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Very-low-carbohydrate ketogenic diets have been long been used to reduce seizure

frequency and more recently have been promoted for a variety of health conditions,

including obesity, diabetes, and liver disease. Ketogenic diets may provide short-term

improvement and aid in symptom management for some chronic diseases. Such diets

affect diet quality, typically increasing intake of foods linked to chronic disease risk

and decreasing intake of foods found to be protective in epidemiological studies. This

review examines the effects of ketogenic diets on common chronic diseases, as well

as their impact on diet quality and possible risks associated with their use. Given

often-temporary improvements, unfavorable effects on dietary intake, and inadequate

data demonstrating long-term safety, for most individuals, the risks of ketogenic diets

may outweigh the benefits.
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INTRODUCTION

Very-low-carbohydrate (ketogenic) diets have been promoted for weight loss and, less commonly,
for other health reasons. This review summarizes the effects of a ketogenic diet on health conditions
for which it has been promoted, as well as potential long-term effects on health.

The term “ketogenic diet” generally refers to a diet that is very low in carbohydrate, modest
in protein, and high in fat. This mix of fuels aims to induce ketosis, or the production of ketone
bodies that serve as an alternate energy source for neurons and other cell types that cannot
directly metabolize fatty acids. Urinary ketone levels are often used as an indicator of dietary
adherence (1).

Various ketogenic diets have been studied, as shown in Table 1. The best defined and studied
is sometimes called a “classic” ketogenic diet, referring to a very-low-carbohydrate diet that is
generally medically supervised, with a 4:1 or 3:1 ratio, by weight, of dietary fat to combined dietary
protein and carbohydrate (2).

Other variants allowmore protein or carbohydrate (2). Ketogenic diets as typically implemented
in scientific studies limit dietary carbohydrate to <50 g per day with varying amounts of fat and
protein (3, 4). “Low-carbohydrate diets” refer to carbohydrate intake below the recommended
dietary allowance of 130 g/day (3), which may not be low enough to induce ketosis (5).
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TABLE 1 | Macronutrient composition of ketogenic diets.

Diet % Energy from fat % Energy from carbohydrate % Energy from protein References

“Classic” ketogenic (4:1) 90 2–4 6–8 (2)

“Classic” ketogenic (3:1) 85–90 2–5 8–12 (2)

Modified Atkins diet 60–65 5–10 25–35 (2)

Ketogenic, general (<50g carbohydrate) 70–80 <10 ∼10 (3, 4)

Low-carbohydrate (<130g carbohydrate) Varies 10–25 Varies (3, 4)

EFFECTS ON NUTRIENT METABOLISM

During prolonged fasting, some tissues, such as muscle, can
directly metabolize free fatty acids released from adipose stores.
However, much of this fatty acid is converted into ketones in
the liver, which can fuel otherwise-obligate glucose consumers
like neurons, minimizing mobilization of body protein for
gluconeogenesis. However, to induce the liver to make ketones
in the fed state, carbohydrate intake must be minimized and
fat intake increased. Protein utilization is also altered on a
ketogenic diet; the body shunts as much protein as possible to
gluconeogenesis, while the minimum necessary amount is used
for tissue repair.

EFFECTS ON DIET QUALITY

Extreme carbohydrate restriction can profoundly affect diet
quality, typically curtailing or eliminating fruits, vegetables,
whole grains, and legumes and increasing consumption of animal
products. Very-low-carbohydrate diets may lack vitamins,
minerals, fiber, and phytochemicals found in fruits, vegetables,
and whole grains (6–8). Low-carbohydrate diets are often
low in thiamin, folate, vitamin A, vitamin E, vitamin B6,
calcium, magnesium, iron, and potassium (9). In the absence
of multivitamin supplements, individuals on low-carbohydrate
diets are at risk of frank nutritional deficiencies (10). Even when
consuming only nutrient-dense foods, a 4:1 ketogenic diet is
reported to have multiple micronutrient shortfalls, often lacking
in vitamin K, linolenic acid, andwater-soluble vitamins excluding
vitamin B12 (11).

