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Abstract: Urban population density distribution contributes towards a deeper understanding of
peoples’ activities patterns and urban vibrancy. The associations between the distribution of urban
population density and land use are crucial to improve urban spatial structure. Despite numerous
studies on population density distribution and land use, the significance of spatial dependence has
attained less attention. Based on the Baidu heat map data and points of interests data in the main
urban zone of Guangzhou, China, the current paper first investigated the spatial evolution and
temporal distribution characteristics of urban population density and examined the spatial spillover
influence of land use on it through spatial correlation analysis methods and the spatial Durbin model.
The results show that the urban population density distribution is characterized by aggregation
in general and varies on weekends and weekdays. The changes in population density within a
day present a trend of “rapid growth-gentle decline-rapid growth-rapid decline”. Furthermore, the
spatial spillover effects of land use exist and play the same important roles in population density
distribution as the direct effects. Additionally, different types of land use show diverse direct effects
and spatial spillover effects at various times. These findings suggest that balancing the population
density distribution should consider the indirect effect from neighboring areas, which hopefully
provide implications for urban planners and policy makers in utilizing the rational allocation of
public resources and regarding optimization of urban spatial structure.

Keywords: urban population density distribution; land use; spatial spillover effect; spatial-temporal
characteristics; Baidu heat map

1. Introduction

With the rapid urbanization process, urban space, constantly expanding and recon-
structing, becomes more complex [1]. A series of “urban diseases” have emerged, such
as environmental pollution, traffic congestion, and separation of living and working
space [2–4]. These issues drive changes in the dynamic distribution of urban population
density which is a major perspective of the improvement on urban liability [5]. Examining
population agglomeration can provide information about the aggregation pattern of res-
idents’ behavior [2,6,7]. In addition, the distribution characteristics of urban population
density reflect urban vibrancy, which is associated with urban attraction and develop-
ment [8] and is significant for the allocation of public services facilities [9,10]. Therefore, it
is necessary to examine the spatial and temporal dynamics of urban population density.

Recently, many scholars have stated that land use drives the dynamic distribution
of urban population density [11–13]. Different combinations of land use have various
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levels of attraction to residents’ activity. Although many studies focus on improving the
urban vibrancy through studying land use, the intricate relationship between them has not
yet been fully and clearly clarified due to a lack of effective data and means. Traditional
data like census data and survey data cannot capture the latest development trends of the
spatiotemporal characteristic of population distribution and land use [14]. There is a trend
in the current research of being more refined in land use classification and scale selection [8].
With the aid of information and communication technologies, the increasing interest in
developing various methods from different perspectives is helpful to understand the roles
of land use [15]. The Baidu heat map data and points of interest (POIs) data referring to
the geographical entities are widely used to evaluate the spatiotemporal relationship of
the urban land use and urban vibrancy due to the advantage of their precise spatial and
temporal information [8,14–16]. Methodologically, multiple models had been developed to
reveal the relationship between the dynamic distribution of urban population density and
land use, such as the spatial Lag models (SLMs) [17], geographically weighted regression
(GWR) model [18], and the geographically and temporally weighted regression (GTWR)
model [8,14,15]. However, most existing research focuses on the impact of space and the
spatial heterogeneity on the relationship between land use and population density; few
studies take spatial correlation into consideration. Spatial correlation refers to the fact
that people tend to choose neighboring zones with similar activities rather than other
zones [19]. It is worth noting that it has been proven that the spatial autocorrelation of
population density exists in adjacent areas [20]. Additionally, the spatial linkage of land
use can efficiently relieve population pressure and realize sustainable urban develop-
ment [14,21]. Rational unitization of the spatial correlation in terms of the spillover effect is
beneficial to improve the efficiency of resource usage [21]. Thus, it is of great significance
to study the endogenous and exogenous effects between land use and population density
distribution. Furthermore, considering the dependence between spatial units can provide
guidance for urban planning. To fill this research gap, this paper attempts to explore the
relationship between land use and urban population density distribution from a spatial
correlation perspective.

Accordingly, this study aims to explore the spatial spillover effect of land use on urban
population density distribution. First, we calculated the population density index (PDI)
of 7:00–24:00 on weekends and the workdays. Then, we evaluated the spatial-temporal
distribution of the population density. Finally, we examined the spatial spillover effect of the
relationship between land use and the distribution pattern of population density. To sum
up, the paper is based on the following two aspects: (1) analyzing the temporal evolution
and spatial distribution characteristics of the urban population density, and (2) investigating
the spatial spillover effect of land use on urban population density distribution. Therefore,
this study provides a new perspective for the population aggregation: the spatial spillover
effect of land use on the population density distribution. Theoretically, we are contributing
to the literature on behavior travel and urban vibrancy by putting forward suggestions for
improving land use efficiency and achieving sustainable urban development.

The rest of the paper is organized as follows. Section 2 summarizes the relevant
progress in the study of urban residents’ spatial–temporal activities. Section 3 is concerned
with methodology and data. Section 4 analyzes the temporal evolution and spatial dis-
tribution patterns of the population density via the spatial correlation analysis method.
Section 5 explores the relationship between population density and POIs via the spatial
Durbin model and discusses the spatial spillover effect, while conclusions and limitations
are presented in Section 6.

2. Literature Review
2.1. Urban Population Density Distribution

Urban population density distribution represents the spatial structure of population
in the city [3]. Residents are more likely to travel to different areas in order to satisfy
their needs for various activities [11], which results in the spatiotemporal evolution of
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the urban population density [11]. Meanwhile, it is worth noting that the characteristics
of residents’ activities, which reflect the urban spatial structure, can be revealed from
the temporal–spatial characteristics of the urban population density [22,23]. Put simply,
residents’ behaviors can be predicted in time and space [24]. It is thus important to
analyze the spatial–temporal distribution of urban population density to gain insight
into residents’ behavior patterns and then perform rational urban planning for land use
to strengthen the control of the urban population in order to alleviate problems caused
by rapid urbanization [3]. Hence, research on the spatial–temporal characteristics of
population density is of great significance and has received increasing attention [1,11].
However, the issue of how to quantify population density distribution first needs to
be addressed.

