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Abstract

Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in
public repositories for important species. Tools for the quantitative analysis of these networks are being developed today.
Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as
potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein
hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners.
Here, we show a novel method applicable in networks with directed edges (such as metabolic networks) that compensates
for the low degree (non-hub) vertices in the network, and identifies important nodes, regardless of their hub properties. Our
method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number
of incoming edges) of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-
degree nodes, that is, for hubs and non-hubs as well), but may differ significantly from node to node in directed graphs. We
suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives
high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be
identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the
method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis,
Plasmodium falciparum and MRSA Staphylococcus aureus), and consequently, it may suggest new possible protein targets as
well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant;
therefore its high value captures importance in the directed edge structure of the graph.
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Introduction

Methods analyzing biological networks are gaining significant

interest because of their availability in large public repositories [1–

9]. Finding important nodes in these protein-protein interaction or

metabolic networks may lead to the identification of novel drug

targets. The FDA approved drugs target presently only 324

human and pathogen proteins [10] from at least tens of thousands

of possible proteins, therefore any well-founded method that may

help to identify new ones has a substantial value.

Selecting important nodes that would serve as drug targets is a

difficult task. In the literature, important nodes frequently means

nodes with high degree (i.e., with many connecting edges, leading

to a great number of neighboring nodes); these nodes are called

‘‘hubs’’ and ‘‘superhubs’’ [11,12]. The proteins, corresponding to

these hubs are mainly catalyzing vital biochemical reactions in

metabolic networks [13] or their neighbor-set are robust: they are

hardly changed in biological processes [12].

Targeting hub proteins with numerous vital functions with

inhibitors may lead to unwanted off-target effects [14,15] in the

living cell, since any interventions involving these hub proteins

may effect a large number of other processes and proteins as well.

In the present study we restrict our attention to metabolic

networks: here the nodes are biochemical reactions, and reactions

A and B are connected with a directed edge (A,B) if a product of

reaction A enters reaction B as a substrate or a co-factor. In a given

organism reactions can be corresponded to enzymes, catalyzing

them. This correspondence can be made easily by inspecting the

underlying database: we applied the KEGG database [16] for this

mapping.

In the analysis of metabolic networks, large or very large degree

nodes (hubs or superhubs, corresponding to ‘‘currency metabo-

lites’’ [17]) usually need special attention if we want to compensate

for their overwhelming weight: these nodes are sometimes simply

removed from the network in a pre-processing step [18], changing

significantly the connectivity properties of the network. We do not

remove the high-degree nodes in the networks, since then the

whole graph would be changed significantly. We rather introduce

a new scoring function, that compensates the important small

degree nodes against hubs or superhubs.
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Results and Discussion

In the present work we introduce a method for finding relevant

nodes (e.g., possible new protein targets) in networks with directed

edges, especially in metabolic networks, that is robust and can

compensate small degree nodes against large degree nodes,

therefore our method does not need pre-processing steps to

remove vertices, corresponding to ‘‘currency metabolites’’. We

also show that our method successfully identifies numerous already

verified relevant protein targets, and therefore, may be used to

identify novel ones in other directed networks as well.

Let us note that proving that several highly scored proteins in our

method are new, still unknown protein targets, would require

multi-year wet-lab work (i) for developing new inhibitors against

the new, suggested protein targets; (ii)proving that the inhibitors

have significant biological activity, (iii) proving that the inhibitors

inhibit the new target protein, and not some other enzymes. That

work is out of scope of the present theoretical paper. Therefore our

proof contains references to target proteins, discovered earlier

independently from us, that gained high scores in our method,

solely by graph theoretic analysis of the underlying metabolic

graphs.

We demonstrated in [19] that the PageRank of vertices [20],

applied first in the Google web-search engine [20] for identifying

important web pages, can also be used in the robust analysis of

protein networks to identify important nodes. Here ‘‘robustness’’

means that changes in the less interesting parts of the network will

not cause significant changes in the PageRank of the more

important nodes (see [19] for a more exact statement).

It is known, however, that large degree nodes usually have large

PageRank on the average [21], therefore PageRank alone cannot

always compensate the overweight of hubs and superhubs in the

identification of important nodes in a network.

Here we suggest to use for the scoring the importance of nodes

in metabolic networks the ‘‘relativized personalized PageRank’’.

