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Abstract
Susceptible–Infected–Recovered (SIR) models have long formed the basis for explor-
ing epidemiological dynamics in a range of contexts, including infectious disease
spread in human populations. Classic SIR models take a mean-field assumption, such
that a susceptible individual has an equal chance of catching the disease from any
infected individual in the population. In reality, spatial and social structure will drive
most instances of disease transmission. Here we explore the impacts of including
spatial structure in a simple SIR model. We combine an approximate mathematical
model (using a pair approximation) and stochastic simulations to consider the impact
of increasingly local interactions on the epidemic. Our key development is to allow
not just extremes of ‘local’ (neighbour-to-neighbour) or ‘global’ (random) transmis-
sion, but all points in between. We find that even medium degrees of local interactions
produce epidemics highly similar to those with entirely global interactions, and only
once interactions are predominantly local do epidemics become substantially lower
and later. We also show how intervention strategies to impose local interactions on a
population must be introduced early if significant impacts are to be seen.

Keywords Epidemic · SIR · Spatial structure · Pair approximation

1 Introduction

The classic Susceptible–Infected–Recovered (SIR)model has long been used tomodel
the spread of infectious disease in human, animal and plant populations (Kermack and
McKendrick 1927; Anderson and May 1979). More recently, in its SEIR form (with
an additional ‘exposed’ compartment) it has formed a central pillar of much of the
modelling of theCovid-19 pandemic (Ferguson et al. 2020;Kucharski et al. 2020; Firth
et al. 2020). In its standard form, the SIR model has a mean-field assumption, such
that individuals in the population have purely random, ‘global’ interactions (Boots and
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Sasaki 2000) and there is no spatial structure. In reality, individuals in a population are
more likely to contract disease from infected individuals who are closer to them, both
physically and socially. Incorporating this spatial structure into mathematical models
is extremely challenging. In some cases, large datasets of known contact networks have
been used to replicate epidemics to excellent effect (Ferguson et al. 2020; Firth et al.
2020). While such models have a high degree of realism and thus predictive power,
they cannot be readily modelled by a simple set of equations and require significant
computational exploration to capture possible outcomes and feedbacks.

One common approach to incorporating a degree of regular spatial structure, and
particularly ‘local’ near-neighbour interactions, into infectious diseasemodels is to use
a lattice-basedprobabilistic cellular automata (Sato et al. 1994;Randet al. 1995). These
stochastic individual-based models have also been combined with an analytic pair-
approximation method (Matsuda et al. 1992; Sato et al. 1994), where the full spatial
dynamics are approximated by a set of ordinary differential equations based on the
classic SIR model. Such models have been applied to infectious disease systems both
with (Keeling et al. 1997; Webb et al. 2007a, b; Best et al. 2012) and without (Keeling
1999; Sharkey 2008) demography. These studies have found that local interactions
reduce the value of R0, slowing or even preventing an epidemic that would occur
when interactions are global (Keeling 1999). These approaches largely insist on a
strict degree of spatial structure, where infection and/or host reproduction can only
be through near-neighbour interactions. While this is useful for comparison with the
mean-field case, interactions are unlikely to be entirely ‘local’ or ‘global’ in reality,
and we may be missing important features of systems where the interaction structure
lies between these two extremes.

