineocytomas[title]) OR (pilocytic[title]) OR
(pituitary[title]) OR (benign brain tumor[title]) OR (benign brain tumors[title]) OR (benign
brain tumour[title]) OR (benign brain tumours[title])) AND (“2000/01/01”[Date-Create]:
“2021/06/14”[Date-Create])”

The review had neither been registered nor had a protocol published beforehand.
After exclusion of duplicates, the titles and abstracts were screened, and only relevant

publications proceeded to full-text screening. The decision as to whether a study met the
inclusion criteria of the review was performed by two authors (P.W. and C.K.) without
the use of automated tools. A third author (C.S.) acted as a referee in case of a potential
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disagreement between the two authors responsible for screening. All articles that did not
focus on the use of ML for detection or segmentation in patients with benign brain tumors
were excluded.

2.2. Data Extraction

Two authors (P.W. and C.S.) independently extracted data and discussed any discrep-
ancies. Data were extracted with regard to:

1. Study parameters: authors, title, year, design, number of patients in training/test set,
ground truth, inter-/intrarater variability, task, conflict of interest, sources of funding.

2. Clinical parameters: tumor entity, tumor volume, treatment of tumors prior to imaging.
3. Imaging parameters: MRI machine, field strength, slice thickness, sequences.
4. ML parameters: algorithm, dimensionality, training duration and hardware, libraries/

frameworks/packages, data augmentation, performance measures, explainability/
interpretability features, code/data availability.

3. Results

The inclusion workflow is depicted in Figure 1. The query returned 110 publications
and no duplicates. When screening the records, 99 articles were excluded. A complete list of
the excluded articles and the respective reasons for exclusion is provided in Supplementary
Table S1. Thirty three articles were excluded due to predicting only pathological features,
e.g., grade (n = 16), or differentiating between tumor entities (n = 8) [10–42]. Thirty four
articles were excluded due to predicting only clinical parameters, e.g., tumor consistency
(n = 7), response/treatment outcome (n = 12) or brain/bone invasion (n = 4) [43–75].
Twelve articles did not focus on ML techniques [76–87]. Eight articles were not original
reports but reviews or editorials [88–95]. Three articles used semi-automatic segmentation
techniques [96–98]. Three articles dealt with the application of ML techniques to brain
tumors in dogs [99–101]. Six articles were excluded for other reasons, such as using ML for
image reconstruction (n = 1), analyzing tissue (n = 3) or non CNS-tumor entities (n = 1) and
predicting drivers of costs (n = 1) [102–106].

All eleven articles that underwent full text screening were included, and the extracted
characteristics from all articles are provided in Supplementary Table S2. All studies were
conducted retrospectively and published between 2018 and 2021. The tumor entities that
were investigated were meningioma (n = 4), vestibular schwannoma (n = 4), pituitary
adenoma (n = 2) and spinal schwannoma (n = 1). Between 50 and 1876 patients were used
for developing or testing the models in the respective studies. Notably, only the study by
Qian et al. studied tumor detection using healthy controls or controls with other cerebral
neoplasms [107]. Other studies claiming to do tumor detection did so by doing tumor
segmentation, but these models never had to consider the possibility that a tumor was
not present.

3.1. Disclosures and Declarations

The authors of two publications uploaded code to a public repository that was ref-
erenced in the manuscript [108,109]. The remaining publications did not mention code
availability. No data were shared, but two articles mentioned the option to obtain data
from the corresponding author upon request [109,110]. Employment by Philips was the
most frequent conflict of interest at study level and declared in two publications [111,112].
A patent application related to the published work was present in one publication. Six
publications explicitly stated that the authors had no conflict of interest. The Ministry of
Science and Technology of Taiwan was the most frequent source of funding (n = 2), and
three publications stated no additional funding [108,113].

3.2. Imaging

All studies used magnetic resonance imaging (MRIs) with a field strength of between
one and three Tesla for imaging. Whilst six studies used homogenous datasets from a single



Cancers 2022, 14, 2676 4 of 15

device, the remaining studies used datasets consisting of images from multiple devices.
Where reported, slice thickness was between one and six millimeters. All studies used
a T1-weighted sequence, presumably with contrast enhancement, though this was not
explicitly stated in all publications. T2-weighted sequences were used in seven studies, and
two specified the use of a T2 FLAIR sequence.
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guideline for reporting systematic reviews. BMJ 2021;372:n71. Doi: 10.1136/bmj.n71. For more
information, visit: http://www.prisma-statement.org/ (accessed on 25 April 2022).

3.3. Ground Truth

All manuscripts claimed that at least two people worked on tumor segmentation.
Additional information was frequently lacking—for example, whether every image was
independently annotated by two people and whether the annotators had access to clinical
information. Similarly, only four manuscripts reported interrater variability. The most
frequently used metric for interrater variability, the dice coefficient, was between 0.89 and
0.94 [5,112,114,115].

