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It has attracted growing attention that the role of serine hydroxy methyl transferase 2 (SHMT2) in various types of cancers.
However, the prognostic role of SHMT2 in lung adenocarcinoma (LUAD) and its relationship with immune cell infiltration is
not clear. In this study, the information of mRNA expression and clinic data in LUAD were, respectively, downloaded from the
GEO and TCGA database. We conducted a biological analysis to select the signature gene SHMT2. Online databases including
Oncomine, GEPIA, TISIDB, TIMER, and HPA were applied to analyze the characterization of SHMT2 expression, prognosis,
and the correlation with immune infiltration in LUAD. The mRNA expression and protein expression of SHMT2 in LUAD
tissues were higher than in normal tissue. A Kaplan-Meier analysis showed that patients with lower expression level of SHMT2
had a better overall survival rate. Multivariate analysis and the Cox proportional hazard regression model revealed that SHMT2
expression was an independent prognostic factor in patients with LUAD. Meanwhile, the gene SHMT2 was highly associated
with tumor-infiltrating lymphocytes in LUAD. These results suggest that the SHMT2 gene is a promising candidate as a
potential prognostic biomarker and highly associated with different types of immune cell infiltration in LUAD.

1. Introduction

Lung cancer is the most common cancer and the main reason
of cancer-related death, leading to a rising public concern
worldwide. Lung cancer is divided into nonsmall cell lung
cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC
accounts for approximately 85% of all lung cancers [1],
which contain twomain types: lung squamous cell carcinoma
(LUSC) and lung adenocarcinoma (LUAD). LUAD is the
most common histological subtype of NSCLC diagnosed,
followed by LUSC. As the most common histological sub-
type, LUAD frequently occurs in females and nonsmoking

people, with no obvious clinical symptoms in the early stage,
but shared some common symptoms with other respiratory
diseases, resulting in difficulty in identification of lung can-
cer. In addition, LUAD has an average 5-year survival rate
of less than 20% [2] due to its metastasis at early stages.
Therefore, there is an urgent need to identify new diagnostic
and prognostic biomarkers for LUAD to increase the efficacy
of early diagnosis.

Serine hydroxy methyl transferase (SHMT) is an essential
enzyme in the conversion between serine and glycine as well
as one-carbon metabolism, providing the important precur-
sors for protein and nucleic acid synthesis for cancer growth
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and metastasis. To be noted, amino acid and one-carbon
metabolism are the basis of cancer biology, and hyperactiva-
tion of one-carbon metabolism has been proved to be driving
factors of cell proliferation and related to the epigenetic state
of the cell [3]. SHMT2 is one of SHMT genes, encodes a pro-
tein that localizes to the mitochondria [4], and is identified as
a potential driving gene in diverse cancers in cell growth and
aggressiveness [5]. As a key regulator of viral transcription,
HIV-1 Tat levels are regulated through K63Ub-selective
autophagy-mediated through SHMT1,2 and the BRCC36
deubiquitinase. Xu et al. has identified SHMT2 and BRCC36
as novel and important regulators of HIV-1 Tat protein levels
in infected T cells [6]. Ji et al. proved expression levels of
SHMT2 in HCC tissues were significantly correlated with
tumor grade and hepatitis B virus (HBV) infection [7].
Besides, genetic ablation of SHMT2 causes strong increases
in inflammatory cytokine signatures [8]. SHMT2 may allevi-
ate the apoptosis and the release of damaging inflammatory
factors after hepatic ischemia-reperfusion injury by inhibit-
ing the activation of the JNK pathway and excessive activa-
tion of the NF-κB pathway [9]. SHMT2 showed
unfavorable overall survival to intrahepatic cholangiocarci-
noma patients [10]. SHMT2 is a very crucial gene in many
cancers, and proteomic profiling of breast cancer metabolism
identifies SHMT2 as a prognostic factor [11], and it drives
glioma cell survival in ischemia depending on glycine clear-
ance [12, 13]. However, the immune-related SHMT2 in
LUAD and its potential use in prognosis are still largely
unknown.