The ability to move between local, near-neighbour interactions and global, mean-
field interactions has been considered in a few spatial models of infectious disease,
primarily in evolutionary (Boots and Sasaki 1999, 2000; Kamo et al. 2007; Best
et al. 2011; Débarre et al. 2012) and ecological (Ellner 2001; Webb et al. 2007a)
contexts. This ‘multiscale’ method is commonly achieved by allowing a proportion
of transmission and/or reproduction to occur locally and the rest globally. We might
interpret this, for example in a human population, as an individual mostly interacting
within their household or community (local interactions), but also travelling some
distance for work, holidays or visiting friends or family (global interactions). These
studies have shown that there is increased potential for ecological cycles and disease-
driven extinction as interactions become predominantly local (Webb et al. 2007a).
They have also shown that evolutionary selection is generally towards lower levels
of infection in both host and parasite as interactions become more local (Boots and
Sasaki 1999; Best et al. 2011), but not necessarily monotonically (Kamo et al. 2007).
Most recently, thismultiscalemethodhas been applied to a humanepidemiologymodel
with equal births and deaths (Maltz and Fabricius 2016), showing that pronounced (but
damped) oscillations in infection may result after a sudden shift to local interactions.
However, this simple mechanism to investigate the impacts of varying the ‘degree’
of spatial structure (i.e. the relative proportion of local to global interactions) has yet
to be applied to human epidemic models over short timescales such that demography
does not impact the dynamics, as would be the case in the early stages of an emerging
infectious disease.
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Given it is known that local spatial structure can rapidly form during epidemics on
a network (Keeling 1999), we would expect local interactions to impact the dynamics
of short timescale epidemics, but the impact of introducing different degrees of local
interactions in such a model remains unexplored. In this study, our aim is to deter-
mine how gradually increasing the proportion of local interactions from 0 (completely
global) to 1 (completely local) changes the nature of the epidemic. This will allow us
to understand how significant movement restrictions, through increasingly local inter-
actions, might need to be to restrict an epidemic. We will also aim to understand the
amount of variation that can occur for fixed parameter sets due to the stochastic nature
of epidemics, and the extent to which a specific individual-based approximation may
be used as a reliable ‘average’ of the stochastic implementations (Sharkey 2008).

2 Model

2.1 Mean-Field Model

The underlying dynamics of the model are based on the classic Susceptible–Infected–
Recovered (SIR) epidemiological framework (Kermack and McKendrick 1927), with
no demographic processes (births/deaths). Demographic processes are neglected since
we are interested in epidemics on a short time-scale (< 12 months) during which
we would expect demographics to remain roughly constant. We first consider the
model under a mean-field assumption with no local interactions. All individuals in
the population are either susceptible (S), infected (I ) or recovered (R). The total
population size N = S + I + R is constant (assume N = 1 for consistency with what
follows), meaning we only need to track the dynamics of S and I densities, given by
the following ordinary differential equations,

dS

dt
= −βSI

dI

dt
= βSI − γ I .

Transmission is assumed to be density-dependent with coefficientβ, while recovery
occurs at rate γ and immunity is assumed to be permanent.

2.2 Pair-ApproximationModel

To account for spatial structure and local transmission, we use a pair-approximation
(PA) model (Matsuda et al. 1992). Assume individuals live on a square lattice, where
each site is always occupied by one susceptible, infected or recovered individual. We
define the probability that a site is occupied by a susceptible individual as PS , an
infected individual as PI and a recovered individual as PR . The dynamics of these
’singlet’ densities mirror those of the mean-field model above, with the following
ordinary differential equations,
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dPS
dt

= −β
[
LqS/I + (1 − L)PS

]
PI (1)

dPI
dt

= β
[
LqS/I + (1 − L)PS

]
PI − γ PI (2)

with PR = 1 − PS − PI . Here we have introduced our key parameter, L , which
determines the proportion of transmission that occurs ‘locally’ between neighbour-
ing individuals, with the remainder of transmission (1 − L) occurring ‘globally’
between random individuals on the lattice. We thus have a simple binary separation
of ‘dispersal’ (both in terms of offspring and infection). This corresponds to individ-
uals’ interactions being predominantly local (with their near neighbours) or global
(randomly across the population). The conditional probability, called the ‘environs
density’, that an infected individual has a neighbour that is susceptible is denoted
qS/I = PSI /PI . Therefore there are two routes to transmission:

• global: (1 − L)βPS PI
• local: LβqS/I PI .

This system of equations is not closed, since to calculate the conditional probability,
qS/I , we need to know the ‘pair’ density, PSI , e.g. the probability that a randomly
chosen pair of neighbouring sites are a susceptible and an infected. By considering all
possible pair transitions, the dynamics of these pair densities can be expressed as an
additional set of ordinary differential equations,

dPSS
dt

= −2β(L(3/4)qI/SS + (1 − L)PI )PSS (3)

dPSI
dt

= −β(L((1/4) + (3/4)qI/SI ) + (1 − L)PI )PSI − γ PSI (4)