In the past, the household survey, which is slow to update, time-consuming, and
high-cost, was the major approach to investigate the distribution patterns of population
density [23,25]. Fortunately, the rapid development of information and communication
technologies, such as the Baidu heat map, social media data, bus smart card data, and
mobile phone data, has filled the gaps of traditional data sources and provided a brand new
approach for understanding urban residents’ spatial–temporal behaviors [23,26,27]. As one
of the most commonly used types of geo-tagged data, the Baidu heat map can be used for
spatial–temporal information [28]. Relying on the technology of Location-Based Services
(LBS), the Baidu heat map records the location data of application users every 15 min,
displays this location information on a map [29], and reflects population aggregation with
different colors and brightness, which is the main source of exploring the spatial–temporal
dynamic distribution of the urban population [11–13]. Thus, the Baidu heat map has the
potential to deliver reliable information regarding residents’ behaviors [30–32]. Therefore,
this study adopts the Baidu heat map to quantify population density distribution.

The distribution characteristics of population density vary at different times [33,34]. In
addition, the spatial–temporal patterns of residents’ activities are not the same in different
regions but are under some common laws. Within a day, the types of residents’ behaviors
are dynamic and influenced by time [11]. For instance, most people are at their work place
in the morning and are at home at night [35]. Furthermore, compared to working days, the
duration of population density on the off-days is hysteretic, and the center of gravity of
the population distribution shifts due to different activity purposes [28,34]. For example,
people prefer to gather together in places of entertainment and residence at noon on rest
days or after work [35]. Accordingly, location and time should be taken into consideration
for studying the dynamic distribution of populations [15].

2.2. Population Density Distribution and Land Use

According to previous studies, land use plays an important role in urban population
density distribution. Reasonable land use is more likely to balance the population density
distribution. Land use can be well represented and identified with points of interest (POIs),
which contain rich geospatial information, representing geographic entities [11,36,37]. On
this basis, existing research has found that the land use mix—the POI variables of com-
merce, food, transportation, working, and housing—affect residents’ behaviors [8,38,39].
In general, urban residents are more likely to gather in areas with a high degree of land
mixing [13]. The high richness of POIs refers to a combination of land use categories, which
offers more attraction to urban residents [15]. In addition, different types of land use have
different impacts on residents’ activities [11,15]. As Zhang et al. [8] concluded, the food,
housing, and company POIs showed positive attraction to gather, while tourism POIs
scattered crowds. Moreover, the influence of land use on population density distribution
also varies over time [11,18,40]. It is mainly influenced by educational and business activi-
ties in the daytime, while by residence and business at night [11]. Compared to working
days, residents spend more time on commercial and leisure activities [11]. Although it has
been evidenced that different land use plays various roles in population density distribu-
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tion at different times, the existing research ignores the interaction between land use and
population density distribution.

According to the first law of geography, everything is related to everything else, but
near things are more related than distant things [41]. It has been acknowledged that both
land use development and population are strong external characteristics [42]. Therefore, it is
necessary to explore the spatial dependence relationship between land use and population
change. Generally, the existing research on the spatial effects of population distribution is
based on the spatial scale above the county level. On one hand, it has been evidenced that
population changes at various spatial scales are spatially dependent [43]. Urban population
density on a local scale is inclined to affect the neighbor population density [44]. On the
other hand, it has been proven that land use tends to affect the population growth of local
and neighboring areas [44]. In addition, there is a spatial interaction between population
density and land use [42]. Stronger levels of land development attract more people to the
local areas and reduce the population of the adjacent areas [42,44]. Although the existing
research is taken on a large scale, population density changes occur inter- or intra-area,
at local and regional scales [42]. Therefore, whether the differences in land use lead to
residents’ agglomeration and the spatial spillover effect on the surrounding area needs to
be discussed. The Spatial Lag Model (SLM), Spatial Error Model (SEM), and Spatial Durbin
Model (SDM) are the main spatial regression methods accounting for the dependence
between observations. Compared to SLM and SEM, SDM as the superior one considers
the spatial lag both of the dependent variables and explanatory variables [45]. Thus, to
explore the spatial spillover effect of land use, SDM, which can test the extent of the spatial
spillover effect [46] and avoid the omitted variables problem [45], was employed in this
current research.

Hence, in this study, we attempted to use the Baidu heat map for receiving information
regarding population density distribution and obtaining POI data to characterize the land
use. Moreover, we aimed to adopt SDM to explore the spatial spillover effect of land use on
urban population density distribution and thus to gain deeper insight into the mechanism
of land-use effects on urban population density distribution.

3. Methodology
3.1. Research Area

This research area was located in Guangzhou, China (22◦26′ to 23◦56′ N, 112◦57′ to
114◦3′ E). Guangzhou, as the capital of Guangdong province, the core city of Guangdong-
Hong Kong-Macao Bay area, and the hub city of the “Belt and Road”, is one of the interna-
tional metropolises in China. The permanent population of Guangzhou was 1867.66 million
in 2020, an increase of 47.05% over 2010. The demand for land functions increases with
the increase of population, but the land use planning is inadequate, which leads to the
dislocation of land use. Therefore, it is of great significance to investigate the relationship
between urban population density distribution and land use. The research focuses on
the main urban zone (Figure 1), about 441.71 km2 of Guangzhou, as the research area,
involving Liwan District, Haizhu District, Yuexiu District, Tianhe District, and the southern
Baiyun District (the area south of the South China Express Line).

Regarding spatial units, previous studies chose sub-districts, road network blocks, and
traffic analysis zones (TAZs) as the analysis unit, which are too large to take into account
the details of the characteristics of residents’ behaviors. In this study, a 500 m × 500 m grid
is used as the spatial unit, to be a foundation of the analysis of the dynamic distribution
of population density at a finer scale. We divided the main urban zone of Guangzhou
into 1895 grids using the fishing net tool in ArcGIS10.2, then calculated population density
index (PDI) by the hour for each grid and correlated the results with POI data.
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3.2. Data Collection

The data used in this paper is Baidu heat map data and POI data.
The Baidu heat map data were collected by a plugin in ArcGIS 10.2. Based on the

principle of no extreme weather, holidays, or special events, the basic data from 26 to
30 November 2020 were obtained in the research, which comprised working days and
off-days. Then, we collected data once every 60 min from 7:00 to 24:00 in a single day.
Finally, 90 Baidu heat maps with a spatial resolution of 3.24 m were acquired. With band
4 of the data loaded into ArcGIS10.2, the calorific value was divided into 6 categories
by Natural breaks (Jenks), and then the population density and PDI of each spatial unit
were calculated.