Let G be a directed graph. The PageRank [20] of graph G is the

limit probability distribution of the random walk, defined by the

column-stochastic transition matrix.

cATz(1{c)w1T , ð1Þ

where A is row-stochastic transition matrix, prepared by normal-

izing the rows of the adjacency matrix of graph G [22], 0vcv1 is

the damping constant, 1 is the all-1 column-vector, and vector w

with non-negative coordinates, satisfying 1T w~1, is the person-

alization vector. In the original, non-personalized version of the

PageRank of an n-vertex graph, w~(1=n)1. We use everywhere in

this work the value c~0:85.

We must note that the role of the personalization vector, w, was

originally to capture the personal interests of the web-surfers to

compute a personalized ranking of the web-pages for web-search

engines [20]. If no personalization is given (when w~(1=n)1) that

means that in the teleporting step of the walk, each vertex can be

visited with the same probability. Personal interests of the web-

surfers can be introduced into the random walk by increasing the

probability of web-sites interesting to the surfer by increasing their

probability in the distribution given in vector w.

In [19] we have shown that if vector w is personalized to

proteins, appearing in higher concentrations in proteomics

analysis of certain diseases, then this personalized PageRank

may emphasize other closely related proteins to the disease, that

eventually did not appear in the proteomics analysis, either

because of their low concentration or by their cellular compart-

mentalization.

It is demonstrated [23] through computational simulations, that in

undirected graphs, the PageRank of a node is approximately

proportional to the degree of that node; consequently, for

undirected graphs, the PageRank will not yield additional

information on node relevance, relative to degree.

In [22] we proved that in the case of undirected graphs, the

PageRank of the vertices are exactly proportional to their degrees if

and only if the coordinates of the personalization vector w are

proportional to the degrees of the vertices, that is:

w~
d(v1)

2DED
,
d(v2)

2DED
, . . . ,

d(vn)

2DED

� �T

, ð2Þ

where d(vi) denotes the degree of vertex vi, and DED denotes the

number of the edges in graph G.

In other words, the PageRank, defined by the limit probability

distribution of (1) with w given in (2) is exactly w for undirected

graphs. Therefore if we divide coordinate i by d(vi), for

i~1,2, . . . ,n, then we get the same constant for each coordinates.

This means that dividing the PageRank personalized by vector

w, by the degrees, we factor out high- or low degreeness from the

score: for every vertex the ratio is the same.

We would like to introduce a similar measure for directed

graphs, that factors out the degrees in above sense, and the

resulted scores would allow to reach high values for low-degree

nodes, too.

More exactly, we define for the directed graph G the vector.

w~
d{(v1)

DED
,
d{(v2)

DED
, . . . ,

d{(vn)

DED

� �T

, ð3Þ

where d{(v) is the in-degree of vertex y (i.e., the number of

directed edges pointing to vertex v).

Now we can define the ‘‘relativized personalized PageRank’’ of

graphs as follows: Let PPageRank denote the PageRank given by

the stationary distribution of the walk of equation (1) computed

with w of equation (3), then.

rPPR(v)~
PPageRank(v)

d{(v)
: ð4Þ

(i) Clearly, in undirected graphs, our relativized PageRank

rPPR(v) is exactly constant, i.e., it is completely independent

from the node (and its degree). Therefore, in undirected

graphs, it is the same for large- and small degree nodes, so in

directed graphs its high value may describe a sort of ‘‘intrinsic’’

importance of the node, independent from its high- or low

degree, and depending only on the directed graph-connec-

tivity structure of the network. We find this to be an

important property, since it shows that our score function was

not chosen ‘‘arbitrarily’’, it ‘‘factors out’’ the undirected

degree from the scoring.

(ii) The PageRank of large degree nodes are on the average, large in

any graph (see [21] for a much more exact statement).

Dividing the PageRank of node v by its in-degree will

compensate the small in-degree nodes, since their PageRank

is divided only with a small number. Therefore the small in-

degree, relevant nodes may stand out in this scoring function.

This scoring function will usually not give high scores for

network hubs, but these hubs can easily be identified by
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simple degree counting, and does not need more sophisti-

cated tools.