+ β(L(3/4)qI/SS + (1 − L)PI )PSS
dPSR
dt

= −β(L(3/4)qI/SR + (1 − L)PI )PSR + γ PSI (5)

dPI I
dt

= −2γ PI I + 2β(L((1/4) + (3/4)qI/SI + (1 − L)PI )PSI (6)

dPI R
dt

= −γ PI R + β(L(3/4)qI/SR + (1 − L)PI )PSR + γ PI I , (7)

and PRR = 1 − PSS − PI I − 2PSI − 2PSR − 2PI R . These equations are similar
to those of Matsuda et al. (1992); Webb et al. (2007b); Maltz and Fabricius (2016).
This includes further conditional probabilities, specifically qI/SS, qI/SI , qI/SR . As an
example, qI/SI is the probability that given we choose an SI pair of sites, there is a
further neighbour that is an I site. Again, this system of equations is not closed as we
have these conditional probabilities that depend on ‘triplets’ (e.g. qI/SI = PI SI /PSI ).
One can appreciate that this pattern will continue and that the equations will never
form a closed system. We thus apply a ‘pair approximation’ (Matsuda et al. 1992)
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where we assume that, for example, qI/SI = qI/S = PSI /PI , allowing us to close the
system. It can be noticed that once the approximation has been made, Eqs. (1–4) form
a closed system, and Eqs. (5–7) are to some extent redundant, but we keep them here
for completeness.

2.3 Basic Reproductive Ratio

The basic reproductive ratio, R0, is the well-known quantity that measures the average
number of secondary infections caused by an infected individual in an otherwise
disease-free population (Anderson and May 1981). Taking this heuristic definition of
R0, by considering the early dynamics of infected individuals (Eq. 2), for the mean-
field, global case where L = 0 (i.e. no local interactions), this is simply given by
R0 = β/γ . When interactions are fully local with L = 1, we have R0,l = βqS/I /γ . In
the limit where the population is indeed entirely disease-free, the conditional density
qS/I = PS = 1, and the two basic reproductive ratios will be equal. However, in
the early stages of an epidemic the conditional density qS/I (the probability that an
infected individual has a susceptible neighbour) rapidly shrinks as the contact network
is formed, since infected hosts will be forming local clusters, meaning it quickly
becomes that R0,l < R0. This reduction in susceptible contacts and resulting reduction
in reproductive ratio naturally leads to a slower epidemic (Matsuda et al. 1992; Keeling
1999). Given the definition of the reproductive ratio as the number of secondary
infections caused by an infected individual, given its balance of local and global
transmission, L , the total reproductive ratio will be,

R0,t = LR0,l + (1 − L)R0. (8)

It is clear, then, that the initial growth rate of an epidemic will be slower the greater
the degree of local interactions.

2.4 Stochastic Simulations

Alongside these mathematical models we additionally conduct stochastic individual-
based simulations using a probabilistic cellular automata. Similarly to the model
described above, a lattice of sites is established, now of fixed size (25x25), where
each site is again occupied by one individual and periodic boundaries are assumed
(such that the lattice is effectively a torus). A Gillespie algorithm (Gillespie 1977)
is implemented, where waiting times between events (either recovery (I → R) or
local or global transmission (S → I )) are drawn from an exponential distribution
with mean given by the sum of the total rates (e.g. γ I + βSI ). At each step, exactly
one of these events occurs, with probabilities proportional to their rates, and a suitable
host is chosen randomly from the lattice for it to occur to (e.g. recovery requires an
infected host to be selected). After an event occurs, the lattice is updated and a new
waiting time calculated for the next event. This approach is fully spatially explicit,
unlike the approximation present in the mathematical methods above. It also now has
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Fig. 1 Epidemic curves from pair approximations and the ‘most central’ 50% of 100 stochastic simulations
for different values of L . γ = 1/14. a R0 = 2, b R0 = 5, c R0 = 10. Red curves for L = 0.1 and blue
curves for L = 0.9. The solid line shows the PA dynamics and the shading the bounds of the central 50%
(C50) of runs of the stochastic model (Color figure online)

a discrete number of individuals (625) as opposed to the continuous probabilities in
the PA model. Code is available on https://github.com/abestshef/latticeSIR.