The POI dataset was obtained from the Baidu Map, one of the most popular map
services in China. A total of 49,760 POIs, which included information on name, type,
address, and coordinates in 14 major categories were acquired. We processed POI data
using the following steps: first, the coordinates of POIs were converted from the Baidu
coordinates system to WGS_1984. Second, due to the similar impact on residents’ activities,
shopping POIs and leisure POIs were combined into entertainment POIs [8,12]. Similarly,
commercial residence POIs and accommodation POIs were combined into housing POIs.
Third, based on 4 functions of land use [27], POIs were reclassified into 12 categories,
including housing POIs, life service POIs, medical and health POIs, office POIs, finance and
banking POIs, government and social insurance POIs, factory POIs, transportation POIs,
food POIs, entertainment POIs, education and culture POIs, and tourism POIs. Finally,
land use could be well reflected by the density of POIs [11]. Hence, the density of all types
of POIs was extracted in each grid in ArcGIS10.2 and standardized as shown in Table 1.
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Table 1. Classification and summary statistics of the independent variables.

Functions POI Categories Item Label Mean SD

Living
Density of housing POIs HO 0.0407 0.0794

Density of life service POIs LS 0.0342 0.0693
Density of medical and health POIs MH 0.0322 0.0916

Working

Density of office POIs OF 0.0679 0.1321
Density of finance and banking POIs FB 0.0536 0.1120

Density of government and social
insurance POIs GS 0.0353 0.0677

Density of factory POIs FA 0.0196 0.0654

TransportationRecreation

Density of transportation POIs TR 0.0208 0.0351
Density of food POIs FO 0.0276 0.0769

Density of entertainment POIs EN 0.0505 0.0772
Density of education and culture POIs EC 0.0263 0.0570

Density of tourism POIs TO 0.0217 0.0540

3.3. Analysis Framework

Focusing on the exploration of the spatial spillover effect of land use on the urban
population density distribution, this article put forward an analysis framework to study
the temporal evolution and spatial distribution of population density in terms of multilevel
social sensing. As shown in Figure 2, the framework illustrated the investigation between
the dynamic distribution of urban population density and land use. First, the population
density index (PDI), counted from the Baidu heat map data of whole day on the weekend
and on weekdays, was conducted to explore the spatial–temporal distribution characteris-
tics of population density using spatial correlation analysis methods. Subsequently, taking
the spatial spillover effect into consideration, we attempted to utilize the spatial Durbin
model in exploring the correlation between the dynamic distribution of population density
and land use. The details of the methods are presented in the following sections.
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3.3.1. Population Density Index (PDI)

The PDI, proposed by Leng et al. [47] and improved by Li et al. [12], was used to
measure and forecast the urban population density distribution under the support of the
Baidu heat map. The calculation formula is shown as Equation (1).

Q =
∑m

i=1 ai×bi×c
S

(1)

where Q is the urban population density of a grid at a certain time, m indicates the total
categories of colors we classified above, ai denotes the population density of color i, bi is
the number of pixels of color i, c indicates the area size of a unit pixel, and S represents the
area of each grid.

The Baidu heat map relies on users to use Baidu’s products to obtain user location
information, which may lead to biases such as the fluctuation in the number of users due
to users moving continuously online and offline, and the difference in preferences caused
by different backgrounds [47]. To eliminate this effect, the PDI is introduced.

PDI =
Qth

∑ Qth
(2)

where t represents the time, h indicates the grid, Qth denotes the population density of the
grid h at the time t, and ∑Qth denotes the population density of all grids at the time t.

3.3.2. Spatial Correlation Analysis Methods

Spatial correlation analysis methods can be used to investigate the temporal evolution
and spatial distribution characteristics of population density [11,48]. Getis-Ord General
G, and Getis-Ord Gi*, two spatial correlation analysis methods, are suitable to explore
population agglomeration of the Baidu heat map calculated in Arcgis10.2 [12]. Getis-
Ord General G is used to discuss the global correlation characteristics of population
agglomeration and discover the spatial pattern of population density distribution in the
whole research area. The higher (or lower) the Z score, the higher the degree of clustering,
but when the Z score is 0, there is no significant clustering. Moreover, a positive Z score
indicates a high-value cluster, while a negative Z score indicates a low-value cluster [12].
The Getis-Ord General G expression is shown as follows:

G =
∑n

i=1 ∑n
j=1 Wi,jxixj

∑n
i=1 ∑n

j=1 xixj
, ∀ j 6= i (3)

where xi and xj are the population density index of the grid i and j, respectively, Wij is the
spatial weight between the grid i and j, n is the number of grids in the dataset, and ∀ j 6= i.

The Z score is computed as

Z =
G− E(G)√

V(G)
(4)

where

E(G) =
∑n

i=1 ∑n
j=1 Wi,j

n(n− 1)
, ∀ j 6= i (5)

V(G)= E
(

G2
)
− E(G)2 (6)

Getis-Ord Gi* is used to discuss the local correlation characteristic of population
agglomeration and discover the distribution of hot spots and cold spots. If Z(Gi*) is
positive and significant, it is defined as hot spots, indicating that the value around position
i is relatively high (higher than mean). Otherwise, it is defined as cold spots, indicating
that the value around position i is relatively low (lower than mean).
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The Getis-Ord Gi* expression is shown as follows:

Z(G∗) =
Wi,j(d)xj

∑n
j xj

(7)

Gi*(d) standardizing:

Z(G∗) =
G∗i −E(G)√

VAR(G∗i )
(8)

where E(Gi*) and VAR(Gi*) are the mathematical expectation and variance of Gi*, respectively.