In recent years, the combination of immunotherapy and
high-throughput gene microarray has been widely employed
for oncology and other disease areas to analyze deeper corre-
lation to predict more insight for research. So, analysis of
available high-throughput data in many databases has

become an effective and low-cost method to discover bio-
markers for many diseases. Immune cells have an intimate
connection with the prognosis in various cancers. Mounting
evidence supports that the malignant phenotype is not only
determined by the intrinsic activities of cancer cells but also
by components in the tumor microenvironment, especially
tumor-infiltrating immune cells [14], which is an important
determinant of prognosis and immunotherapy response of
lung cancer [15]. For example, CD83+dendritic cells and
Foxp3+ regulatory T cells in primary lesions and regional
lymph nodes are negatively correlated with the prognosis of
gastric cancer [16]. Increased tumor-infiltrating tumor-
associated macrophages (TAMs) are associated with a poor
prognosis of NSCLC [17]; DC and T cells are connected with
better prognosis [18, 19]. Meanwhile, high-throughput gene
microarray makes it accessible for us to further explore the
tumors at multiple levels.

In this study, we downloaded the LUAD-related data sets
from the GEO database (Gene Expression Omnibus) and
TCGA (The Cancer Genome Atlas) database and conducted
bioinformatics statistical analysis to select different expres-
sion genes (DEGs) between normal tissue and tumor tissue.
Subsequently, functional analysis and survival analysis were
subsequently carried out to select and verify signature genes
with biological and clinical signatures. In addition, we took
full advantage of convenient online site tools to explore the
relationship between signature and immune cells and verify
the suppose at multiple levels especially.

2. Methods

2.1. Data Collection and Preprocess.We obtained the LUAD-
related microarray profiles (GSE116959 [20], GSE21933 [21],
and GSE31210 [22]) from the GEO database (https://www
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Figure 1: Flowchart for this study. DEGs: differential expression genes; GEPIA: Gene Expression Profiling Interactive Analysis; GO: Gene
Ontology; GSEA: gene set enrichment analysis; KEGG: Kyoto Encyclopedia of Genes and Genomes; KM: Kaplan–Meier; TCGA: The
Cancer Genome Atlas; TIMER: Tumor Immune Estimation Resource; HPA: the Human Protein Atlas.
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Figure 2: Continued.
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.ncbi.nlm.nih.gov/geo/). In this study, the datasets that met
the following criteria were selected: (a) studies of comparing
gene expression between human LUAD cancer samples and
corresponding normal tissues; (b) the number of samples in
each gene expression profiling dataset should be more than
30.

The microarray data were normalized and analyzed via
the R “limma” package, which implements empirical Bayes-
ian methods for analyzing microarray data [23]. We set
log2 fold change ðFCÞ ≥ 1 with an adjusted P value less than
0.01 as the threshold to define important differentially
expressed genes (DEGs) which are selected for subsequent
analysis. We named the DEGs that overlapped in the three
data matrixes as common DEGs. In addition, multiple probes
corresponded to the same gene in the annotation file; the
average expression of these probes was used as the expression
value of the corresponding gene. Analyzing and processing
these abovementioned data by R language.

Furthermore, we obtained the LUAD transcriptome
RNA-seq data set and corresponding clinical data set from
the TCGA database (https://cancergenome.nih.gov/) con-
taining 521 tumor samples and 46 normal samples.

2.2. Functional Enrichment Analysis of DEGs

2.2.1. GO and KEGG Pathway Analysis. In order to investi-
gate biological processes functions and pathways associated
with the selected DEGs, we also performed Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses. The GO analyses classified
the common DEGs into three categories, including biological

process (BP), cellular component (CC), and molecular func-
tion (MF). The KEGG analysis was conducted to determine
significantly enriched the pathways of DEGs which was
defined as the cutoff significant criteria with P value < 0.05.
Besides, the Cytoscape software (version 3.8.0) was used to
screen hub genes. The GO and KEGG analyses were both
based on the online database DAVID (version 6.8) (https://
david.ncifcrf.gov) and visually display through R software
(version 3.6.1).

2.2.2. Screening Hub Genes by Cytoscape Software. Cytoscape
software (version 3.8.0) is an open-source bioinformatic soft-
ware platform for visualizing molecular interaction networks
and biological pathways and integrating these networks with
annotations, gene expression profiles, and other state data.
MCODE is a Cytoscape APP that finds clusters (highly con-
nected areas) in the network.