As we demonstrate here in the application examples, the new

scoring method will choose low degree nodes with proven

biological interest. Therefore, the presented approach can

effectively be used to find promising drug targets because the

reactions (nodes) with high PageRank and low in-degree

correspond to essential reactions.

Application Examples in Microbial Networks
For demonstrating the applicability of this new scoring function,

we present several examples from much researched pathogen

microorganisms. We show that several well known protein targets

correspond to highly scored nodes, and this fact may imply that

other highly scored nodes may be promising, non-hub, new drug

targets. We would like to stress that in identifying new possible

drug targets we applied only the rPPR score of us (4), and have not

used structural or functional annotations of the proteins, just their

positions in the metabolic networks.

Mycobacterium Tuberculosis
Our first example is the mycolic acid metabolic pathway [24]

in the Mycobacterium tuberculosis bacterium. Since mycolic acid

synthesis is missing in eukaryotes, targeting specific enzymes in this

pathway seems to be a natural choice for target search.

rPPR was computed for the mycolic acid pathway, the result is

depicted on Figure 1. The size of the nodes are corresponding to

the degree of the vertex, and the color of the node to the rPPR of

the vertex: the warmer the color the higher the rPPR score.

The yellow inhA node in the upper right quadrant of Figure 1

has in-degree 1, therefore it is not a hub at all. On the other hand,

by Table 1, its rPPR is far the highest in the network. This scoring

correlates well with the fact that inhA (long-chain enoyl-acyl

carrier protein reductase) is one of the oldest known and most

important target of TB drugs isoniazid and ethionamide, and also

the prime target of several novel drugs under development today

[25–27].

The node with the second highest rPPR, labeled by FabH (see

Table 1) is also a well-researched possible TB drug target [28–31].

Our second example concerns the whole metabolic network

(not only the mycolic acid pathway) of the Mycobacterium tuberculosis.

The network contains 947 nodes, the rPPR scores and the vertices

with non-zero in-degrees are given in Table S1 in the on-line

supporting material.

Table 2 shows the list of the nodes with the highest rPPR score.

The highest and second highest scoring reactions correspond to

the protein pdxH, a putative pyridoxine 59-phosphate oxidase

(Rv2607) is reported [32] having strongly different putative

binding pocket than any other member of its enzyme family.

Very recently it is reported [33] that the downregulation of the

third largest scoring protein with gene name ilvD (Rv0189c, a

dihydroxyacid dehydratase) affects the growth of Mycobacterium

tuberculosis in vitro and in mice.

The sixth highest scoring hit, the leuD gene (Rv2987c) is shown

to be essential in Mycobacterium tuberculosis even in macrophages

[34].

The seventh highest-scoring protein is cysM (Cysteine synthase,

Rv1077), is reported [35] to have intermediate protection

properties and in sulfur donor selectivity, and also is known to

play a main role in a mycobacteria-specific, alternative cysteine

biosynthesis pathway [36].

The third, fourth, eighth, ninth and tenth highest scored hits are

related to branched chain amino acid (BCCA, comprises leucine,

isoleucine and valine) synthesis of the bacterium. Examples were

shown in [37] that these proteins may serve as drug targets.

Plasmodium Falciparum
The metabolic network for Plasmodium falciparum contains 450

nodes. Table 3 shows eleven of the highest rPPR scoring vertices,

while the full table is available as Table S2 in the supporting on-

line material.

Reactions of the highest and second highest score (R00174 and

R00173, resp.) are corresponded to pyridoxal kinases

(EC:2.7.1.35) that are shown to be targets or Roscovitine in [38]

and a possible target in the malaria parasite in [39]. It is reported

in [40] that inhibiting pyridoxal 5-phosphate-dependent enzymes

kills the parasite efficiently.

The fourth highest scoring R01890, corresponding to PfCCT,

cholinephosphate cytidylyltransferase, is shown to be the target of

a potent experimental malaria drug, PG12 in [41].

The fifth highest scoring hit, R01021, corresponds to choline

kinase, that is reported to be the target of hexadecyltrimethy-

lammonium bromide in the malaria parasite in [42].

The sixth, seventh and eights highest scored reactions (R07604,

R07602, R07602) are corresponded to branched-chain alpha keto-

acid dehydrogenases, and they are shown to be specific in function

in Plasmodium falciparum, therefore they may serve as a selective

target [43].