3.3.3. Spatial Durbin Model (SDM)

In this study, the SDM is used to examine the relationship between the urban popula-
tion density distribution and land use, considering the spatial spillover effect. The SDM
is one of the spatial econometric models. The other common spatial econometric models
are the Spatial Lag Model (SLM) and Spatial Error Model (SEM). They are all transformed
from the general spatial econometric model. The form of the general spatial econometric
model is shown as follows [49]:

Y = ρWY + Xβ + θWX + υ (9)

υ = λWu+ε (10)

where Y is the explained variables, X is explanatory variables, W is the spatial weight, ρ
represents the influence of WY in neighboring grids on the Y, θ denotes the influence of
WX in neighboring grids on the Y, β refers to the coefficient, λ is the spatial autocorrelation
coefficient, Wu represents interaction between disturbance items of different units, and ε is
disturbance error.

If the parameter θ = 0 and λ = 0, the SLM is defined as Equation (11). SLM is mainly
used to study the interaction between explained variables.

Y = ρWY + Xβ + ε (11)

If the parameter θ = 0 and ρ = 0, the general spatial econometric model turns into the
SEM, as follows. The SEM takes the interaction effect of the disturbance item into account,

Y = Xβ + υ (12)

υ = λWu+ε (13)

If the parameter λ = 0, the spatial Durbin model is defined as follows. Different from
SLM and SEM, SDM not only considers the spatial correlation of the explained variables
but also considers the spatial correlation of the explanatory variables [50]. Moreover, the
coefficients estimated by the SDM model are decomposed into the direct effect and spatial
spillover effect using the partial differential method.

Y = ρWY + Xβ + θWX + ε (14)

In the study, SDM was better suited to explore the relationship compared with OLS,
SLM, and SEM. The SDM was applied in Rstudio (version 1.2) and MatLab (version
R2016a). First, the “Queen” spatial weight matrix was formulated in the study. Sec-
ond, with reference to previous studies [9], the data of urban population density from
7:00–24:00 in each grid were divided into 4 time periods: morning (7:00–12:00), afternoon
(13:00–18:00), evening (19:00–22:00) and night (22:00–24:00). Finally, the PDI was used as
the dependent variable and the 12 types of independent variables as independent variables
to construct SDM.
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4. Results
4.1. The Temporal Evolution Characteristics of Urban Population Density

The population density that presented an intensity of activity has significant differ-
ences according to time (Figure 3). In addition, the high-density population has a tendency
to gather, whether it is on a weekday or the weekend. The population density of the main
urban area of Guangzhou on the off-days and working days was similar and presented a
trend of “rapid growth-gentle decline-rapid growth-rapid decline”. However, it is worth
noting that the temporal evolution characteristics of population density were different in
detail on the weekend and workdays.
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Figure 3. The changes of PDI of each grid on weekdays and the weekend.

On weekdays, the intensity of residents’ activities at 7:00 was the lowest in a single
day. By 7:00–11:00, the intensity of residents’ activities increased rapidly and reached a
peak, signaling the main gathering time for morning commuting. PDI gradually declined,
while it began to rise around 19:00 and reached the second peak at 22:00. After this time,
the degree of population density concentration continued to decrease. On the off-days,
the population density fluctuated more drastically, and the Z score was generally lower
than that on weekdays. The intensity of residents’ activities at 7:00 was also the lowest in
a single day. By around 10:00, it reached the peak, which was then followed by a steady
downward trend approaching 18:00. After this time, the activity intensity continued to
increase gradually. Compared with that on working days, the intensity was lower on
non-working days. In addition, the Z score value of PDI was smaller, indicating that the
crowd tended to gather with relatively low intensity in more centers.

4.2. The Spatial Distribution Characteristics of Urban Population Density

Urban population density distribution, from the spatial dimension, showed obvious
clustering characteristics (Figure 4). Geographically, the hot spots that denoted a high
population agglomeration area covered the northeast of the Liwan District (Hualin, Longjin,
Fengyuan sub-district, etc.), west of the Haizhu District (Jiangnanzhong, Changgang,
Haidong sub-district, etc.), most of the Yuexiu District (Beijing, Huanghuagang, Nonglin
sub-district, etc.), south of the Tianhe District (Shipai, Liede, Linhe sub-district, etc.), and
the areas on both sides of Baiyun Mountain, which are located in south of the Baiyun
District (Jingxi, Sanyuanli, Tangjing sub-district, etc.), indicating that the urban spatial
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structure showed the characteristics of polycentricity. Moreover, there is a slight difference
in the spatial distribution of population density between rest days and working days. In
particular, the distribution of the hot spots on non-working days was relatively sparse
overall compared with that on working days.
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4.3. The Relationship between Urban Population Density and Land Use

The results of the LM test, Wald test, and LR test are shown in Table 2. In addition, the
VIF parameter is no more than seven for all independent variables in the eight qualified
models. Moreover, the LM and the robust LM test for the eight models were of significance,
which meant that the spatial models such as SLM, SEM, and SDM were better than the
OLS model to describe the correlation [51]. The Wald test and LR test for the eight models
were significant, which showed that the SDM was more appropriate in this study [50]. The
SDM was built to consider endogenous interaction effects and exogenous interaction effects
on the association between urban population density and land use in four time periods
(Table 2). The R2 value, AIC (Akaike information criterion), and likelihood values of the
SDM in each slot proved that the SDM outperforms other models in this study.

Table 2. Comparison between different models.

Morning:
07:00 to 12:00

Afternoon:
13:00 to 18:00

Evening:
19:00 to 21:00

Night:
22:00 to 24:00

Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend

LM-lag 1342.1 *** 1276.6 *** 1421.3 *** 1392.3 *** 1388.6 *** 1346 *** 1267.2 *** 1225.3 ***
Robust LM-lag 286.2 *** 280.51 *** 269.97 *** 268.15 *** 276.19 *** 270.68 *** 273.68 *** 269.23 ***

LM-error 1145.7 *** 1074.6 *** 1247 *** 1209.6 *** 1196.5 *** 1150.1 *** 1071.1 *** 1026 ***
Robust LM-error 89.79 *** 78.514 *** 95.697 *** 85.456 *** 84.046 *** 74.71 *** 77.571 *** 69.966 ***
Wald spatial lag 1762.9 *** 1692.2 *** 1820.3 *** 1803.6 *** 1794.8 *** 1732.5 *** 1656.5 *** 1606.4 ***