Ketogenic diets are typically low in fiber needed not only for
healthful intestinal function but also for microbial production
of beneficial colonic short-chain fatty acids (12), which enhance
nutrient absorption, stimulate the release of satiety hormones,
improve immune function, and have anti-inflammatory and
anti-carcinogenic effects (13, 14). Inadequate intake of these
microbiota-accessible carbohydrates found in plant cell walls also
increases gut permeability, as bacteria extract the carbon they
need from themucusmembrane that protects the gastrointestinal
tract instead of fiber (15). The relative abundance of certain
health-promoting, fiber-consuming bacteria has been found to be
reduced in children consuming a ketogenic diet for epilepsy (16).
It has been suggested that supplementation of ketogenic diets
with fiber and non-digestible carbohydrates might be advisable
(16), although data to confirm that supplementation could
counteract the effects of very-low-carbohydrate diets on the gut
microbiota are lacking.

Intake of other protective dietary components may also
be insufficient, such as phytochemicals (e.g., flavanones and
anthocyanins), which are not typically included in multivitamins
and for which specific intake targets have not been established.
Low-carbohydrate diets are also typically high in saturated fat
and cholesterol (10).

EFFECTS OF KETOGENIC DIETS BY
CONDITION

Seizure Disorders
Worldwide, the lifetime prevalence of epilepsy is 7.6 per 1,000
people (17). According to a 2018 Cochrane Review, most
affected individuals can eliminate seizures with medication, but
about 30% cannot. Some one-third to one-half of people with
drug-resistant epilepsy can reduce seizure frequency by at least
50% with a ketogenic diet (18). The lack of glucose available to
fuel neurons is a possible mechanism for action (19).

Long-term adherence is challenging, as food choices are
limited and adverse effects are common (18). Micronutrient
supplementation is required. Potential health risks accompany
the long-term use of such a diet, as described below. Research has
shown that modified versions of the ketogenic diet allowing for
more carbohydrates have also been somewhat effective in seizure
reduction (19). Most studies have not been long term, large scale,
nor conducted with adult participants; therefore, more research
is needed.

Obesity and Weight Management
Ketogenic diets can induce weight loss (20–23). In a 2020
meta-analysis of 38 studies lasting 6–12 months and including
6,499 participants, low-carbohydrate diets, defined here as <40%
of energy from carbohydrate, led to a small weight loss, compared
with low-fat diets, defined as <30% of energy from fat (mean
difference −1.30 kg; 95% CI, −2.02 to −0.57), with considerable
variability between individuals and between studies. More than
half of included studies met criteria for a general ketogenic diet,
as defined in Table 1, for part or all of the low-carbohydrate
intervention (24).

It has been proposed that weight loss on ketogenic diets may
be due to reduced appetite (25), an effect also seen in those
following balanced, very-low-energy diets (<800 kcal/day). Since
ketosis occurs on both types of diets, though to a lesser degree
with very-low-energy diets, it is speculated that ketosis itself may
decrease hunger (26). However, findings from a recent trial by
Hall et al. suggest that a low-fat vegan diet (10% energy from
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fat) may be more effective than a ketogenic diet in suppressing
appetite (27). Energy expenditure has also been shown to increase
on a ketogenic diet, at least in short-term studies (27, 28).

In controlled trials, low-carbohydrate diets appear no more
effective than other diets that similarly restrict calories (29), nor
are they more effective than other dietary interventions, such
as low-fat vegetarian diets, at inducing weight loss (30, 31).
A 2013 meta-analysis of randomized controlled trials testing
very-low-carbohydrate ketogenic diets (≤50 g carbohydrate/day
or≤10% kcal from carbohydrates) against diets based on modest
reductions in fat intake (<30% kcal from fat) for at least 1 year
found that ketogenic diets led to marginally more weight loss
than reduced-fat diets (weighted mean difference:−0.91 kg; 95%
CI, −1.65 kg to −0.17 kg, p = 0.02). However, no statistically
significant difference in amount of weight lost was seen between
the 2 diets in trials following people for at least 2 years (3).

A 2017 meta-analysis of 9 trials echoed these findings.
In studies <12 months long, low-carbohydrate diets (<130 g
carbohydrate/day or <26% kcal from carbohydrates) were seen
to lead to greater weight loss in people with type 2 diabetes
relative to normal- or high-carbohydrate control diets (weighted
mean difference: −1.18 kg; 95% CI, −2.32 kg to −0.04 kg; p =

0.04). No advantage was seen relative to control diets in studies
of longer duration (weighted mean difference: −0.24 kg; 95%
CI,−2.18 kg to 1.7 kg; p= 0.81) (32).