In [44] it is shown that the ninth hit R01961, corresponding to

hexokinase, can be viable target in Plasmodium falciparum.

The tenth highest scoring reaction is R01940 (EC:1.2.4.2, 2-

oxoglutarate dehydrogenase (OGDH) E1 component). The related

pathways include vitamin B metabolism, a recently suggested

target [45], and relates to alpha-ketoacid dehydrogenase multien-

zyme complexes, with specificity for Plasmodium falciparum. Gluta-

mate dehydrogenase, catalyzing a closely related reaction, was

suggested also as new drug target recently [46].

With unusually high in- and outdegrees, the eleventh highest

scoring reaction, R01626 is corresponded to enzyme PfMCAT, that

is shown to be essential in fatty acid synthesis of the parasite in [47].

MRSA Staphylococcus Aureus
We applied the metabolic data of the MRSA Staphylococcus aureus

SAA strain (USA300_FPR3757 (CA-MRSA)) for the network

generation. The network contains 803 network nodes. The data of

all the nodes are available as Table S3 in the on-line supporting

material, while nine nodes with the largest score is given on Table 4.

The two highest scoring reactions relate to vitamin B

metabolism and reported to be important in SAA in [48].

R02272, R04109 and R00036 correspond to the hemL, hemA

and hemB genes, respectively, of the heme synthesis. Inactivation

of the hemB gene leads to an aberrant form of the bacterium, the

small colony variant (SCV) [49]. Most recently, [50] also reports

the significance of these genes.

R07600, R07604 and R01209 (ilvD) play a main role in

branched-chain amino acids biosynthesis pathway of the bacteri-

um [51].

Materials and Methods

The mycolic acid network was prepared using the pathways

published in [24]. The nodes are labeled by the gene names of the

enzymes, and two nodes X and Y, corresponding to enzymes

denoted by their gene names, are connected by a directed edge from

X to Y if and only if there exists a substrate u, leaving the reaction,

catalyzed by enzyme X, that enters the reaction, catalyzed by

enzyme Y. Substrate u labels the directed edge from X to Y.

Equal Opportunity for Low-Degree Network Nodes
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For creating Figure 1, we applied Cytoscape [52] for the data

published in [24]. A high resolution version of Figure 1 is available

as Figure S1 in the on-line supporting material.

The metabolic networks for Mycobacterium tuberculosis, Plasmodium

falciparum and MRSA Staphylococcus aureus were generated from the

KEGG database [16], data downloaded on December 13, 2010.

The network nodes were labeled by the KEGG reaction ID’s. The

full datasets, containing the degrees and the PageRanks of the

nodes are available as on-line supporting material.

PageRank was computed using the NetrworkX Python library

[53] (downloadable from the Los Alamos national Laboratory

http://networkx.lanl.gov/) with our Python script ppr_pub.py,

downloadable from http://uratim.com/rPPR.

Conclusions
Traditionally, the discovery of novel protein targets relies on

multi-decade long work on several biochemical reactions in living

organisms. New tools and insights make possible that the systems

biology would also suggest new possible targets, by examining the

protein-protein or protein-metabolite interactions of the cell. We

believe that using well-developed methods from graph theory and

computer science will yield significant results in biology. In

particular, ordinary PageRank can help to evaluate important

nodes and pathways in directed networks, especially when

relativized with other network properties, like the in-degree of

nodes. We think that the present method is capable for identifying

low-degree nodes with high intrinsic metabolic functionality in

networks, clearly and automatically.

The rPPR measure introduced in Equation (4) has the following

remarkable property: its value is the same for each vertex (either

with large or small degrees) of an undirected graph, while for

Figure 1. The network of the mycolic acid synthesis [24]. Node sizes correspond to the degree of the node, node color correspond to the
personalized PageRank of the node: warmer colors mean larger PageRank. Note the small but yellow node labeled by InhA in the upper central part
of the picture.
doi:10.1371/journal.pone.0054204.g001

Table 1. The list of six nodes with the rPPR scores in the
mycolic acid pathway of the Mycobacterium tuberculosis.