Wald spatial error 2877.8 *** 2721.9 *** 2877.5 *** 2831.8 *** 2807.9 *** 2673 *** 2632.4 *** 2526 ***
LR spatial lag 1070.4 *** 1025.3 *** 1100.4 *** 1081.8 *** 1081.1 *** 1047.2 *** 1011.8 *** 981.44 ***

LR spatial error 997.15 *** 948.06 *** 1035.5 *** 1013.4 *** 1006.3 *** 970.11 *** 936.48 *** 903.6 ***

R2

OLS 0.5256 0.5251 0.4974 0.4922 0.4982 0.4928 0.5207 0.5185
SLM 0.7550 0.7484 0.7454 0.7404 0.7431 0.7355 0.7441 0.7386
SEM 0.7588 0.7515 0.7496 0.7438 0.7458 0.7374 0.7472 0.7410
SDM 0.7664 0.7598 0.7558 0.7503 0.7528 0.7449 0.7557 0.7496

AIC

OLS −8769.5 −8679.4 −8841.7 −8835.6 −8738.5 −8696.7 −8531.8 −8491.7
SLM −9837.9 −9702.7 −9940.1 −9915.4 −9817.6 −9741.9 −9541.6 −9471.1
SEM −9764.6 −9625.5 −9875.2 −9847 −9742.8 −9664.8 −9466.3 −9393.3
SDM −9909.2 −9775.3 −9995 −9967.9 −9871.4 −9793.4 −9614.3 −9538.7

Log-
likelihood

OLS 4398.743 4353.713 4434.858 4431.803 4383.244 4362.346 4279.908 4259.834
SLM 4933.926 4866.371 4985.034 4972.691 4923.795 4885.963 4785.787 4750.552
SEM 4897.319 4827.744 4952.621 4938.503 4886.383 4847.403 4748.147 4711.636
SDM 4981.591 4914.637 5024.514 5010.960 4962.715 4923.717 4834.130 4796.329

Note: *** indicate significance at the 0.1% level.

As shown in Table 3, the spatial autocorrelation coefficients (rho) of the eight spatial
Durbin models are all greater than 0.69 and passed the 1% significance test. This showed
that urban population density distribution in the central urban area of Guangzhou has
obvious spatial dependence. That is, the population density in the grid was affected, to a
certain extent, by the population density in the grids that were neighboring and similar. At
the same time, the regression coefficients of all types of land use except TO were positive,
which explains that those factors have an obvious promotion function for population
density distribution. However, the regression coefficients of the spatial lag of variables
would affect the feedback effect [52]; it was thus necessary to decompose the spatial effect
into direct effect and spatial spillover effect.

Moreover, the direct effect and spatial spillover effect of explanatory variables were
solved by the partial differential decomposition method, and the results are shown in Table 4.
The direct effect, also named the local effect, represents the influence of the land use types
of the grid on the population aggregation of the grid, while the spatial spillover effect, also
named the indirect effect, represents the impact of the local grid land use types on the grid
population agglomeration of neighboring grids.
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Table 3. The estimation results of the SDM.

Morning:
07:00 to 12:00

Afternoon:
13:00 to 18:00

Evening:
19:00 to 21:00

Night:
22:00 to 24:00

Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend

Intercept 0.0039 ***
(4.4414)

0.0038 ***
(4.2698)

0.0041 ***
(4.7476)

0.0041 ***
(4.7176)

0.0039 ***
(4.3495)

0.0039 ***
(4.3512)

0.0034 ***
(3.7476)

0.0035 ***
(3.7597)

HO 0.0381 ***
(4.6188)

0.0439 ***
(5.1208)

0.0247 ***
(3.065)

0.0251 ***
(3.0965)

0.0344 ***
(4.1366)

0.0362 ***
(4.2512)

0.0553 ***
(6.186)

0.0565 ***
(6.184)

LS 0.0428 ***
(6.2719)

0.0515 ***
(7.2663)

0.0320 ***
(4.8088)

0.0369 ***
(5.507)

0.0414 ***
(6.0169)

0.0427 ***
(6.0836)

0.0517 ***
(6.9967)

0.0552 ***
(7.3077)

MH 0.0197 ***
(4.3296)

0.0199 ***
(4.2184)

0.0157 ***
(3.5324)

0.0145 ***
(3.2361)

0.0163 ***
(3.5425)

0.0165 ***
(3.5237)

0.0209 ***
(4.2313)

0.0215 ***
(4.2781)

OF 0.0141 ***
(3.1298)

0.0080*
(1.7166)

0.0170 ***
(3.8731)

0.0086*
(1.9483)

0.0104**
(2.2925)

0.0068
(1.4702)

0.0061
(1.2529)

0.0048
(0.9699)

FB 0.0106 *
(1.9523)

0.0106 *
(1.8867)

0.0078
(1.4783)

0.0073
(1.3642)

0.0077
(1.4147)

0.0070
(1.2432)

0.0095
(1.6138)

0.0092
(1.5367)

GS 0.0288 ***
(3.5038)

0.0236 ***
(2.7648)

0.0244 ***
(3.0544)

0.0196**
(2.4249)

0.0236 ***
(2.8458)

0.0223 ***
(2.636)

0.0285 ***
(3.2075)

0.0279 ***
(3.0738)

FA 0.0266 ***
(3.5558)

0.0268 ***
(3.451)

0.0317 ***
(4.3429)

0.0261 ***
(3.5478)

0.0266 ***
(3.5283)

0.0257 ***
(3.3337)

0.0272 ***
(3.3511)

0.0256 ***
(3.0903)

TR 0.0894 ***
(7.3976)

0.0829 ***
(6.6063)

0.0959 ***
(8.1467)

0.0914 ***
(7.6993)

0.0848 ***
(6.9522)

0.0868 ***
(6.9653)

0.0754 ***
(5.762)

0.0772 ***
(5.7771)

FO 0.0177 ***
(2.9185)

0.0150 **
(2.384)

0.0242 ***
(4.0993)

0.0227 ***
(3.8149)

0.0235 ***
(3.8429)

0.0250 ***
(4.0005)

0.0153 **
(2.3339)

0.0170 **
(2.5387)

EN 0.0417 ***
(4.7309)

0.0544 ***
(5.9455)

0.0405 ***
(4.7212)

0.0518 ***
(5.9811)

0.0473 ***
(5.3195)