At least initially, ketogenic diets may slow fat loss. In a 2016
metabolic ward study by Hall et al., 17 overweight or obese men
were provided a baseline diet (50% carbohydrate, 35% fat, and
15% protein, as a percent of energy) for 4 weeks, then a ketogenic
diet (5% carbohydrate, 80% fat, 15% protein) for 4 weeks. For 2
weeks after switching from the baseline diet to the ketogenic diet,
participants’ weight loss accelerated—but fat loss slowed. The
authors attributed the additional weight loss primarily to loss of
body water. However, loss of body protein may have contributed;
urinary nitrogen levels increased through day 11 on the ketogenic
diet. In the final 2 weeks on the ketogenic diet, participants’ rates
of body weight and fat loss rebounded to a rate comparable to
that on the baseline diet. As a result, study participants required
4 weeks on a ketogenic diet to lose the same average 0.5 kg of fat
lost in the final 2 weeks on a baseline diet. It is not clear whether
these effects have longer-term consequences (28).

The 2021 metabolic ward study by Hall et al. tested the effects
of both an animal-based ketogenic diet (76% energy from fat, 10%
carbohydrate) and a plant-based, low-fat diet (75% carbohydrate,
10% fat) on 20 weight-stable adults, mean age 29.9 years, mean
BMI 27.8 kg/m2 (27). Participants were randomized to each diet,
which they consumed ad libitum for 2 weeks before immediately
crossing over to the other diet. Ad libitum energy intake was 689
kcal/day lower on the low-fat, plant-based diet as compared to
the ketogenic diet (p< 0.0001). Reported hunger and satisfaction
were similar between groups. Both diets induced weight loss: 1.77
± 0.32 kg (p < 0.0001) for the ketogenic diet vs. 1.09± 0.32 kg (p
= 0.003) for the low-fat diet. However, most of the weight lost
on the ketogenic diet came from fat-free mass (-1.61 ± 0.27 kg;
p < 0.0001); this was not the case with the low-fat diet (−0.16 ±
0.27 kg; p = 0.56). Fat mass did not significantly change during
either the first or second week of the ketogenic diet, while the

low-fat diet led to significant losses in body fat after both the first
and second weeks. This suggests that low-fat, plant-based diets
may control appetite better than ketogenic diets. These results
also add to evidence suggesting that the rapid initial weight loss
observed on ketogenic diets is due predominantly to loss of fat-
free mass (e.g., body water, glycogen, protein, and contents of the
gastrointestinal tract) (27).

Diabetes
Type 1 Diabetes

Although ketogenic diets can improve glycemia in pediatric
patients with type 1 diabetes, they are generally not used in
this population due to the risk of malnutrition, failure to thrive,
reduced bone density, hyperlipidemia, poor sleep, amenorrhea,
and hypoglycemia. In addition, mood and behavior may be
adversely affected (33).

In adults with type 1 diabetes, both favorable and unfavorable
outcomes have been observed. A small study of 11 adults with
type 1 diabetes reported that a ketogenic diet improved blood
glucose control (34). However, the ketogenic diet triggered more
frequent and extreme hypoglycemic episodes (6.3 episodes per
week compared to 1–2 episodes per week typically reported for
those following conventional or otherwise unspecified diets).
The majority of participants also developed dyslipidemia. Lipid
changes are of particular concern in individuals with diabetes,
who are already at heightened risk of cardiovascular events (34).

A comprehensive review strongly discouraged sustained
ketosis or hyperketonemia in individuals with type 1 diabetes
(35). Due to metabolic irregularities associated with type 1
diabetes, ketone production is elevated, and ketone clearance is
diminished. Individuals with elevated ketones are at increased
risk for complications of the microvasculature, brain, kidney,
and liver compared to those with normal ketone levels. In
type 1 diabetes, hyperketonemia is associated with oxidative
stress, inflammation, non-alcoholic fatty liver disease, and insulin
resistance (35).