3.4. Modeling

All publications used convolutional neural networks for modeling. Eight publications
used a designated test set, unseen by the model during training, and one of which can be
considered an external test set, as the images were provided by an institution other than
the one that supplied the training set. The publications that did not use a separate test set

http://www.prisma-statement.org/
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used cross-validation or the contours of one annotator for training and those of the other
for testing.

Regarding libraries, five publications mentioned the use of tensorflow and one the use
of PyTorch. The remaining publications did not reference libraries in the manuscript. The
use of data augmentation was mentioned in three publications. The implementation of
explainability features was not discussed, but one publication analyzed the performance of
the classifier depending on tumor volume [5].

3.5. Meningioma

All publications on meningiomas (n = 4) used meningiomas from different intracranial
locations.

Laukamp et al. published two articles on meningioma segmentation [111,112]. For
the first publication, they trained a network based on the DeepMedic architecture with
contrast-enhanced T1 (T1c) and T2FLAIR images from glioblastoma cases and used those
to segment meningiomas, which resulted in a Dice coefficient of 0.78. In their second
publication, they used grade I/II meningiomas for training as well and tested on the same
cohort, this time achieving a dice coefficient of 0.91 for the contrast-enhancing tumor.

Zhang et al. used T1c slices from 1876 patients to train a model to segment menin-
giomas and predict the tumor grade by using the segmentation [109]. To describe the
performance of their segmentation, they used a less established concept called “tumor
accuracy” defined as the percentage of correctly predicted pixels in the tumor, which
was 0.814.

Bouget et al. used T1c MRIs of 698 patients with various architectures, the best of
which achieved a dice coefficient of 0.73 for meningioma segmentation. Notably, the
authors used one fold of the cross-validation for testing, rather than a separate set with
previously unseen data [5].

3.6. Schwannoma

Shapey, Wang et al. used T1c and T2 images from 243 patients to train a model to
segment vestibular schwannomas. Median tumor size in the test set was 1.89 mL and the
best dice coefficient was 0.937 [115].

George-Jones et al. analyzed a cohort of 65 patients with a median tumor volume of
only 0.28 mL [114]. Unlike other publications, the authors did not report dice coefficients,
but instead tried to analyze how well the model was able to detect growth compared to the
manual segmentations which were used as the ground truth. The model achieved an area
under the receiver operating characteristic curve (ROC-AUC) of 0.822.

Lee et al. published two manuscripts on vestibular schwannoma segmentation and
used the segmentations to analyze changes in volume [108,113]. The authors achieved a
dice coefficient of 0.90 when taking advantage of both T1c- and T2-weighted imaging data.

Ito et al. used a dataset of 50 patients for bounding-box segmentations of spinal
schwannomas, and used one cross-validation fold for testing instead of a fully independent
test set [6]. The authors reported an accuracy of 0.935, though the actual ground-truth was
not explicitly stated.

3.7. Pituitary Adenoma

Qian et al. published a study on pituitary adenoma detection, and it is the only study
included in this manuscript that used a control group of patients without tumors [107]. The
reported overall accuracy was 0.91.

Wang, Zhang et al. used a collective of 163 patients to train and test automated
segmentation for pituitary adenomas [110]. The dice coefficient for all slices of the tumors
was 0.898.

Highlighted study, imaging and machine learning parameters can be found in
Tables 1–3 respectively.
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Table 1. Study and clinical parameters.

Author Year Tumor Entity Average Tumor Volume No. of Patients

Wang, Zhang et al. [110] 2021 Pituitary adenoma 7.9 mL 163

Bouget et al. [5] 2021 Meningioma 29.8 mL (surgically resected);
8.47 mL (untreated) 698

Lee et al. [108] 2021 Vestibular schwannoma 2.05 mL 381

Ito et al. [6] 2020 Spinal schwannoma Not mentioned 50

Ugga et al. [89] 2020 Meningioma Not mentioned 1876

Lee et al. [113] 2020 Vestibular schwannoma Not mentioned 516

George-Jones et al. [114] 2020 Vestibular schwannoma 0.28 mL 65

Qian et al. [107] 2020 Pituitary adenoma Not mentioned 149

Laukamp et al. [112] 2020 Meningioma ∼31 mL 126

Shapey, Wang et al. [115] 2019 Vestibular schwannoma 1.89 mL (test set) 243

Laukamp et al. [111] 2018 Meningioma 30.9 mL 56 (test set)

Table 2. Imaging parameters.

