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ABSTRACT
Background and Purpose: Ion-channels are membrane proteins that can adopt several distinct
structural conformations. Some of the conformations are open and allow the passage of ions
through the membrane; others are closed and hinder ion flow. Patch-clamp recordings of single
ion-channels show if a channel is open or closed, but does not immediately reveal the underlying
mechanism, which typically includes several open and closed conformations.

With kinetic analysis of single-channel data, sequences of observed open and closed times are
fitted to proposed schemes to deduct the underlying kinetics of the ion-channel. Current pro-
grams to perform kinetic analysis uses initial parameter guessing. Here an alternative approach
that uses a global fitting procedure and no initial parameter seeding is developed and tested.
Methods: Different fitting algorithms that use variations and combinations of Simplex-optimiza-
tion, Genetic Algorithm and Particle Swarm are tested against simulated data with brief events
removed as in real resolution limited data.
Results: A two-step fitting algorithm that uses Particle Swarm optimization to find initial para-
meters and then a modified Simplex approach to fine-adjust the initial parameters successfully
find the correct rates used for data simulation.
Conclusions: SCAIM (Single Channel Analysis in MATLAB) facilitate the deduction of kinetic
schemes underlying single-channel data.
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Introduction

Ion-channels are membrane proteins that alter
between two functional states: open/conducting and
closed/non-conducting. Factors that influence
a channel’s open-probability, e.g. membrane-voltage,
temperature, and various ligands, as well as selectivity
to different ions, vary between distinct classes of ion-
channels. As a group, ion-channels determine the
flow of, e.g. K+, Na+, Cl− and Ca2+ through cellular
membranes, and hence play essential roles in ion-
homeostasis, excitability, and signaling.
Understanding the mechanisms that govern ion-
channels movements between different states, there-
fore, represents a crucial challenge in fields as biophy-
sics, pharmacology, and physiology.

Patch-clamp techniques allow recordings of single
ion-channels [1,2] by fixing the membrane potential
and simultaneously observing channel openings as
pico-ampere deflections from baseline currents. The
near-instant jumps between open and closed states
demonstrate how proteins move between a finite

number of distinct structural conformations.
Thermal motion causes all parts of a protein to
fluctuate at a picosecond timescale; the observed
open and closed dwell times (µs and up) hence
represent average structures around discrete confor-
mations. The energy barriers that isolate distinct
states determine both the time a channel dwell in
a particular state, and the frequency with which it
transits to other states. This information is
embedded in kinetic-schemes that specify channel
states, connections, and transition rates (Figure 1a).

Ion-channels transit between several open and
closed conformations, but single-channel recordings
only shows if a channel is open or closed (Figure 1).
With this and the assumption that any transition
between distinct states depend only on the identity
of the current state, ion-channels are well described
by aggregated Markov models [3]. An aggregated
Markov model is a particular case of the hidden
Markov model where the output probabilities are
fixed for each state. A closed state has probability 1
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of having zero conductance, whereas an open state
has probability 0 of having zero conductance [4,5].

While temporal resolution for single-channel
recordings is uniquely good among single-
molecule techniques, it is still limited to around
10 µs at best [6]; often, it is much worse.
A consequence of limited time resolution is
a loss of information; some events are too brief
for precise detection. Single-channel dwell times
are exponentially distributed, so, e.g. with a time
resolution of 10 µs, almost a fifth of events with
a mean distribution of 50 µs are missed.

Figure 1 illustrates the gradual loss of information,
from the ideal ion-channel that transits between five
distinct structural conformations, to the observed
single-channel recording with missed brief events.
Our goal is to backtrack and infer the underlying
kinetic scheme from recorded, resolution limited,
single-channel data. Currently, two programs that
allow this. HJCFIT is freely available and well-
tested [7] but requires data for analysis to be in
a specific file format, which becomes a limitation
for some users. There is no obvious route from
data acquired with, e.g. AxonTM ClampexTM to ana-
lysis with HJCFIT. The second program MIL is part
of the QuB software, which is at this time of writing,
no longer freely available. TheMIL approach uses an
approximatemethod for missed event correction [8],

while HJCFIT uses an exact correction [9] and an
asymptotic form [10]. Furthermore, both programs
require an initial guess of the transition rates.