0.0514 ***
(5.6646)

0.0546 ***
(5.7205)

0.0556 ***
(5.7031)

EC 0.0447 ***
(5.353)

0.0349 ***
(4.027)

0.0472 ***
(5.7977)

0.0391 ***
(4.767)

0.0434 ***
(5.1574)

0.0392 ***
(4.5613)

0.0387 ***
(4.2836)

0.0356 ***
(3.8562)

TO −0.0190 **
(−2.2209)

−0.0109
(−1.235)

−0.0165 **
(−1.988)

0.0020
(0.2366)

−0.0235 ***
(−2.7319)

−0.0211 **
(−2.4021)

−0.0246 ***
(−2.6558)

−0.0243 **
(−2.5697)

W × HO −0.0655 ***
(−3.9644)

−0.0726 ***
(−4.2364)

−0.0525 ***
(−3.2625)

−0.0555 ***
(−3.4188)

−0.0634 ***
(−3.8061)

−0.0642 ***
(−3.7736)

−0.0839 ***
(−4.6881)

−0.0850 ***
(−4.651)

W × LS 0.0984 ***
(5.7505)

0.1014 ***
(5.6856)

0.0867 ***
(5.2593)

0.0837 ***
(5.0275)

0.0849 ***
(4.9602)

0.0872 ***
(4.9839)

0.0983 ***
(5.311)

0.1005 ***
(5.3086)

W ×MH 0.0184
(1.3642)

0.0208
(1.4848)

0.0161
(1.2236)

0.0160
(1.2073)

0.0162
(1.1908)

0.0166
(1.1948)

0.0251*
(1.7155)

0.0220
(1.4689)

W × OF 0.0146
(1.4225)

0.0211 **
(1.983)

0.0091
(0.9122)

0.0157
(1.5675)

0.0143
(1.387)

0.0171
(1.6247)

0.0234 **
(2.1119)

0.0224 **
(1.9845)

W × FB −0.0430 ***
(−3.5325)

−0.0451 ***
(−3.5735)

−0.0369 ***
(−3.1171)

−0.0357 ***
(−2.9924)

−0.0369 ***
(−3.0118)

−0.0360 ***
(−2.8734)

−0.0448 ***
(−3.4011)

−0.0433 ***
(−3.2197)

W × GS −0.0346 *
(−1.8268)

−0.0312
(−1.5847)

−0.0299
(−1.6202)

−0.0293
(−1.573)

−0.0285
(−1.4905)

−0.0294
(−1.5067)

−0.0335
(−1.6334)

−0.0318
(−1.5174)

W × FA 0.0011
(0.0886)

0.0039
(0.2951)

−0.0024
(−0.1972)

0.0016
(0.1307)

0.0035
(0.2756)

0.0048
(0.3697)

0.0089
(0.6458)

0.0108
(0.7694)

W × TR 0.0746 **
(2.1189)

0.0854 **
(2.3376)

0.0584 *
(1.7022)

0.0681 **
(1.9692)

0.0913 **
(2.5692)

0.0971 ***
(2.6724)

0.1046 ***
(2.7457)

0.0997 **
(2.5637)

W × FO 0.0219 *
(1.7473)

0.0206
(1.5859)

0.0190
(1.5551)

0.0190
(1.5468)

0.0212 *
(1.6758)

0.0193
(1.4906)

0.0265 *
(1.9525)

0.0256 *
(1.8518)

W × EN −0.0309
(−1.4839)

−0.0380 *
(−1.7573)

−0.0318
(−1.5696)

−0.0369 *
(−1.8026)

−0.0367 *
(−1.7497)

−0.0406 *
(−1.8931)

X0.0379 *
(−1.6789)

−0.0367
(−1.591)

W × EC 0.0035
(0.2152)

0.0119
(0.7103)

−0.0049
(−0.311)

−0.0007
(−0.0431)

−0.0003
(−0.0179)

0.0020
(0.118)

0.0041
(0.2316)

0.0078
(0.439)

W × TO 0.0017
(0.0872)

−0.0048
(−0.2407)

0.0045
(0.2392)

−0.0042
(−0.2198)

0.0088
(0.4537)

0.0083
(0.4152)

0.0048
(0.2274)

0.0046
(0.2158)

rho 0.7085 0.6982 0.72675 0.7241 0.71804 0.71263 0.69603 0.69178

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 4. Direct effects and spatial spillover effects of the SDM.

Direct Effects

Morning:
07:00 to 12:00

Afternoon:
13:00 to 18:00

Evening:
19:00 to 21:00

Night:
22:00 to 24:00

Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend

HO 0.0316 *** 0.0370 *** 0.0184 ** 0.0184 ** 0.0277 *** 0.0295 *** 0.0479 *** 0.0490 ***
LS 0.0647 0.0741 0.0517 *** 0.0566 *** 0.0614 *** 0.0630 *** 0.0737 0.0775

MH 0.0252 *** 0.0257 *** 0.0206 *** 0.0192 *** 0.0211 *** 0.0214 *** 0.0274 *** 0.0275 ***
OF 0.0183 *** 0.0124 ** 0.0209 *** 0.0126 *** 0.0143 *** 0.0106 ** 0.0106 ** 0.0090 *
FB 0.0046 0.0044 0.0022 0.0018 0.0023 0.0016 0.0032 0.0033
GS 0.0264 *** 0.0211 ** 0.0223 ** 0.0169 * 0.0215 ** 0.0200 ** 0.0263 *** 0.0259 ***
FA 0.0300 *** 0.0305 *** 0.0354 *** 0.0297 *** 0.0306 *** 0.0297 *** 0.0317 *** 0.0302 ***
TR 0.1128 *** 0.1064 *** 0.1190 0.1153 *** 0.1114 *** 0.1141 *** 0.1011 *** 0.1019 ***
FO 0.0235 *** 0.0201 *** 0.0308 *** 0.0290 *** 0.0301 *** 0.0313 *** 0.0214 *** 0.0230 ***
EN 0.0415 *** 0.0544 *** 0.0401 *** 0.0519 *** 0.0468 *** 0.0508 *** 0.0546 *** 0.0559 ***
EC 0.0507 *** 0.0409 *** 0.0524 *** 0.0440 *** 0.0488 *** 0.0444 *** 0.0438 *** 0.0408 ***
TO −0.0210 ** −0.0130 −0.0179 ** 0.0015 −0.0249 *** −0.0223 ** −0.0266 *** −0.0262 ***