Author Field Strength [T] Slice Thickness [mm] MRI Sequence Used for Task

Wang, Zhang et al. [110] 3 3 T1c

Bouget et al. [5] 1.5/3 heterogeneous T1c

Lee et al. [108] 1.5 3 T1c; T2

Ito et al. [6] 1.5/3 heterogeneous T1; T2

Ugga et al. [89] 3 5 T1c

Lee et al. [113] 1.5 3 T1; T1c; T2

George-Jones et al. [114] 1.5/3 heterogeneous (median 3.3) T1c

Qian et al. [107] 1.5 3 T1; T2

Laukamp et al. [112] 1–3 heterogeneous T1c; T2FLAIR

Shapey, Wang et al. [115] 1.5 1.5 T1c; T2

Laukamp et al. [111] 1–3 1–6 T1c; T2FLAIR

Table 3. Machine learning parameters.

Author
Detection/

Segmentation
Algorithm

Data
Augmentation

Performance
Measures

Explainability/
Interpretability

Code
Availability

Data
Availability

Wang, Zhang
et al. [110]

Convolutional
Neural

Network
(Gated-Shaped

U-Net)

Not mentioned Dice coefficient:
0.898 Not mentioned Not mentioned From authors

upon request
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Table 3. Cont.

Author
Detection/

Segmentation
Algorithm

Data
Augmentation

Performance
Measures

Explainability/
Interpretability

Code
Availability

Data
Availability

Bouget et al. [5]

Convolutional
Neural

Network (3D
U-Net,

PLS-Net)

Horizontal and
vertical
flipping,
random

rotation in the
range [−20◦,

20◦], translation
up to 10% of the
axis dimension,
zoom between
[80, 120]%, and

perspective
transform with
a scale within

[0.0, 0.1]

Best dice
coefficients:

0.714 (U-Net),
0.732 (PLS-Net)

Authors
analyzed the
influence of

tumor volume
on the

performance of
the classifiers

Not mentioned Not mentioned

Lee et al. [108]

Convolutional
Neural

Network (Dual
Pathway

U-Net Model)

Not mentioned Dice coefficient:
0.9 Not mentioned

https:
//github.com/

KenLee1996/
Dual-pathway-
CNN-for-VS-
segmentation
(accessed on

25 April 2022)

Claims that all
data is in the

supplement but
that appears

not to be
the case

Ito et al. [6]

Convolutional
Neural

Network
(YOLO v3)

Random trans-
formations such

as flipping
and scaling

Accuracy: 0.935 Not mentioned Not mentioned Not mentioned

Ugga et al. [89]

Convolutional
Neural

Network
(Pyramid Scene

Parsing
Network)

Not mentioned Tumor
accuracy: 0.814 Not mentioned

https:
//github.com/
zhangkai62035
/Meningioma_

demo
(accessed on

25 April 2022)

From authors
upon request

Lee et al. [113]

Convolutional
Neural

Network (Dual
Pathway

U-Net Model)

Not mentioned Dice coefficient:
0.9 Not mentioned Not mentioned Not mentioned

George-Jones
et al. [114]

Convolutional
Neural

Network
(U-Net)

Not mentioned

ROC-AUC:
0.822 (for

agreement
wether a tumor

had grown
between scans)

Not mentioned Not mentioned Not mentioned

Qian et al. [107]

Convolutional
Neural

Networks (one
per

combination of
perspec-

tive/sequence)

Zooming
(0–40%),

rotating (−15◦

to +15◦), and
shear mapping

(0–40%)

Accuracy: 0.91 Not mentioned Not mentioned Not mentioned

https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/KenLee1996/Dual-pathway-CNN-for-VS-segmentation
https://github.com/zhangkai62035/Meningioma_demo
https://github.com/zhangkai62035/Meningioma_demo
https://github.com/zhangkai62035/Meningioma_demo
https://github.com/zhangkai62035/Meningioma_demo
https://github.com/zhangkai62035/Meningioma_demo
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Table 3. Cont.

Author
Detection/

Segmentation
Algorithm

Data
Augmentation

Performance
Measures

Explainability/
Interpretability

Code
Availability

Data
Availability

Laukamp
et al. [112]

Convolutional
Neural

Network
(DeepMedic)

Not mentioned Dice coefficient:
0.91 Not mentioned

Not mentioned;
DeepMedic is a
public repository

Not mentioned

Shapey, Wang
et al. [115]

Convolutional
Neural

Network
(U-Net)

Not mentioned Dice coefficient:
0.937 Not mentioned Not mentioned Not mentioned

Laukamp
et al. [111]

Convolutional
Neural

Network
(DeepMedic)

Not mentioned Dice coefficient:
0.78 Not mentioned

Not mentioned;
DeepMedic is a
public repository

Not mentioned

4. Discussion

The results of our review indicate that machine learning for the segmentation, and even
more so for the detection, of benign brain tumors is still in its infancy but is gaining traction.

All included studies were published after 2018 and used deep learning, which is in
line with the finding by Cho and colleagues, who found a shift from classical ML to deep
learning for brain metastasis detection after 2018 [7].