3 Results

3.1 Epidemic Curves

We begin with a visual examination of the epidemic curves predicted by the pair
approximation and stochastic simulations for different values of L (0.1 and 0.9) and
different mean-field basic reproductive ratios, R0 (2, 5 and 10). Recent work has
highlighted the problems of combining multiple stochastic individual-based models
into simple static statistics of means and variances (Juul et al. 2020). We follow the
methods of Juul et al. (2020) by finding the ‘most central’ 50% of 100 simulated curves
to present here (see appendix for details). This allows us to visualise the shape of the
‘most likely’ epidemic curves, and to appreciate the extent of variation in these time
courses. Below we provide further detail by examining three key descriptive statistics
of the epidemic.

Focussing on the effect of increasing the proportion of local interactions, fromFig. 1
it is clear visually that the higher value of L produces a lower and later peak of infection.
Restricting global interactions may therefore, in itself (without further reductions to
transmission probability), slow down and limit the spread of an epidemic. Increasing
R0 not only moves the epidemics earlier and higher, but also reduces the effect of
local interactions. Comparing the plots, we can see that control mechanisms that
both shift interactions from predominantly global to predominantly local and reduce
R0 (for example, through both movement restrictions and other non-pharmaceutical
interventions) are predicted to have a significant effect on reducing the peak of the
epidemic.

We can also compare the fit of the pair-approximation to the stochastic models.
As we might expect, when L is small the pair approximation appears to present a
reasonable ‘average’ of the stochastic model runs. As L becomes larger we find that,
while the pair approximation often sits within the most central runs, for larger R0
at least, it tends to predict that the epidemic peak is rather earlier and higher than
seen in most of the fully spatially explicit simulations. The discrepancy between the
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pair approximation and stochastic simulations is most pronounced at low values of
R0. In particular, in this case a number of the stochastic simulations produce ‘failed’
epidemics, as evidenced by the lower bound of the 50% central curves running close
to 0.

3.2 Descriptive Statistics

We now explore the behaviour as we vary local interactions across the full range of L
from 0 (fully global) to 1 (fully local). Three descriptive statistics were evaluated (per-
centage of the population infected by day 300, percentage of the population infected
at the peak and the day of the peak). These not only provide a useful summary of
the epidemic curve (‘How high was it? How long did it last?’) but are also potential
targets in setting public health policy (i.e. we may not wish the peak to pass a certain
threshold). The stochastic model was run 100 times and the results plotted using box-
plots, showing the median, inter-quartile range (IQR; 25–75%), maxima/minima (or
1.5×IQR if smaller) and outliers.We consider how similar results are to the L = 0 case
by noting where the IQRs do and do not overlap. We further conduct pairwise Z-tests
to compare the means of the simulation results, presenting the resulting p-values in the
appendix. We set significance thresholds of 5% and 1%, with a Bonferroni correction
for multiple tests (n=55 pairwise tests). We believe these statistics gives a much fuller
appreciation of the shape of the results, and particularly their variation, than simply
plotting the mean and standard deviation. It can be noted that where the boxplots are
relatively symmetric, the mean and median values will be quite close.

Two clear trends emerge from all of the results. Firstly, there is an accelerating
impact of local interactions, with little effect seen as L is first increased from 0, but
the impact growing as L moves towards 1. This is highlighted by the colours indicating
which cases have overlapping IQRs with the L = 0 case (the bounds of which are
shown using horizontal dashed lines). For all three measures there are overlapping
IQRs at least up to L = 0.4, and often higher, indicating that the output for these
cases is similar to the L = 0 case. As L reaches higher values there are then rapid
moves away from the L = 0 case towards smaller epidemics (with a more complex
impact on the day of the peak; see below). Pairwise Z -tests (see appendix) confirm
that L = 0.1 and L = 0.2 are never significantly different to the L = 0 mean for
peak infections (p >0.01/55), with significant differences for all L ≥ 0.6 for both
peak and total infected (p <0.01/55). In contrast, in only one measure (peak infected,
R0 = 2) is the L = 1 mean not significantly different from all other cases. Secondly,
the impact of local interactions is reduced for higher R0. For every statistic, the number
of overlapping IQRs increases for R0 = 10 compared to R0 = 2.