Type 2 Diabetes

Management
Ketogenic diets depress appetite, promote weight loss, reduce
blood glucose values, and decrease HbA1c in the short term (21,
36–43). Some studies have reported improved insulin sensitivity
(40); the effect appears to be dependent on loss of fat mass
(44). In the abovementioned metabolic ward study in which
17 overweight or obese men were provided a baseline diet
(50% carbohydrate) for 4 weeks and then a ketogenic diet (5%
carbohydrate) for 4 weeks, during the ketogenic diet phase, total
cholesterol, low-density lipoprotein cholesterol (LDL-C), and
C-reactive protein increased significantly, while fasting insulin
and triglycerides decreased. While on the ketogenic diet, insulin
sensitivity was impaired when participants were challenged with
a baseline diet meal (50% carbohydrates) (45).

In the 2021 metabolic ward trial by Hall et al. comparing
the effects of an animal-based ketogenic diet and a plant-based,
low-fat diet, the plant-based diet had a greater glycemic load and
predictably resulted in higher postprandial glucose and insulin
levels than the ketogenic diet. However, glucose tolerance, as
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determined by an oral glucose tolerance test at the end of each
phase, was compromised during the ketogenic phase (average
2-h glucose was 142.6 mg/dL) compared to the plant-based
phase (average 2-h blood glucose was 108.5 mg/dL). In addition,
high-sensitivity C-reactive protein, a marker of inflammation,
was substantially higher while on the ketogenic diet compared
to the plant-based diet (2.1 vs. 1.2 mg/L; p= 0.003), although not
significantly different from baseline (27).

Another low-carbohydrate diet trial that followed individuals
for 1 year found that insulin sensitivity was improved at 6
months but returned to baseline at 1 year (22). In healthy men,
a ketogenic diet (83% fat and 2% carbohydrate) reduced insulin’s
ability to suppress endogenous glucose production (46).

A recent meta-analysis showed that reductions in hemoglobin
A1c achieved with carbohydrate-restricted diets typically wane
after a few months and that such diets are not more effective than
other diets (47).

In other clinical trials with ketogenic diets, diabetes
medications are frequently reduced or eliminated (21, 36–
43). The beneficial effects of ketogenic diets for people with type
2 diabetes are attributable primarily to weight loss, with benefits
appearing to wane over time (48, 49). Few additional negative
impacts on global measures of health have been reported in
short-term studies on type 2 diabetes (21, 37, 40). Long-term
effects have not been elucidated (49).

Prevention
The prospective Nurses’ Health Study found no link between
diets lower in carbohydrate and incident type 2 diabetes in
women, although those consuming the most vegetable protein
and fat had an 18% lower risk (50). The Health Professionals
Follow-Up Study found that men consuming diets low in
carbohydrate and high in animal protein and fat had a 37% higher
risk of being diagnosed with type 2 diabetes than those who
scored lowest for this diet style. Those emphasizing vegetable
protein and fat on low-carbohydrate diets did not experience
increased risk, and for men under 65 years of age, diabetes risk
was 22% lower (51).

Dietary staples in ketogenic diets include concentrated fats,
meat, poultry, fish, eggs, and cheese, all of which have been
associated with increased diabetes risk (52–56). These foods can
be high in saturated fat, cholesterol, chemical contaminants,
pro-oxidants such as heme iron, and inflammatory compounds
such as N-glycolylneuraminic acid (Neu5Gc) and endotoxins.
Conversely, foods consistently associated with reduced diabetes
risk, including fruits, legumes, whole grains, and several
vegetables, are minimized or eliminated (52–56).

Non-alcoholic Fatty Liver Disease
Non-alcoholic fatty liver disease (NAFLD) is a serious condition
where excess fat is stored in hepatocytes, causing steatosis,
which can progress to non-alcoholic steatohepatitis and increase
the risk of hepatocellular carcinoma (57–60). Worldwide, the
prevalence of NAFLD in adults is estimated to be 25.2%, ranging
from a low of 13.5% in Africa to a high of 31.8% in the Middle
East, with North America at 24.1% (61). The risk of NAFLD is

significantly higher in individuals who have obesity or type 2
diabetes (43–92%) (57, 58, 62).

Hepatic triacylglycerol comes from three sources: de
novo lipogenesis, primarily from glucose; lipolysis of stored
triglyceride from adipose tissue; and diet-derived fats (58).
Most (60–80%) triglyceride is from adipose tissue, 15% is
from diet, and 5% is from de novo lipogenesis in healthy
people. Triglyceride from de novo lipogenesis is much higher
(26%) in individuals with NAFLD (63). Fat derived from de
novo lipogenesis and adipose tissue is accelerated by insulin
resistance (63).