2.2.3. Gene Set Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) (http://software.broadinstitute.org/gsea/
index.jsp) is a computational method that determines
whether an a priori defined set of genes shows statistically
significant, concordant differences between two biological
states [24] (e.g., phenotypes) (from the official GSEA web-
site). We used this computational method to analyze the
function and potential pathway of signature genes. In order
to find out the relationship between the gene set and the
function we are interested in, we conducted GSEA analysis
based on “C5: GO gene sets” for three groups of GSEs by
GSEA software version 4.0.3. The false discovery rate ðFDR
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Figure 2: DEGs in three data sets. (a–c) The volcano plots visualize the DEGs in GSE116959, GSE21933, and GSE31210, respectively. The red
nodes represent upregulated genes while the blue nodes represent downregulated genes. (d–f) Heatmap of the top 100 DEGs according to the
value of ∣logFC ∣ >1 and P < 0:01. The green color indicates lower expression and red color indicates high expression.
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Figure 3: Continued.
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Þ < 25% and nominal P < 0:05 were regarded as the cut-off
criteria.

2.3. Survival Analysis

2.3.1. Risk Score Formula Establishment. The clinical infor-
mation of the original 521 TCGA patients with lung adeno-
carcinoma was sorted out and 270 cases were screened out,
and the patients with lung adenocarcinoma were randomly
divided into the training group (n = 135) and the testing
group (n = 135). We further investigated the potential roles
in clinical outcomes after screening out the genes. We used

a risk-score formula to predict LUAD patients’ survival.
The risk score formula is as follows: Risk score = ð1:43 ×
expression level of AC069513:4Þ + ð0:81 × expression level of
AC003092:1Þ + ð1:64 × expression level of RP11 − 507K2:3Þ
+ ð−6:56 × expression level of CTC − 205M6:2Þ + ð−1:72 ×
expression level of U91328:21Þ [25].

2.3.2. Risk Score Formula Validation. To validate the gene
risk signature in the internal validation data sets, we calcu-
lated the risk score for each patient in the complete TCGA
cohort. The patients were then divided into high-risk and
low-risk groups based on the corresponding median risk
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Figure 3: Upregulated gene expression was associated with an immunologic process and was validated by GSEA of GO gene sets analysis of
high expression of SHMT2 in GSE21933, GSE31210, and GSE116959. (a) Leukocyte activation involved in inflammatory response, (b)
macrophage activation, (c) response to interleukin 6, (d) adaptive immune response, (e) alpha beta T cell activation, (f) alpha beta T cell
differentiation, (g) B cell receptor signaling pathway, (h) negative regulation of T cell mediated immunity, and (i) positive regulation of
interleukin 2 production.
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score. The prediction accuracy of this risk model was deter-
mined by a time-dependent receiver operating characteristic
(ROC) analysis.

2.3.3. Statistical Analysis. Statistical analysis and graphical
plotting were conducted by R software. Differences in patho-
logical and molecular characteristics between different
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Figure 4: (a) CommonDEGs in three data sets. A total of 670 commons in the intersection of three gene sets. (b) Hub gene of commonDEGs.
There are five hub genes in 670 common genes, including SHMT2, PSAT1, PYCR1, PC, and LDHA. (c) GO analysis of common DEGs.
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Figure 5: Continued.
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groups of patients were compared using chi-squared and
Fisher’s exact tests. Prognostic factors were assessed by Cox
regression analysis and the Kaplan-Meier method. The sur-
vival rates were calculated by Kaplan-Meier method curves
and compared using the log-rank test. The significance of
prognostic factors was evaluated through a multivariate
Cox proportional hazard regression, with a P value less than
0.05 considered as statistical significant.

Then, the Kaplan-Meier plotter was applied to examine
the prognostic value of SHMT2. Kaplan-Meier plotter data-
base (http://kmplot.com/analysis/) is an online analysis tool
containing microarray profiles and mRNA-seq data with
patients’ survival information, including overall survival
(OS) and progression-free survival (RFS), summarized from
TCGA, Gene Expression Omnibus, and the Cancer Biomed-
ical informatics Grid [26]. Kaplan-Meier plotter database was
used to analyze the correlation between SHMT2 expression
and survival in LUAD. A log-rank P value and the hazard
ratio (HR) with confidence intervals of 95% were also
calculated.