Focussing on the specific values, when R0 = 2 increasing the proportion of local
interactions from L = 0 to L = 0.5 reduces the median peak from 17 to 13%, but
increasing further to L = 1 reduces it to just 2% (Fig. 2a). Similarly, the median total
infected is reduced when changing L = 0 to L = 0.5 from 80 to 70%, but at L = 1 it
is reduced to only 6% infected (Fig. 2g). Similar patterns for the peak can be seen from
higher R0 values also, with R0 = 5 seeing median peaks of 49% for L = 0 reduced
first to 47% for L = 0.5 then to 20% for L = 1 (Fig. 2b), while for R0 = 10 the
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Fig. 2 Descriptive statistics of PA and stochastic simulations for (left) R0 = 2, (middle) R0 = 5 and
(right) R0 = 10. a–c Proportion infected at peak, d–f day of peak, g–i Proportion of population infected
by day 300. Results from 100 simulations are presented as boxplots highlighting the median (orange lines),
inter-quartile ranges (IQR; boxes), maxima/minima (or 1.5×IQR if smaller; whiskers) and outliers. Dashed
horizontal lines mark the bounds of the IQR for L = 0. Blue boxes have overlapping IQRs with L = 0
while yellow boxes do not. The solid line marks the PA (Color figure online)

median peak of 68% at L = 0 is reduced just to 67% for L = 0.5 but 52% for L = 1
(Fig. 2c). The patterns for total infected, however, are less pronounced at higher R0.

Figure 2d–f shows that the number of days until the peak increases with L , again
accelerating as L increases. There is an exception to this when R0 = 2 as L approaches
1. Here, the peak moves significantly earlier because the infection fails to spread
through the population meaning the peak of the epidemic is both very early and very
low, as confirmed in Fig. 2a. Obviously, the larger R0 is, the faster the disease will be
able to spread through the population and therefore the faster it will die out.

In general, the pair approximation appears to be a good ‘average’ of the results
from the stochastic mode since it is always within the maximum/minimum bounds
and regularly within the IQRs. The ‘fit’ appears to be least good as L approaches 1,
as would be expected. The pair approximation is less accurate for R0 = 2 than for
higher values of R0, and this is likely due to the large proportion of infections which
fail to become established in the stochastic model when the disease spreads slowly,
resulting in lower means and IQRs, as described in the online appendix. The pair
approximation is also unable to account for variation evident for some of the stochastic
simulations since it is deterministic. For example, for R0 = 2 and L = 0.8 the total
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Fig. 3 Central curves and PA with a R0 = 2 and b R0 = 5. Red curves, L = 0.1 throughout. Blue curves:
L = 0.1 until PI > 0.05, then L = 0.9 while PI > 0.05, dropping back to L = 0.1 thereafter (Color
figure online)

Table 1 The median peak and
total infected for different
threshold proportions of
infection when the proportion of
local interactions is moved from
L = 0.1 to L = 0.9 with R0 = 2

Threshold Median peak (%) Median total (%)

None 17 80

10% 13 73

5% 9 66

1% 4 36

proportion infected can be anything from almost 0% to more than 60%, whereas the
pair approximation, as a deterministic approximation, provides just a single value.

3.3 Using Local Interactions as a Control Mechanism

We now explore how enforcing movement restrictions, resulting in more localised
interactions, might impact the spread of an epidemic. We assume that initially a pop-
ulation has predominantly global interactions (L = 0.1). We then assume that when
a threshold of percentage infected (here, 5%) is reached, interactions immediately
switch to being predominantly local (L = 0.9) and remain so until the infected per-
centage returns below the threshold. Figure 3 shows that compared to the case where
interactions remain predominantly global throughout (red), if movement restrictions
are imposed (blue) the peak of the epidemic is reduced, but less substantially than if
interactions had always been predmoniantly local, particularly for the lower R0 (see
Fig. 1 and Table 1). Interestingly, in the PA model, we see a very slight second wave
emerging for lower R0 once restrictions are lifted since the herd-immunity thresh-
old has not been reached, suggesting further and/or longer restrictions may need to
be imposed. We further investigate by varying the threshold at which restrictions are
imposed and the value of L moved to under the restrictions (Fig. 4). It is clear a lower
threshold improves the ability to control the epidemic. However, while reducing the
threshold has an almost linear effect on the peak, a very low threshold is needed to
impact the total infected with higher threshold making only small changes (Fig. 4 and
Table 1).