Several clinical trials have compared low-fat and
low-carbohydrate hypocaloric diets in overweight or obese
adults and found similar reductions in intrahepatic fat (64–
66). Ketogenic diets typically increase intake of saturated fat,
cholesterol, and animal protein, all of which are associated with
insulin resistance, oxidative stress, and an exacerbated flow of
free fatty acids to hepatocytes (57, 62, 63, 67).

In epidemiological studies, diets high in saturated fat, trans
fat, simple sugars, and animal protein (especially from red and
processed meat) (57) and low in dietary fiber and omega-3
fatty acids (62, 68) are thought to contribute to NAFLD. In
the Rotterdam Study, those consuming the most animal protein
were 54% more likely to have NAFLD than those consuming
the least (OR 1.54, 95% CI, 1.20–1.98) (68). Dietary components
associated with reduced NAFLD risk include whole grains, nuts
and seeds, monounsaturated fats, omega-3 fatty acids, vegetable
protein, prebiotic fiber, probiotics, resveratrol, coffee, taurine,
and choline (57). In the Tzu Chi Health Study, replacing one
serving of soy with fish (or meat) was associated with a 12–13%
increased risk of NAFLD. Whole grain intake had an inverse
relationship with NAFLD, and those following a vegetarian diet
had a 21% lower risk of NAFLD (69).

Lifestyle modifications, particularly diet change, weight loss,
and exercise, are the primary modality for treating NAFLD
(57, 62, 63). Lifestyle interventions that promote weight loss have
been found to reduce liver fat and improve aminotransferase
concentrations and insulin sensitivity (48, 57, 58, 62, 63,
68). It has been suggested that achieving ketosis may have
a benefit in ameliorating fatty liver (63), but the studies
supporting this are limited and typically also restrict energy
intake. Long-term safety and specific clinical outcomes have not
been determined.

Cancer
Management

Some have suggested ketogenic diets for cancer patients (70)
based on the so-called “Warburg effect,” whereby cancer cells
increase glucose uptake and upregulate glycolysis even in the
presence of oxygen, preferentially fermenting glucose to lactate
(71). By nearly eliminating available glucose, ketogenic diets
theoretically stress cancer cells.

Few clinical trials have tested this. A 2018 systematic review
of ketogenic diets for the management of gliomas found no
randomized clinical trials and just 6 published case series/reports.
While the authors could not evaluate the effectiveness of
ketogenic diets for cancer survival, they noted that minimal
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adverse events were reported, suggesting ketogenic diets may be
safe in this population (72).

A 2020 systematic review analyzed 13 studies of ketogenic
diets as a complementary therapy for standard treatments
in a variety of cancers. Studies analyzed were small (n =

2–44); 9 were prospective and 6 were controlled, but just
2 were randomized, and ketogenic diet prescriptions differed
between studies. Diet-related adverse events were uncommon
and mostly minor, and the diet had a beneficial effect on body
composition. Findings were mixed for both overall survival and
progression-free survival; beneficial effects were seen in four
studies (73). A possible explanation for the lack of a consistent
survival benefit is demonstrated in in vitro research suggesting
that ketone utilization by cancer cells increases expression of
genes associated with high metastatic potential (74). Given
potential benefits for body composition, large, well-designed,
randomized clinical trials are needed to determine the safety and
effectiveness of ketogenic diets in cancer treatment (72, 73).

Prevention

Long-term data on cancer outcomes with ketogenic diets are
lacking. However, food components typical of a ketogenic diet,
such as red and processed meats, are linked to increased cancer
risk (75–77). Whole grains, fruits, and vegetables are linked to
a lower risk of both cancer and all-cause mortality (78, 79), yet,
with the exception of non-starchy vegetables, these foods are
commonly avoided on ketogenic diets. For example, in one study
of a ketogenic diet for type 2 diabetes, researchers encouraged
unlimited meat, poultry, seafood, and eggs, while cutting intake
of whole grains, fruits, and starchy vegetables and limiting intake
of salad vegetables and non-starchy vegetables (21).