2.4. Signature Gene Online Validation and Analysis

2.4.1. Oncomine Database Analysis. The expression level of
SHMT2 in various types of cancers was analyzed in the
Oncomine database (https://www.oncomine.org/), especially
in lung cancer. Oncomine database is an online cancer data-
base with powerful analytical capabilities for computing gene
expression signatures, clusters, and gene-set modules, auto-
matically extracting biological insights from the data [27].
The mRNA expression difference between tumors and nor-
mal tissues were analyzed with thresholds as follows: P value
of 0.01, fold change of 2, gene ranking of all, and the data
from mRNA.

2.4.2. GEPIA Database Analysis. The Gene Expression Profil-
ing Interactive Analysis (GEPIA) database (http://gepia
.cancer-pku.cn/) is an interactive web for analyzing the
expression data of RNA based on 9,736 tumors and 8,587
normal samples from the cancer genome atlas (TCGA) and
the GTE projects [28]. We conducted an online survival
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Figure 5: SHMT2 expression level (a) mRNA expression of SHMT2 in LUAD. ThemRNA expression of SHMT2 is higher in tumor but lower
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analysis of the gene SHMT2 on the functional section named
as the Survival plot in the GEPIA database. The threshold is
determined by the following principles: Gene of SHMT2,
Methods of Overall Survival, Group Cutoff of Median,
Cutoff-High (%) and Cutoff-Low (%) both are 50, Hazards
Ratio (HR) of yes, 95% Confidence Interval of yes, Axis Units
of month, and Datasets set as LUAD.

2.4.3. UALCAN Database Analysis. UALCAN database
(http://ualcan.path.uab.edu) is a user-friendly and interactive
database, providing easy access to RNA-seq and clinical data
of 31 cancer types from The Cancer Genome Atlas (TCGA)
[29]. We checked the RNA-seq expression of SHMT2 again
and further explored the correlation between SHMT2 protein
expression and LUAD in this database.

2.4.4. TIMER Database Analysis. The correlations between
SHMT2 expression and the abundance of immune infiltrates
were explored by the Gene module in the TIMER database
(https://cistrome.shinyapps.io/timer/), which is a compre-
hensive tool established for systematically analyzing immune
infiltrates across diverse types of cancer [30]. Meanwhile, we
also analyzed the relationship between the expression of
SHMT2 and gene markers of tumor-infiltrating immune
cells by a correlation module. Besides, the expression level
of SHMT2 in various types of cancers was examined in the
TIMER database once more.

2.4.5. TISIDB Database Analysis. To further investigate the
correlations among SHMT2 expression, lymphocytes, and
other immunomodulators, the TISIDB database (http://cis
.hku.hk/TISIDB), known as a web portal for tumor and

immune system interaction, was applied to analyze. TISIDB
integrates multiple heterogeneous data types, including 988
reported immune-related antitumor genes, high-throughput
screening techniques, molecular profiling, and para-
cancerous multiomics data, as well as various resources for
immunological data retrieved from seven public databases
[31]. We used the TISIDB database to analyze the link
between SHMT2 and immune cell infiltration and to learn
the GO function in LUAD.

2.4.6. Human Protein Atlas Analysis. The protein expression
of SHMT2 in both LUAD and normal tissues was retrieved
from the Human Protein Atlas database (HPA) (https://
www.proteinatlas.org/), which is a program with the aim to
map all the human proteins in cells, tissues, and organs using
an integration of various omics technologies, including
antibody-based imaging, mass spectrometry-based proteo-
mics, transcriptomics, and systems biology [32, 33]. In this
study, we used the HPA database to analyze the protein
expression and performed immunohistochemistry (IHC)
analysis of SHMT2 between normal lung tissues and LUAD
tissues.

3. Results

3.1. Identification of Common Differentially Expressed Genes
(DEGs). The flow chart of the study was generalized in
Figure 1. After performing difference analysis with dataset
collection (GSE116959, GSE21933, and GSE31210) in the
GEO database, a total of 577 samples (521 tumor samples
and 46 normal samples) from TCGA database were explored.
There were 1868 DEGs filtered from the GSE116959 data set,

Normal

Tumor

(a) (b) (c)

(d) (e) (f)