Guidelines and checklists for diagnostic accuracy, and artificial intelligence studies,
have been available for some time [8,116]. The fact that all studies mentioned two physicians
being involved with creating the ground truth can be considered as evidence that the
authors were aware of at least some of their requirements and best practices. However,
many studies were vague about other items of these guidelines, or did not mention them at
all, even though they would apply, which indicates that the guidelines are only enforced to
a limited degree when a manuscript is reviewed prior to publication.

Many questions regarding the exact methodology could be answered by providing
the code that was used for the project, but a public repository was only referenced in two of
the included studies. Data sharing is even rarer, though this is somewhat understandable
given the sensitive nature of complete cranial MRI datasets that could be used for face
recognition if the resolution is sufficiently high [117].

As an example, the study by Qian et al. mentions that the data were augmented and
then divided “into training or testing set in a ratio of 8:2 for further analysis”. This makes it
seem like slices from the same patient could have been present in the training and test sets,
and maybe even different augmentations based on the exact same slice could have been
present in the training and test sets. If this was the case, it is likely that the performance of
the model would be attributable to overfitting and unlikely to be sustained on previously
unseen data [107]. If code had been provided, this could have been easily clarified by any
technical reader or reviewer.

In general, the presence of overfitting cannot really be assessed for the majority of
publications, as external test sets were almost never used. The logistics involved with
obtaining data for fairly rare tumor entities from other institutions is challenging, but
strategies to mitigate this could be employed. If a hospital has more than one MRI machine,
one might, for example, use data from one machine for testing and data from the other
machines for training.

Considering the progress in services that allow researchers to deploy their models, we
might get to a point where researchers host models so that reviewers/readers can test them
with their own data in the future to make additional conclusions regarding generalizability.

The fact that only one publication tried to train a network for detection is surprising,
as overlooking a small, benign brain tumor on an MRI is a real-world problem that could be
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addressed by having an artificial intelligence function as a safety net. This would, however,
require a low false positive rate of the AI to not increase the radiology workload, and
the logistics of creating and processing datasets with different tumors, including healthy
controls, remain a hurdle.

Creating a dataset for segmentation is easier, as it only requires images of patients
with the tumor one is trying to segment. Automatic segmentation has a clear application, as
fractionated and stereotactic radiotherapy are treatment options for many benign tumors of
the CNS and require segmentation of the tumor prior to treatment. Furthermore, volumetric
measurements, to determine if a tumor is growing, could be facilitated by automatic
segmentations [118,119].

Considering that benign brain tumors are relatively rare, and that related datasets are
consequently often small, it was surprising to see that only three publications reported the
use of data augmentation techniques, as they are an effective way to add heterogeneity to
the data [120]. One underlying reason might be that such techniques are less established for
3D convolutional neural networks (CNNs), which were used in several publications [121].

Lastly, the use of explainability/interpretability features could be expanded. Imple-
menting model explainability has the potential to not only enable trust in and adoption
of models by physicians, but also to support the training process by discovering pitfalls
regarding data selection and overfitting [122].

As a general consideration, it will be interesting to see if an automated detection of
benign brain tumors, if feasible, actually improves outcomes. As other studies on screening,
even in malignant entities show that finding more tumors is not necessarily a guarantee for
making patients’ lives better and longer, which should always be the ultimate goals. This
question, however, can only be answered by enrolling patients in a randomized-controlled
trial testing ML-augmented radiology vs. non-ML-augmented radiology once the technique
has matured.

Limitations of this review include the fact that studies using segmentation only as
a means for predicting clinical or pathologic features were not considered. In addition,
the small sample size and heterogeneous descriptions of methodologies prevent us from
drawing quantitative conclusions. Only one database was queried, but this limitation was
mitigated by the fact that the majority of publications in the field of ML for radiology
appear in PubMed-indexed journals.

Strengths of this review include the adherence to PRISMA guidelines and the fact that
systematically searching the literature showed several ways to easily improve the quality
of publications in the future—e.g., ensuring code availability. We hope that our review will
also serve as a starting point for interested ML researchers to identify interesting topics in
the field of benign brain tumors more efficiently by getting up to speed with the literature
more quickly.

5. Conclusions

In conclusion, machine learning for detecting and segmenting benign tumors of the
CNS is gaining traction but is still at an early stage. The possible presence of overfitting
and other biases in several publications makes it difficult to assess whether the high dice
coefficients that were reported would be achievable when deploying the models on data
from other institutions. Enforcing guidelines at the review and publication level could en-
hance the quality of published studies. This is likely to happen as ML in medicine becomes
more established and those involved in the publication process become increasingly aware
of the possible pitfalls.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14112676/s1, Table S1: Excluded studies, Table S2:
Study parameters.
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