Spatial Spillover Effects

Morning:
07:00 to 12:00

Afternoon:
13:00 to 18:00

Evening:
19:00 to 21:00

Night:
22:00 to 24:00

Weekday Weekend Weekday Weekend Weekday Weekend Weekday Weekend

HO −0.1255 ** −0.1323 *** −0.1205 ** −0.1286 ** −0.1305 ** −0.1273 ** −0.1419 *** −0.1416 ***
LS 0.4196 *** 0.4325 *** 0.3826 *** 0.3802 *** 0.3863 *** 0.3891 *** 0.4200 *** 0.4275 ***

MH 0.1057 ** 0.1094 ** 0.0957 ** 0.0912 * 0.0940 ** 0.0940 * 0.1240 *** 0.1137 **
OF 0.0802 ** 0.0840 *** 0.0748 ** 0.0758 ** 0.0735 ** 0.0727 ** 0.0865 *** 0.0794 **
FB −0.1156 *** −0.1187 *** −0.1088 *** −0.1050 *** −0.1057 *** −0.1027 ** −0.1195 *** −0.1138 ***
GS −0.0464 −0.0463 −0.0423 −0.0520 −0.0390 −0.0447 −0.0427 −0.0385
FA 0.0652 * 0.0712 ** 0.0716 ** 0.0707 ** 0.0764 ** 0.0766 ** 0.0870 ** 0.0880 **
TR 0.4499 *** 0.4510 *** 0.4458 *** 0.4625 *** 0.5130 *** 0.5257 *** 0.4913 *** 0.4719 ***
FO 0.1122 *** 0.0977 ** 0.1273 *** 0.1222 *** 0.1283 *** 0.1225 *** 0.1160 *** 0.1153 ***
EN −0.0044 −0.0002 −0.0082 0.0020 −0.0094 −0.0131 0.0003 0.0054
EC 0.1146 ** 0.1143 ** 0.1021 ** 0.0951 * 0.1041 ** 0.0989 ** 0.0969 ** 0.1001 **
TO −0.0383 −0.0393 −0.0262 −0.0094 −0.0271 −0.0225 −0.0386 −0.0375

Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

For the direct effects, the influencing coefficients of four functions of land use on urban
population density distribution varied within a day, and the intensity between off-days
and working days was also different. First, the direct effect coefficients of HP, LS, and
MH on residents’ behaviors were positive. The trends of living function were similar
throughout the day, whether it was on the working days or off-days. Specifically, the
trends formed a trough in the afternoon and then rose, showing a “V” shape in a single
day, which was in line with people’s living habits. It is noteworthy that the direct effect
coefficients of LS in the morning and night were not significant, which may be related to
residents’ activity habits and the bias of the Baidu heat map data [11]. Meanwhile, the
degree of impact of HP and LS on the off-days was higher than that on the weekdays,
but the degree of impact of MH on the off-days was lower than that on the weekdays. In
terms of working function, OF, GS, and FA had a significant positive relationship to urban
population density distribution. Furthermore, from the perspective of influencing intensity,
OF, GS, and FA were lower on the off-days than that on the working days, which would
be expected. In terms of transportation function, the direct effect coefficients of TR on
residents’ activities were positive. Whether the trend was on the weekend or weekdays,
it presented a pattern of “growth-decrease”, with the peak appearing in the afternoon
throughout the day. Moreover, the intensity of the non-working days was lower than that
of the working days in the morning and afternoon, while in the evening and night, the
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intensity of the non-working days was higher. In terms of recreation function, the direct
effect coefficients of FO, EN, and EC were positive, while the direct effect coefficients of TO
were negative. From the perspective of influencing intensity, EN and TO on the off-days
were higher than on the working days, and EC on the off-days was lower than that on the
weekdays. Interestingly, FO on the working days was lower in the morning and afternoon
than on the rest days, and lower in the evening than on the rest days.

For spatial spillover effects, 9 of the 12 independent variables had a significant re-
lationship with population density distribution, showing the siphoning effect and the
trickle-down effect of land use on the population agglomeration in the surrounding area.
In terms of living function, HO had a negative effect on residents’ behaviors, while LS and
MH had positive effects on it, indicating that HO would reduce the population density in
the surrounding area while LS and MH would drive an increase in population density. In
terms of working function, FB had a negative indirect effect on residents’ behaviors, while
OF and FA had positive effects on it, which denoted that the more FB in the grid, the less
the population density nearby, while OF and FA would not increase population density
nearby. In terms of transportation function, TR had a positive spatial spillover effect on
population agglomeration, indicating that the increase of transportation facilities in the
target grids would lead to the increment of population density in the neighboring grids. In
terms of recreation function, the spillover effect coefficients of FO and EC were positive.

5. Discussion

The spatial–temporal dynamic distribution of urban population density is one of the
manifestations of urban vibrancy and also a demonstration of the match between residents’
activities and urban spatial functions.

5.1. Characteristics of Urban Population Density Distribution

The spatial–temporal evolution of urban population density distribution showed the
difference between working days and non-working days. From the perspective of temporal
evolution, the degree of crowd agglomeration on the weekdays was greater than that on the
weekend, which was in line with the conclusions drawn from other research areas [11–13].
Additionally, the fluctuation range on non-working days was at a higher level. However,
this finding was not exactly the same with other research. Feng et al. evidenced that
the fluctuation of population density distribution on weekdays was higher than that on
the weekend [12]. From the perspective of spatial distribution, the crowd was highly
concentrated at a few centers on the weekdays, while it was relatively scattered in different
locations on the weekend. In Guangzhou, working space was mainly concentrated in the
center. In contrast, the residential distribution showed a trend of suburbanization and was
scattered [16,53,54]. On the contrary, this result was not in line with the previous studies,
which took other regions as the study area. Wu and Ye found that the crowd distribution
was more dispersed on weekdays than on weekends from the perspective of space in the
central city of Shanghai [28]. Coincidentally, hot spots in Shehong County overlapped
highly on the weekdays and the weekend, which was proven by Feng et al. [12].