This relative lack of impact of later interventions is because of the speed with which
the lattice becomes correlated in the early stages of an epidemic. The correlation
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Fig. 4 Impact of changing the threshold at which interactions switch from L = 0.1 to L = 0.9with R0 = 2.
Boxplots show results from stochastic simulations and solid line the PA (Color figure online)

between S and I sites on the lattice–effectively how likely it is to find S sites next to
I sites is given by,

CSI = PSI
PS PI

= qS/I

PS
. (9)

At the start of an epidemic with predominantly global interactions, the lattice is uncor-
related since infection spreads randomly across the lattice. As such, an infected host is
likely to remain surrounded by susceptible individuals and thereforeCSI = 1. If some
interactions are local, then during the early stages the correlation rapidly approaches a
quasi-equilibrium as the contact network forms and local patches of infection develop
(Keeling 1999). We show in the appendix that this can be approximated as,

ĈSI = 3L − 2 + √−7L2 + 4L + 4

4L
. (10)

Figure 5 shows that increasing L leads to much stronger early-time S-I correlation, as
local clusters of infection form due to spatially localised contact networks, meaning
that I individuals are muchmore likely to be located near other I individuals. If an epi-
demic begins in a population with predominantly local interactions, the lattice quickly
becomes correlated with these local clusters of infection, qS/I falls and the infection
slows itself down due to a lack of locally available susceptible individuals. In contrast,
if an epidemic has established with predominantly global interactions, the network is
already highly uncorrelated before the movement restrictions are imposed and there
is already infection spread widely across the lattice, meaning most I individuals have
many S neighbours. The late implementation of local interactions therefore cannot
cause as high correlation of the lattice, and a large number of local epidemics can still
occur.

4 Discussion

In this study, we have used a pair approximation alongside stochastic simulations to
investigate the impact of local interactions on an epidemic. The novelty of our model is
to explore how epidemics over short timescales can be restricted by different degrees
of local interactions, not just at the extremes of purely global or purely local infections.
Our results show that epidemics where interactions are predominantly local will result
in fewer infections than those where interactions are predominantly global. Moving
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Fig. 5 Correlation coefficient,CSI , frompair approximation for different values of L .Left: Predicted quasi-
equilibrium, ĈSI from Eq. (10).Right: Early-time correlation dynamics CSI from full pair-approximation
model. The grey horizontal lines mark the predicted quasi-equilibrium from Eq. (10) (Color figure online)

from fully global to fully local interactions could reduce the median total infected
from 80% to just 6% in one case. This is in line with previous studies that looked
only at the extreme cases (Keeling 1999). Importantly, however, we have investigated
the transition between these extremes, finding that the trends as we move from purely
global to purely local interactions are not linear. Instead, our results consistently show
initially flat responses in different infection statistics as L is increased, with rapid
changes as L approaches 1 (Fig. 2). This suggests that the course of an epidemic in a
population with relatively high proportions of local interactions (even 50:50) will be
roughly the same as an epidemic in a population with purely global interactions. Even
at relatively low proportions of global interactions, enough long-range infections can
occur in the early stages of an epidemic to seed large numbers of local epidemics,
allowing the infection to spread throughout the population. For example, if R0 = 2
and L = 0.5, on average an infected individual passes the disease to one local and
one global contact, allowing the disease to become established across the lattice and
to then form a series of outbreaks. It is only as L becomes close to 1 and almost
all interactions are local that the likelihood that an infected individual transmits the
disease globally is small enough to have a significant impact. Interestingly, in the
similar model by Maltz and Fabricius (2016) that includes simple demographics (and
thus yields an endemic equilibrium), the infected equilibrium is initially fairly static
as interactions become more local before rapidly falling as local interactions become
more dominant, suggesting this non-linear trend is robust in simple epidemic models.