Node PPR in Degree in-degree
PPR in / in-
degree

inhA 0.049 4 1 0.049

fabH 0.058 8 2 0.029

fas 0.029 3 1 0.029

kasB kasA 0.045 7 2 0.023

UNK1 0.055 4 3 0.018

fabD 0.133 12 8 0.017

doi:10.1371/journal.pone.0054204.t001
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directed graphs, rPPR may change significantly from vertex to

vertex, and it captures importance due to the directions of the

edges in the graph.

Our method gives high scores to nodes that have high

PageRank relative to their degrees, therefore clearly and easily

identifies important nodes of low-degrees in biological networks.

Table 4. The list of nine nodes with the highest rPPR score in MRSA Staphylococcus aureus.

reaction ID PPR in Degree in-degree PPR in/in-degree protein correspondence

R00174 0.0083 3 2 0.0041 phosphomethylpyrimidine kinase (EC:2.7.4.7)

R00173 0.0083 3 2 0.0041 pyridoxal phosphate phosphatase

R07600 0.0047 13 2 0.0024 2-oxoisovalerate dehydrogenase

R02272 0.0045 4 2 0.0023 hemL

R04109 0.0039 3 2 0.0019 hemA

R03316 0.0032 13 2 0.0016 sucA

R00036 0.0027 4 2 0.0013 hemB

R07604 0.0026 13 2 0.0013 2-oxoisovalerate dehydrogenase

R01209 0.0013 8 1 0.0013 ilvD

The full table with 450 nodes is available as Table S3 in the supporting on-line material.
doi:10.1371/journal.pone.0054204.t004

Table 3. The list of the eleven nodes with the highest rPPR in Plasmodium falciparum.

reaction ID PPR in Degree in-degree PPR in/in-degree protein correspondence

R00173 0.0123 3 2 0.0061 pyridoxal kinases

R00174 0.0123 3 2 0.0061 pyridoxal kinases

R03316 0.0043 8 2 0.0021 2-oxoglutarate dehydrogenase

R01890 0.0024 3 2 0.0012 cholinephosphate cytidylyltransferase

R01021 0.0024 3 2 0.0012 choline kinase

R07604 0.0020 8 2 0.0010 branch.-chain alpha keto-acid dehydr.

R07602 0.0020 8 2 0.0010 branch.-chain alpha keto-acid dehydr.

R07600 0.0020 8 2 0.0010 branch.-chain alpha keto-acid dehydr.

R01961 0.0018 4 2 0.0009 hexokinase

R01940 0.0008 3 1 0.0008 2-oxoglutarate dehydrogenase

R01626 0.0081 19 10 0.0008 PfMCAT

The full table with 450 nodes is available as Table S2 in the supporting on-line material.
doi:10.1371/journal.pone.0054204.t003

Table 2. The list of the 11 nodes in the metabolic network of the tuberculosis bacterium with the highest rPPR score.

reaction ID PPR in Degree in-degree PPR in/in-degree protein correspondence

R00278 0.0061 3 2 0.0030 Rv2607 pdxH

R00277 0.0061 3 2 0.0030 Rv2607 pdxH

R01209 0.0025 7 1 0.0025 Rv0189c ilvD

R03051 0.0028 3 2 0.0014 Rv3001c ilvC

R06905 0.0013 1 1 0.0013 bnsG

R03968 0.0020 4 2 0.0010 Rv2987c(leuD) Rv2988c(leuC)

R04942 0.0020 3 2 0.0010 Rv1077 cysM

R04440 0.0020 4 2 0.0010 Rv3001c(ilvC)

R05071 0.0027 5 3 0.0009 Rv3001c(ilvC)

R01214 0.0046 12 6 0.0008 Rv2210c(ilvE)

R01215 0.0046 12 6 0.0008 Rv0337c(aspC)

The full table is available as Table S1 in the on-line supporting material.
doi:10.1371/journal.pone.0054204.t002
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Consequently, the method and the scoring function can be

effectively used to find promising drug targets in metabolic

networks, because the reactions (nodes) with high PageRank and

low in-degree correspond to essential reactions.

Supporting Information

Table S1 The degree, in-degree, PPR and rPPR data for
the metabolic network of Mycobacterium tuberculosis.
(XLS)

Table S2 The degree, in-degree, PPR and rPPR data for
the metabolic network of of Plasmodium falciparum.
(XLS)

Table S3 The degree, in-degree, PPR and rPPR data for
the metabolic network of MRSA bacterium.

(XLS)
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