Figure 6: Immunohistochemistry (IHC) of SHMT2 expression in LUAD tissues and corresponding normal tissues based on The Human
Protein Atlas (HPA). (a–c) Normal lung (T-28000) tissue and (d–f) lung (T-28000) tumor tissue.
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including 624 upregulated and 1244 downregulated genes;
2570 DEGs screened from the GSE21933 data set, including
1193 upregulated and 1377 downregulated genes; and 7220
DEGs selected from the GSE31210 data set, including 4107
upregulated and 3013 downregulated genes. In order to make
the results more intuitive, we visualized them. We displayed
the DEGs among each data set via volcano plots
(Figures 2(a)–2(c)). What is more, cluster analysis of DEGs
showed two obvious different distribution patterns between
the tumor and normal samples, suggesting crucial roles of
DEGs in the occurrence and progression of LUAD
(Figures 2(d)–2(f)). Through Venn diagram analysis, 670
common DEGs in the intersection of the three data sets were
identified and selected for further analysis.

3.2. The Selection of Signature Genes. In order to search for
the signature gene, we performed gene set enrichment analy-
sis on GSE21933, GSE31210, and GSE116959. Afterward,
with GSEA, we found that there were nine sets of results
related to immunity closely, and all of them were highly
expressed gene sets. In particular, GSE21933 was associated
with macrophage, which is one of our focuses. The informa-
tion of GSEA results was listed in Figure 3. Next, we selected
upregulated genes for further analysis of the differences
between genes and enrichment.

We conducted GO analysis and KEGG pathway enrich-
ment analysis of DEGs from differential analysis to explore
their potential biological functions and pathways associated
with LUAD. The results of GO analysis in Figure 4(c) showed
that DEGs were significantly related to mitotic nuclear divi-
sion, cell-substrate adhesion, organelle fission, mitotic sister
chromatid segregation, nuclear division, regulation of cell-
substrate adhesion, regulation of mitotic nuclear division,
microtubule cytoskeleton organization involved in mitosis,
chromosome segregation, regulation of chromosome segre-
gation, sister chromatid segregation, mitotic spindle organi-
zation, extracellular structure organization, urogenital
system development, regulation of nuclear division, DNA-

dependent DNA replication, and cell junction assembly,
which were essential for the rapid growth of tumors. Addi-
tionally, as shown in Figure 4(b), MCODE was used to screen
out cluster 15 containing all the upregulated 5 common DEG
hub genes (SHMT2, PYCR1, PSA T1, PC, and LDHA) from
Cytoscape software, and it was found that SHMT2 gene was
located in the specific center of Figure 4(b), indicating that
SHMT2 plays an important role in regulating cell behavior.
In a function model of TISIDB, we verified the SHMT2
involved in the metabolism of glycine, serine, and threonine,
metabolic pathways, carbon metabolism, biosynthesis of
amino acids, providing the crucial basis for protein and
nucleic acid production for cancer growth and metastasis.
Thus, we believe that SHMT2 plays an important role in reg-
ulating the growth of LUAD.

3.3. High Expression Level of SHMT2 in Tumors. The expres-
sion level of SHMT2 in tumor and adjacent normal tissues
was verified on the Oncomine database. As shown in
Figure 5(d), SHMT2 displayed a higher expression level in
bladder cancer, breast cancer, colorectal cancer, kidney can-
cer, lung cancer, and lymphoma, while the expression level
was lower in liver cancer and pancreatic cancer. We also ana-
lyzed the mRNA-seq expression data in tumors by UALCAN
database and TIMER database (Figures 5(a) and 5(c)). These
results consistently showed that SHMT2 displays obviously
high expression in LUAD. Besides, we explored the protein
expression of SHMT2 between LUAD and normal tissues
in UALCAN database (Figure 5(b)) and investigated immu-
nohistochemistry (IHC) on The Human Protein Atlas
(HPA) (Figures 6(a)–6(f)). Through the above analysis, we
summarized the protein expression of SHMT2 was signifi-
cantly elevated in tumors which may possess diverse func-
tions in various tumors, especially in LUAD.