Our results have important implications for attempting to limit an epidemic through
restrictingmovement. In particular, such restrictionsmust be considerable,with almost
all global interactions removed if significant effects are to be seen. It is important to
note that in our model restricting movement does not lead to lowered per-individual
contacts, as might be assumed under simple non-pharmaceutical interventions (for
example, social distancing, hand hygiene, wearing masks). We found that restrictions
that both make interactions more local and infectious contacts less frequent (through
lowered R0) can substantially reduce the impact of an epidemic. Moreover, we found
that if the population starts fromaposition of havingpredominantly global interactions,
movement restrictions must be imposed very early on in the course of an epidemic
or they will have minimal effect (Fig. 4). This is due to the fact that, if a disease has
already begun to spread randomly through a population with global contacts, when
restrictions are put in place there will already be large numbers of local outbreaks
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forming across the lattice. If an infection has a particularly high R0, and therefore rapid
growth, it may be that infection is already too widespread for movement restrictions
to have any effect by the time measures are implemented. In this study, we assumed a
simple switch such that interactions returned to the default after the infected proportion
fell back below the threshold. More realistic approaches might be to gradually ease
restrictions or enact further restrictions in cases where a ‘2nd wave’ emerges. In the
similar study by Maltz and Fabricius (2016), they found a simple switch to a different
proportion of local interactions led to pronounced (damped) oscillations and significant
periodic outbreaks as the systemwas effectively moved such that it was no longer at its
steady state. Further investigation in to the use of movement restrictions as a control
mechanism is needed to explore the best strategies.

Combining mathematical analysis, using the pair approximation (Matsuda et al.
1992; Sato et al. 1994), and stochastic simulations has allowed us to explore the
dynamics of our model in more depth. Interestingly we found that the deterministic
results from the pair approximation model provide a good ‘average’ of the dynamics
from fully spatial stochastic simulations. The weakest ‘fits’ were for our lowest values
of R0, where a proportion of simulations lead to failed epidemics, whereas the ana-
lytical model always assumes an outbreak occurs. Given the problems in accurately
depicting averages of stochastic simulations (Juul et al. 2020), such analytic approx-
imations may provide a useful guide. However, we did find cases where significant
variation was present in the stochastic simulations, with the total infected varying
from almost 0 to 60% for certain parameter sets, and the pair approximation is not
able to capture such variation. The use of the pair approximation did, however, allow
us to approximate the correlation of S and I sites and therefore determine why late
interventions did not succeed in restricting the epidemic.

Wehave deliberately focussed on the simplest possible epidemicmodel in this study,
with the only twomechanisms being transmission and recovery. This has allowed us to
drawclear conclusions and insight in to the behaviour of themodel, but it clearly cannot
and should not be used as an accurate predictive model for a particular epidemic. In
an earlier study, Maltz and Fabricius (2016) considered the same model with simple
demographics, finding that the infected equilibrium reduces with more local contacts,
while (Webb et al. 2007a) examined the impact of varying local interactions on a fully
ecological model, noting the potential for disease-induced extinctions and endemic
cycles of disease. Clearly, however, there are many further elements that could be
considered tomake themodel appropriate for specific infections or systems.A standard
extension for many disease models is to add an exposed compartment, separating out
those that are infected from those that are also infectious (see Keeling and Rohani
2008). It may also be instructive to consider the dynamics if immunity to infection
wanes over time, since the non-spatialmodelwould then yield an endemic equilibrium,
unlike our model. If we wish to consider a disease persisting over the long-term,
we should not only add demographics but also consider seasonal-forcing (Aron and
Schartz 1984; Schwartz 1985; Altizer et al. 2006). Finally, more realistic spatial and
social networks would be needed for any conclusions around movement/interaction
restrictions in specific circumstances to be considered, such as in recent models of
Covid-19 in the UK (Ferguson et al. 2020; Kucharski et al. 2020; Firth et al. 2020).
An interesting question is the extent to which our simple binary distinction between
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local and global interactions, using the parameter L , can be related to such contact
networks: for example, is the emergent network for a particular value of L equivalent
to networks of certain degree distributions? This would allow our relatively simple
model structure to be applied to real contact matrix data, andwill be a useful avenue for
further research. This would be particularly important for understanding whether the
movement restrictions our study suggests could be useful in tackling an epidemic are
in fact achievable. As it is, our model suggests that significant movement restrictions
may be a useful strategy in tackling an epidemic.
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