Alzheimer’s Disease
Management

By 2050, it is projected that 13.8 million people in the U.S.
will have Alzheimer’s disease (AD) (80). Given the brain’s
inability to efficiently utilize glucose in AD, some have proposed
ketones as an alternate fuel source for these individuals (81).
As reviewed by Włodarek in 2019, small trials have found that
increasing blood ketones by supplementing with medium-chain
triglycerides does improve some measures of cognitive function
in AD, although not necessarily in those with the APOEε4
genotype (82).

No long-term data on ketogenic diets for AD are available,
although small, short-term trials have been conducted. A
3-month, weight-maintaining ketogenic diet intervention
improved cognition in subjects with mild-to-moderate AD
(n = 15), but improvements were lost after a 1-month washout
period (83). A 6-week trial of a ketogenic diet in subjects with
mild cognitive impairment led to improved memory relative to a
control diet (50% of energy from carbohydrates); follow-up data
were not available. However, the ketogenic diet was substantially
lower in calories, which may have independently reduced insulin
resistance (84). In a 2020 review of short-term ketogenic diet
and ketone supplement studies in older adults, including those
with no dysfunction, mild cognitive impairment, and AD, 6

of 9 controlled trials with clinical endpoints found significant
cognitive improvements in the intervention groups, while other
trials did not. Whether cognitive gains would be maintained
upon discontinuation of the diet/supplement remains unknown
due to lack of long-term follow-up (85).

Prevention

Saturated fat intake, which typically increases on a ketogenic
diet, is strongly associated with AD risk. In the Chicago Health
and Aging Project, high saturated fat intake was linked to a
2- to 3-fold increased risk of incident AD (86). A 2016 review
of international data found that consuming meats, eggs, high-fat
dairy such as butter and cheese, and sweets was linked to an
increased risk of AD (87). Aside from sweets, consumption of
these foods generally increases on a ketogenic diet.

Polyphenol-rich plant foods such as fruits and vegetables are
associated with lower AD risk (88) and diets focusing on whole
plant foods and limiting animal foods and processed foods, such
as the MIND diet, are proven to reduce AD risk (89). Thus, by
providing ketones that can be metabolized by neurons in AD, a
ketogenic diet could improve symptoms in the short term, but the
diet’s nutritional profile could increase risk over the long-term in
healthy individuals.

Cardiovascular Disease
The effect of low-carbohydrate diets on plasma lipid
concentrations is a major concern. It has long been established
that weight loss by any means causes a reduction in total
cholesterol of about 2 mg/dL per kilogram lost (90). However,
low-carbohydrate diets are often an exception to that rule. In
a 2002 6-month study of a very-low-carbohydrate “Atkins”
diet by Westman et al., 12 (29%) of the 41 participants had
LDL-C elevations. The average increase was 18 mg/dL (91). In a
similar 6-month study by Yancy, 30% of participants had LDL-C
increases > 10% (92).

In a trial published in 2003 by Foster et al., LDL-C rose
6.2% in a group of low-carbohydrate dieters at 3 months (22).
For comparison, LDL-C dropped by 11.1% during this same
time period in participants following a conventional low-calorie
diet. In a 2004 1-year study, those on a low-carbohydrate diet
increased their mean LDL-C from 112 to 120 mg/dL (93). In
2018, Hallberg (94) reported a mean 10% rise in LDL-C in
individuals following low-carbohydrate diets, an elevation that
persisted during 2 years of follow-up (95). A recent meta-analysis
of 5 studies showed that, in individuals with type 2 diabetes,
ketogenic diets led to, on average, no substantial change in
LDL-C (96).

It is important to note that changes reported in group means
do not reflect the change for any given individual. In the 2002
study cited above, while the mean LDL-C increase was 18 mg/dL,
one participant’s LDL-C concentration increased from 123 to
225 mg/dL (91). In the Yancy study, one participant’s LDL-C
increased from to 219 mg/dL. Another experienced an LDL-C
rise from 184 to 283 mg/dL, and a third developed chest pain and
was subsequently diagnosed with coronary heart disease (92). In
the Foster study, the standard deviation for the change in LDL-C
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was 20.4%, indicating that while LDL-C decreased for some, for
many participants, LDL-C rose dramatically (22).

Negative effects on blood lipids have also been seen in healthy
individuals. A 2018 pilot study of young, fit adults (average age
31) found that 12 weeks on a ketogenic diet led to a weight loss of
3.0 kg in the ketogenic group, with no significant weight change
in the control group. However, despite significant weight loss,
LDL-C increased by 35% in the ketogenic group (p= 0.048), from
114 mg/dL at baseline to 154 mg/dL at 12 weeks (97).