The SCAIM (Single Channel Analysis in
MATLAB) package presented here include scripts
for (i) deduction of kinetic schemes from idealized
single-channel data using a simple file format and
without initial guessing (ii) a simple threshold-
crossing method for idealization of data recorded
with AxonTM ClampexTM (iii) a script that impose
a fixed dead-time on idealized data (iv) a script for
simulation of single-channel data.

Methods

Direct fitting of dwell times

The script SCAIM_fit takes as input a list of open
and closed dwell times, a proposed scheme that
describes how individual states are connected, and
statements about parameters that are restricted,
fixed or set by kinetic reversibility (see appendix 1).
Before the script initiates, a dead-time is imposed
on the list of dwell times, so events briefer than the
given dead-time gets concatenated with flanking
events. The script SCAIM_imposeDT does this.

Several ion-channels comprise closed conforma-
tions that become available after, e.g. activation by

Figure 1. Information loss from kinetic scheme to processed data.
a) Kinetic scheme showing the connection framework of a five-state ion-channel with two open (grey and labeled 1 and 2) and three closed
conformations (colored and labeled 3, 4, and 5), and transition rates are given in s-1. b) The upper panel illustrates how the channel in Amoves
between the five states as time progresses. The middle panel demonstrates loss of information as only transitions between open and closed
states are observed. The bottom panel shows the observed data after the loss of brief events to limited time-resolution.
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voltage (inactivated states [11]) or at high agonist
concentrations (desensitized states [12]). The
mechanisms of inactivation [11] and desensitiza-
tion [13] may be complex and include several
distinct states. Only single-channel data obtained
under steady-state conditions are suitable for fit-
ting, and all states with zero conductance belong
to the group of closed states regardless if they are
inactivated or desensitized.

For direct fitting of a list of dwell times, the
global optimization algorithm suggests transition
rates for the proposed kinetic scheme, and the
direct fitting algorithm evaluates how well the
proposed kinetics fit with the observed sequence
of dwell times. The procedures for direct fitting of
dwell times to a proposed mechanism [14] and
correction for missed events [9,10] are given in
the cited papers; here, a brief overview is provided.

The finite time-resolution of single-channel
recordings cause short events to become inaccu-
rate or even missed. By imposing a dead-time (τ),
so that all events briefer than τ gets concatenated
with flanking events, the value of τ comes to define
the resolution of the analyzed data. The dead-time
is set so that all events longer than τ are detected
and measured correctly.

The underlying system ismodeled by a continuous-
time finite-state Markov process, S(t), where S(t) = i
designates that the process is in state i at time t [15].
The state-space I defines the possible states of the
system, and each state in I is either open (set A) or
closed (set F). Transitions between states are encoded
and parameterized by the generatormatrixQ, a square
array with entries in ith row and jth column. Entries
(qij) of the Qmatrix, where i ≠ j, give rate constants in
units of reciprocal time for the transition from state
i to state j. The diagonal, where i = j, are chosen, so the
sum of all values in the corresponding rows equals
zero. The values of qii hence become negative, and -qii
comes to represent the total rate at which the channel
leaves state i. The Q matrix is partitioned for the two
conductance levels so that partitions QAA and QAF

represents rates between open states and rates from
open to closed states, respectively. QFF and QFA ana-
logously represent transitions between closed and
from closed to open states.