3.4. Prognostic Value of SHMT2 in LUAD.We calculated the
area under the curve (AUC) of the receiver operating curve
(ROC) to evaluate the discriminative ability of prediction

0.0

0.2

0.4

0.6

0.8
Se

ns
iti

vi
ty

1.0

0.0 0.2 0.4 0.6
1 – specificity

AUC = 0.717

ROC curve of test set

0.8 1.0

(a)

0.0

0.2

0.4

0.6

0.8

Se
ns

iti
vi

ty

1.0

0.0 0.2 0.4 0.6
1 – specificity

AUC = 0.613

ROC curve of train set

0.8 1.0

(b)

Figure 7: The time-dependent receiver operating characteristic (ROC) analysis. The AUC (area under ROC) score for the training dataset
was 0.842, indicating the better performance of survival prediction in the training dataset.
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Figure 8: Continued.
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rules. And the AUC score for the training dataset was 0.613
(Figure 7), indicating better survival prediction performance
of the training data set. A Kaplan-Meier analysis showed an
unfavorable effect on overall patient survival. Multivariate
analysis and the Cox proportional hazard regression model
uncovered that the expression of SHMT2 is an independent

prognostic indicator for patients with LUAD (Figures 8(a)
and 8(b)).

We then examined the prognostic value of SHMT2 using
the Kaplan-Meier plotter and the Gene Expression Profiling
Interactive Analysis (GEPIA) database. We calculated the
Cox P/log-rank P value and hazard ratio with 95% intervals.
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Figure 8: Kaplan-Meier survival analysis. (a) OS (overall survival) of SHMT2 in GSE21933. (b) OS (overall survival) of SHMT2 in GSE31210.
The numbers below the figures represent the number of patients at risk in each group. (c and d) Kaplan-Meier survival curves comparing the
high and low expression of SHMT2 in LUAD in the Kaplan-Meier plotter database and GEPIA database.
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We set Cox P/log-rank P = 0:05 as the thresholds. The
patients were divided into two groups based on the median
level of the SHMT2 expression in each queue. Univariate
analysis was carried out to assess the impact of SHMT2 on
various cancer survival rates by GEPIA and the Kaplan-
Mayer plotter database (Figures 8(c) and 8(d)). The results
indicated that the expression level of SHMT2 has a signifi-
cant effect on the prognosis of LUAD. Moreover, the low
level of SHMT2 indicated a longer survival period for
patients with LUAD. Given all that, these results suggested
that high expression of SHMT2 was related to the poor prog-
nosis of LUAD.

3.5. SHMT2 Immune Regulation Molecules. The result of
GESA analysis based on 3 datasets in Figure 3 showed that
the upregulated gene in GSE21933, GSE31210 was appar-
ently correlated with immune-related biological functions
and SHMT2 was proved as a significantly upregulated gene
in 3 datasets, suggesting SHMT2 is possibly connected with
immune regulation.

In order to explore whether SHMT2 exerts potential bio-
logical roles in immune infiltration, we conducted an inte-
grated analysis based on the TIMER database and TISIDB
database, analyzing the link between SHMT2 and immune
cell infiltration as well as the gene markers of immune cell
subtypes in LUAD. The results in Figure 3 suggested high
levels of SHMT2 mRNA expression were associated with
high immune infiltration in LUAD. SHMT2 mRNA expres-
sion level was significantly negatively correlated with infil-
trating levels of immune cells, CD4+ T cells (r = −0:055,
P = 2:22e − 01), macrophages (r = −0:17, P = 1:65e − 04),
and dendritic cells (DCs) (r = −0:111, P = 1:44e − 02)
(Figure 9). Besides, Supplemental Table 1 also
demonstrated the SHMT2 mRNA expression level had
significant correlations with immune cells, TAMs, DCs,
CD4+ T cells, neutrophils, Th1, Th2, Thf, and T cell
exhaustion in LUAD.

For further investigation, we found the expression of
SHMT2 was associated with tumor-infiltrating lymphocytes
(TILs), including activated Type 1 T helper cell, nature killer
cell, T follicular helper cell, active B cell, immature B cell,
active CD4 T cell, Type 17 T helper cell, Tem CD8 cell, and
CD56dim nature killer cell (Figures 10(a)–10(i)). Particu-
larly, the P value of the abovementioned cells is all less than
0.001. Overall, these results suggested that the SHMT2 and
its associated genes were important for immune cell infiltra-

tion in the LUAD microenvironment and possibly have a
more significant effect on the prognosis of LUAD.