Some have suggested that LDL-C or LDL particle
concentration elevations are of no concern if the increase
is mainly in larger LDL particles. There are two problems with
this rationale: First is the problem of heterogeneity noted above
(i.e., individuals may have significant worsening of their lipid
profiles that are not reflected by mean figures). Second, LDL is
potentially atherogenic regardless of particle size (98, 99). Data
supporting this concern come from the Women’s Health Study,
a randomized, placebo-controlled trial of low-dose aspirin and
vitamin E. As part of the study, LDL particle size was assessed.
The hazard ratio for incident cardiovascular disease associated
with large LDL particles was 1.44 (indicating a 44% increased
risk). For small LDL, it was 1.63 (a 63% increased risk). Both
were highly statistically significant. In other words, large LDL
particles were strongly atherogenic, albeit less so than small
LDL (100).

It has also been proposed that the risk elevation associated
with increased LDL-C concentrations may be neutralized to the
extent that high-density lipoprotein cholesterol (HDL-C) also
rises. However, both Mendelian randomization trials and studies
using HDL-elevating agents have not shown benefit regarding
cardiovascular risk. In the former category are studies that have
examined individuals with naturally occurring genetic variants
associated with elevated plasma HDL-C concentrations. These
genetic traits are not associated with reduced risk of myocardial
infarction unless they also reduce LDL-C (101).

Treatment-induced HDL-C elevations were examined in a
meta-analysis of 108 studies including 299,310 participants,
which found no associated reduction in the risk of coronary
heart disease events, coronary diseasemortality, or total mortality
(102). The LDL-C/HDL-C ratio was not a better predictor of
cardiovascular outcomes than LDL-C alone, and the authors
recommended using LDL-C, rather than HDL-C or a ratio of the
two, as the therapeutic target.

Kidney Health
The evidence of the renal-specific effects of ketogenic diets is
limited but worth noting, especially in the context of the unclear
long-term benefits of such diets for diabetes and obesity (103).
For those without chronic kidney disease (CKD), one of the
biggest potential risks of the ketogenic diet is the development
of kidney stones, a finding that has been frequently noted in
the pediatric epilepsy literature (104, 105). The ketogenic diet’s
emphasis on high-fat, animal-based foods while excluding many
fruits and vegetables promotes a urinary milieu for kidney
stones. Dietary animal protein consumption is a well-established
promoter of kidney stones (106). The acidosis caused by

the ketogenic diet may also encourage stone formation by
lowering urinary citrate and pH levels while increasing urinary
calcium levels.

Another potential risk of animal-based ketogenic diets for
those without CKD is the development of CKD through
the consumption of animal fat and protein. In observational
studies of populations eating Western diets, high animal fat
consumption, as is common with ketogenic diets, has been
associated with increased risk of developing albuminuria (107).
In a prospective study of nearly 12,000 people over 23
years, high animal protein consumption was associated with
a 23% increased hazard ratio of incident CKD (108). Other
observational studies of animal protein have shown similar
findings (109, 110).

For those with CKD, the high protein content in some
ketogenic diets is of concern. While “classic” ketogenic diets
are not necessarily high in protein, those used for weight
loss often meet the definition of a high-protein diet (>1.5
g/kg/d) by encouraging dieters to consume 1.2–2.0 g/kg/d.
Compared to control diets with higher protein content, low
protein consumption has been associated with a reduction in
the rate of kidney function decline in a meta-analysis of 14
randomized controlled trials (111). High protein consumption
facilitates hyperfiltration, a phenomenon of increased blood flow
to the glomerulus, which is thought to lead to long-term damage
in those with CKD (112). Finally, the acid load from the ketogenic
diet may worsen metabolic acidosis and kidney disease in those
with CKD (113). The ketogenic diet’s acid load comes from the
foods consumed (especially those from animal-based sources),
ketoacids associated with ketone production, and from the lack of
natural alkali found in fruits and vegetables that are often avoided
in the ketogenic diet. As such, the ketogenic diet requires further
research regarding its long-term renal safety in those with and
without CKD.