In the ideal case, with no missed events [15],
observed dwells in open or closed conformations
still represent aggregates of the underlying state

transitions. The probability density for a process
that begins in A, and remain within the set of open
states (iεA), for a sojourn t, and then instanta-
neously transits to a closed state jεF is given by
the elements of the matrix GAF(t) [15]:

GAF tð Þ ¼ exp QAAtð ÞQAF (1)

An expression for GAF(t) in the realistic case,
where all events briefer than τ are missed, comes
to depend on the evaluation of a matrix, AR(u),
with elements i and j that are part of A. It gives the
probability of an opening that begins in state i, has
not finished after time u and is currently in state j.
The transition density, when considering events
briefer than τ as missed, become:

eGAF tð Þ ¼ AR t � τð ÞQAF exp QFFτð Þ; t � τ

(2)

The assessment of AR(u) follows two separate stra-
tegies, the exact evaluation for t ≤ 3τ [9], and, as
the exact approach is unfit for higher values of t,
the asymptotic approximation for t > 3τ [10].

The sequence of dwell times of alternating open
(t0) and closed (tc) times is fitted to a proposed
transition matrix Q by optimizing the likelihood of
the following expression [14]:

l ¼ EqA
eGAF to1ð ÞeGFA tc1ð ÞeGAF to2ð ÞeGFA tc2ð Þ

eGAF to3ð Þ . . . uF
(3)

where eGFA(t) is evaluated as
eGAF(t) with all A’s and

F’s swapped, uF is a vector of ones, and EqA is the
equilibrium vector [14] which specify the probability
that an opening start in each of the open states.

The asymptotic solution depends on numeri-
cally localizing a number of roots that correspond
to the number of states in the proposed mechan-
ism [16], given that it obeys the principle of micro-
scopic reversibility [15]. The asymptotic behavior
of AR(u) depends on values of s that render sin-
gular the matrix W(s) defined as:

W sð Þ ¼ sI �H sð Þ (4)

where

H sð Þ ¼ QAA þ QAFðsI � QFFÞ�1

I � exp � sI � QFFð Þτð Þð ÞQFA
(5)
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These values of s are found as roots of the deter-
minantal equation

det W sð Þ½ � ¼ 0 (6)

Lower and upper bounds are determined in a two-
step process, where initial estimates are found as
minimum and maximum eigenvalues of H(s) with
s set to 1. The initial estimates are then expanded
in both ends until they fulfill the following criteria:
the sign of det[W(s)] evaluated at the upper and
lower bounds are equal with an even number of
roots. The signs of the derivatives of det[W(s)]
evaluated at the bounds are, on the other hand,
opposite with an even number of roots. The
reverse applies to an odd number of roots.

Because the global search for an optimal
Q matrix assesses a wide range of parameters, the
root-finding algorithm must operate with both
high speed and fidelity. Here three approaches
for numerical root finding are compared:

Method 1 begins with a simple bisection approach
that locates brackets that capture single roots. Next,
the built-in MATLAB function fzero is used to locate
the exact root within each set of brackets.

Method 2 is a Newton-Raphson approach with
start points systematically chosen between the initial
borders.

Method 3 is a custom modification of the bisec-
tion algorithm that evaluates the distance from
zero, sign, and direction of det[W(s)] at bracket
points. Bracket points are continuously sorted
based on these parameters, and the most promis-
ing kept while the rest are discarded.

Parameter optimization algorithms

The function that fits a kinetic scheme with associated
parameters to a list of dwell times gives as output
a likelihood that quantifies the goodness of the fit.
For optimization, the sign of the likelihood is inverted,
so the search algorithms seek parameters that mini-
mize the value of the dwell-time fitting function, from
here referred to as the fitness function.

To optimize n parameters when an initial guess is
provided, the script uses the Nelder-Mead Simplex
(NM)method [17], which continually compares func-
tion values of n + 1 vertices of a general simplex. By
alternating between rearranging parameter estimates
based on their function value and modifying the

lowest ranking estimates using information from
higher-ranking, the simplex converges toward a local
minimum. Here the original approach is modified to
explore the parameter space around the initial guess
better. Once the simplex comes close to a minimum,
the parameters are disturbed, and the optimization
restarted. The degree of disturbance, restart threshold,
and number of restarts are adjustable parameters. The
final run continues until the function value no longer
improves, or the maximum of iterations reached.