4. Discussion

As an important branch of glycolysis and an essential source
of one-carbon metabolism [3], serine was essential to support
tumor cell proliferation [34]. SHMT, an essential enzyme
that catalyze the conversion of serine to glycine, regulates ser-
ine metabolism and one-carbon metabolism, to provide
important precursors for protein and nucleic acid synthesis
for cancer growth and metastasis [3]. SHMT2, a type of
SHMT gene found in the human genome, is associated with
the prognosis of various tumors [10]. It is reported that that
SHMT2 is a key enzyme in the serine/glycine synthesis path-
way, catalyzing the transformation of serine into glycine in
mammalian mitochondria [12]. SHMT2may serve as a prog-
nostic factor and as a potential therapeutic target for human
gliomas in clinical practice [13, 35]. However, there is still no
study on the relationship between SHMT2 and LUAD.
Therefore, it is of great significance to analyze the role of
SHMT2 in LUAD.

As the most common LUAD, dense lymphocytic infil-
trate is one of the most obvious characteristics of LUAD,
indicating the immune system exerts an active role in the
development and growth of LUAD. In this study, we
screened out the key gene SHMT2 through difference analy-
sis, functional enrichment analysis, and survival analysis
based on the GEO database and TCGA database. Next, we
used the Oncomine database and TIMER database to com-
pare the expression level of SHMT2 among different cancers
and verify its increased expression level in LUAD. Univariate
analyses of this study were carried out to evaluate the effect of
SHMT2 expression on the survival rates in LUAD via the R
software and Kaplan-Meier plotter database. The high
expression level of SHMT2 had a more significant effect on
the prognosis of LUAD patients. After screening tumor prog-
nosis related to SHMT2, the relationship between SHMT2
and immune infiltration levels in different tumors was inves-
tigated in the TIMER database and TISIDB database. The
levels of infiltration of immune cells in LUAD were per-
formed on the TIMER database, revealing that SHMT2 is
obviously related to the immune filtration in this cancer.

Besides, multivariate analysis and the Cox proportional
hazard regression model validated that SHMT2 could be an
independent prognostic factor of patients with LUAD. The
expression level of SHMT2 also had a significantly negative
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Figure 10: Continued.
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correlation with tumor-infiltrating lymphocytes like imma-
ture B cell, active CD4 T cell, Th17, CD56dim nature killer
cell (all Cor > 0:2; P < 0:01). Additionally, the results of cor-
relation between SHMT2 and gene markers of immune cells
showed that the SHMT2 was closely related with T cells
(CD8+T cells, Th1 cells, Th2 cells, Thf cell, general T cells,
and exhausted T cells), TAM, NK cells, and DCs (Supple-
mental Table 1). Tumor-infiltrating lymphocytes (TILs),
including T cells and B cells, are another important compo-
nent of immune cells that exhibit antitumoral functions,
especially CD8 and CD4 T cells. Some studies revealed that
Th1 cells were associated with prolonged survival. SHMT2
regulating immune infiltration may be involved in these
immune cells, especially T cell receptor interaction. The anal-
ysis mentioned above suggested that SHMT2 could serve as a
potential overall prognostic marker for patient survival,
improving the survival and prognosis of LUAD; SHMT2
may also play an important role in the microenvironment
of LUAD via regulating tumor infiltration of immune cells.

At present, according to the known research results, the
high expression of SHMT2 could be detected in different
types of cancers, as reported, playing pivotal roles in =migra-
tion and invasion. Knocking out SHMT2 in hepatocellular
cancer cell lines was validated that reduces cell growth and
tumorigenicity in vitro and vivo. Gene set enrichment analy-
sis revealed that SHMT2 had a strong correlation with cancer
invasion and poor survival among breast cancer patients.
Besides, SHMT2 also was reported to control inflammatory
cytokine signaling via its interaction with the BRISC deubi-
quitylase (DUB) and its important catalyst [36]. And SHMT2
impaired T cell survival in culture and antigen-specific T cell
abundance in vivo [37]. Overall, these studies provide evi-
dence that SHMT2 participated in different diseases via
immune mechanisms.

5. Conclusion

In this study, we showed SHMT2 as an independent prog-
nostic factor and found its high expression was associated
with poor prognosis of LUAD. And further analysis conjec-
tured that SHMT2 may mediate the immune cell infiltration

via regulation of macrophages and T cell in the LUADmicro-
environment. Although there are some shortcomings in this
study, such as our lack of experimental verification, we also
demonstrate some highlights, which deserve more attention.
We take full advantage of available public online datasets to
verify our conjecture. However, further exploration and
research to study the specific mechanism are also required.
We hope this article can contribute to the following research.
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