In summary, in addition to the errors caused by the modifiable areal unit problem
(MAUP) and index selection [12,55], different land use between regions would also lead
to different population distribution characteristics [3,13,31]. It was proven that land use
had an important impact on population aggregation and was the key to understand
residents’ activities.

5.2. The Impact Mechanism of Urban Population Density Distribution

Through spatial correlation analysis, the results presented a clear spatial association
that existed among the population density distribution. To further analyze the mechanisms
of impact on population density distribution, the direct and spatial spillover effects of land
use affecting residents’ activities in the SDM model were analyzed, which provided the the-
oretical bases for the hypothesis of the influence of land use on population agglomeration.
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In this study, the land use of living function, on the whole, had significant positive
direct effects on residents’ activities. For HO and LS, the degree of direct influence was
lowest in the afternoon. The intensity of direct effects on the weekdays was lower than that
on the weekend, which illustrated that residents were more willing to stay at home on non-
working days, as reported in a previous study [8]. Inconsistently, the degree of MH was
greater than that on the weekend. This finding on MH was in agreement with the finding of
Zhang et al. [8] and Li et al. [56]. The reason may be that the number of doctors who were
on duty on the weekend was less than on the weekdays due to the holidays in China, which
led to a decrease in patients. Moreover, in terms of spatial spillover effects, living function
locations showed different indirect effects on population aggregation. The increase of MH
and LS in the local area caused the growth of the population density of neighboring areas
due to the trickle-down effect, while the increase of HO in the local area had a siphonic
effect on the increase of the population density of the neighboring areas. Generally, in
Guangzhou, residential areas are mainly distributed along traffic routes [57]. Additionally,
due to the characteristics of scarcity, high concentration, and irreplaceability of medical
facilities, residents have to gather in some areas where high-quality medical institutes are
located, which promotes population density in the target areas and neighboring areas [58].

Among the four categories of working function, OF, GS, and FA were found to have
positive direct associations with population agglomeration. The trends of OF, GS, and
FA in a day were various, and the intensity of direct effects on the weekdays was lower
than that on the weekend. Similar findings were found in previous studies [8,13]. It was
generally recognized that residents usually went to work from Monday to Friday and took
a break on Saturday and Sunday. In terms of spatial spillover effects, OF, FB, and FA had a
significant relationship with population density distribution. Unlike that of OF and FA,
the effect of FB was negative in the main urban area of Guangzhou. Finance and banking
facilities in the main urban area of Guangzhou were mainly located in the center, where
crowds were not concentrated, especially in major business districts such as Zhujiang
new town and Taojin [57,59]. Hence, FB had strong negative spatial spillover effects on
residents’ behaviors.

The results showed land use of transportation function was the most significant factor
that influences urban population density distribution. The SDM showed that the direct
effects and the indirect effects of TR were more than that of other functions, presenting
that residents’ activities relied on traffic accessibility, which played an important role in
population aggregation [15,35,60]. The trends of direct coefficients in a day were in line
with the features of commuting on the weekdays [15]. In addition, the effects on the
weekdays were generally lower than that on the rest days in the afternoon and night. The
result denoted that people prefer resting on non-working days, and their time for activities
is delayed, as reported in a previous study [11].

Land use of recreation function was relevant to the urban population density distribu-
tion, which was consistent with previous studies [8,11,60,61]. For FO and EN, the positive
direct influences on the off days were greater than on the working days at a certain time,
displaying that FO was more attractive to residents in the afternoon and evening on the
weekend, while EN was most attractive to residents in all time slots on weekdays. FO
had a significant spatial spillover effect on residents’ behaviors; on the contrary, EN did
not. As we know, Guangzhou is the capital of food. In other words, Guangzhou is known
for its diverse food culture [8]. Hence, FO had more attraction to tourists and locals and
brought population density growth to the neighboring areas, compared to EN. For EC, it
had the direct and spatial spillover effects on population density distribution. This implied
that, on the one hand, the urban population density distribution was mainly influenced by
schooling activities, which is similar to the descriptions of Li et.al. [11]; on the other hand,
due to the compulsory Education Enrollment Policy in China, residents who had children
of school age gathered around the EC, especially high-quality schools, showing that EC
has a siphonic effect on the increase of the population density of the surrounding areas.
For TO, the significant direct effects on the non-working days were higher than that on the
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working days. Peoples’ activities focused on recreation and living, and TO was a good
choice during leisure time.

6. Conclusions

In this study, we first analyzed the spatial–temporal evolution of urban population
density in the main urban area of Guangzhou and then explored the direct and spatial
spillover effects on land use using Baidu heat map data and POI data. The findings from our
study can provide help for urban planners and policy makers in understanding residents’
activity patterns and addressing the problem about overcrowding and chaos in urban
spatial structure.

Based on the above analysis of population density distribution, four suggestions are
provided. First, according to the difference in peoples’ activities on the weekend and the
weekdays, a flexible mechanism for urban management could be established to relieve
the pressure during journey peaks. Second, on the basis of the peoples’ activities patterns,
land use structure should be optimized in order to form a polycentric urban pattern and
disperse population density. Third, considering spatial correlation and spillover effects,
planners should coordinate land use layout with surrounding areas to improve the well-
being of residents. Fourth, the principles of fairness and difference should be taken into
account within the main urban area of Guangzhou. This requires the equal arrangement of
high-quality infrastructure on one hand and the discovery of regional characteristics and
uniqueness on the other.

In the exploration of the purpose of human activities, this current research took the
spillover effect of urban population density distribution into consideration using the SDM,
which made it easier to observe the influence of spatial correlation. However, there are
some limitations of this study, which need to be addressed to carry out further research.
First, Baidu heat map data were used as the basis for urban population density distribution
and could not be used to obtain accurate population numbers or individual information.
Moreover, the Baidu heat map data were collected over five days in November, which
could not reflect urban population density distribution all year. Therefore, this paper needs
to integrate other data that contain individual information to reduce the sample bias and
effectively identify residents’ activities in different groups. Furthermore, future research
should combine multi-source data and machine learning, especially domain adaption
techniques [62,63], to better capture the characteristics of land use and to simulate residents’
behavior and predict the population density distribution in alternative cities, which can
further illuminate the relationship between them.
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