Pre-pregnancy and Pregnancy
Approximately 40% of pregnancies in the United States are
unplanned (114). Low-carbohydrate diets followed prior to
conception or during the periconceptual period are associated
with an increased risk of birth defects and gestational
diabetes, respectively.

The National Birth Defects Prevention Study found that
women who reported consuming low-carbohydrate diets in
the year prior to conception (daily carbohydrate intake ≤5th
percentile of control mothers, or ∼95 g carbohydrate/day) were
30% more likely to have an infant with a neural tube defect
(95% CI, 1.02–1.67), specifically anencephaly (OR 1.35; 95% CI,
0.90–2.02) and spina bifida (OR 1.28; 95% CI, 0.95–1.72) (115).
For unplanned pregnancies in particular, effect estimates for
carbohydrate-restricted diets showed an 89% increased risk of
neural tube defects (95% CI, 1.28–2.79) (115).

Use of folate supplements may not mitigate the risk seen
with low-carbohydrate diets. In the above study, there was
no effect measure modification by folic acid supplement use
(115). A 2019 study conducted using data that predated the
era of folate-fortified grain products also found an increase
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in neural tube defects in the offspring of women consuming
low-carbohydrate diets in the periconceptual period (OR 2.0; 95%
CI, 1.2–3.4), suggesting other factors were contributing (116).

A prospective cohort study evaluating gestational diabetes
risk scored women’s diets for adherence to a low-carbohydrate
diet pattern and dietary fat source. After adjusting for
multiple variables including BMI, women consuming the least
carbohydrate had a 27% higher risk of gestational diabetes
compared to those consuming the most (RR 1.27; 95% CI,
1.06–1.51, p = 0.03). A stronger association was seen for
women following a low-carbohydrate diet pattern high in
animal products; they had a 36% higher risk of gestational
diabetes (RR 1.36; 95% CI, 1.13–1.64, p = 0.003). A vegetable-
based low-carbohydrate dietary pattern was not associated with
increased risk (117).

ADVERSE EFFECTS OF KETOGENTIC
DIETS

The most restrictive ketogenic diets used for epilepsy can
cause fatigue, headache, nausea, constipation, hypoglycemia,
and acidosis, especially within the first few days to weeks of
following the diet (2). Dehydration, hepatitis, pancreatitis,
hypertriglyceridemia, hyperuricemia, hypercholesterolemia,
hypomagnesemia, and hyponatremia can also occur (82, 118).

A study of 300 users of online forums found that
self-administered ketogenic diets may be accompanied by a
temporary cluster of symptoms frequently termed “keto flu,”
which includes headache, fatigue, nausea, dizziness, “brain fog,”
gastrointestinal discomfort, decreased energy, feeling faint, and
heartbeat alterations (119). In endurance athletes, 3.5 weeks on
a ketogenic diet led to unfavorable effects on markers of bone
modeling and remodeling (120).

Longer-term effects can include decreased bone mineral
density, nephrolithiasis, cardiomyopathy, anemia, and
neuropathy of the optic nerve (82, 121). Ketogenic diets
have low long-term tolerability, and are not sustainable for many
individuals (48, 49). Diets low in carbohydrate have also been
associated with an increased risk of all-cause mortality (122),

although recent data suggest that lower-carbohydrate diets can
be linked to either higher or lower mortality risk, depending on
the quality of the carbohydrate they contain and whether they
rely more on animal protein and saturated fat or plant protein
and unsaturated fat, respectively (123).

CONCLUSION

Ketogenic diets reduce seizure frequency in some individuals
with drug-resistant epilepsy. These diets can also reduce
body weight, although not more effectively than other dietary
approaches over the long term or when matched for energy
intake. Ketogenic diets can also lower blood glucose, although
their efficacy typically wanes within the first few months.

Very-low-carbohydrate diets are associated withmarked risks.
LDL-C can rise, sometimes dramatically. Pregnant women on
such diets are more likely to have a child with a neural tube
defect, even when supplementing folic acid. And these diets may
increase chronic disease risk: Foods and dietary components that
typically increase on ketogenic diets (eg, red meat, processed
meat, saturated fat) are linked to an increased risk of CKD,
cardiovascular disease, cancer, diabetes, and Alzheimer’s disease,
whereas intake of protective foods (eg, vegetables, fruits,
legumes, whole grains) typically decreases. Current evidence
suggests that for most individuals, the risks of such diets
outweigh the benefits.
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