Two approaches from the MATLAB global opti-
mization toolbox are evaluated: Genetic Algorithm
[18] (GA) and Particle Swarm [19] (PA). The GA
modifies an initial population of solutions through
the production of offspring and mutants that become
the population in the following generation (itera-
tion). Based on output from the fitting function, the
best individuals (20%) from a generation produce
children of the next generation by parameter cross-
ing. Each generation preserves an elite (5%), the
individuals with the best function values. The
remaining individuals have their parameters mutated
randomly to produce mutants of the new generation.

PS treats an initial population of solutions as
individual particles with a position and a direction
in the parameter-space. The position of individual
particles correspond to its current parameter
values, and the position is hence associated with
a fitness function value. Each particle recall its best
prior position and know the overall best position
visited by any particle of the swarm. At each itera-
tion, the position and direction of individual par-
ticles are updated: a new position is based on prior
direction and position, and a new direction is set
based on prior direction, best prior position and
the overall best position of the entire swarm.

Simulation of data

Here two simulated datasets are evaluated. The
SCAIM_sim script constructs a Q matrix based
on input information (appendix). The MATLAB
random number generator provides random uni-
formly distributed numbers, r, between 0 and 1.
These random numbers determine dwell times at
specific states as (−1/qii)ln(r), and, if the state is
connected to more than one other state, also with
a probability determined by transition rates from
the state, which next state is visited.
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For the five-state model, 322,466 state transi-
tions were simulated and then aggregated into
29,918 transitions between open and closed states.
Finally, a dead-time of 50 µs was imposed leaving
15,902 events used throughout this paper.

The seven-state model data is based on
1,028,387 state transitions, aggregated into 42,449
dwell times, and finally reduced to 19,461 events
after a 25 µs dead-time was imposed.

Results

Finding roots

For each evaluated model, the asymptotic approach
requires the determination of two sets of roots, one
with roots corresponding to the number of open
states, and one for the closed states. Effective opti-
mization hence requires a root-finding algorithm
that locates the roots fast and comprehensively. To
compare the capabilities of bisection, Newton-
Raphson, and modified-bisection, the root-finding
algorithms are applied as PS evaluates 100 particles
over 25 iterations. The three procedures were eval-
uated based on the time they used to locate the four
roots associated with the closed states of the scheme
given in Figure 2(a). With a two seconds failure-
threshold, that abort and register inefficient root-
finding attempts, the mean root-search times, with
standard deviations in parenthesizes, (for times < 2 s)

were 0.011 s (0.073 s) for bisection, 0.268 s (0.0386 s)
for Newton-Raphson and 0.098 s (0.042 s) for mod-
ified-bisection. During these 2500 parameter evalua-
tions, the 2 s threshold was crossed eight times by
bisection, 639 times by Newton-Raphson, and zero
times by modified-bisection.

Figure 2(b) highlights an example of parameters
that cause bisection to cross the 2 s threshold. When
given the time, bisection does find the correct roots
after 35 minutes; modified-bisection locates them in
0.9 seconds. The root-finding algorithm in SCAIM_fit
utilizes the superior speed of bisection but takes
advantage of the reliability of modified-bisection
when root-finding takes longer than a second.

Finding parameters using a local optimization
simplex approach

Before trying a global parameter search, the basic
functionality of SCAIM_fit was evaluated on the five-
state model [14,15] with an initial guess and the local
optimizer NM (Figure 3). The simulated dwell-time
data is described in the Methods section. With para-
meter h fixed to a, c set by microscopic reversibility,
and the eight remaining parameters seeded as an
initial guess, the script approach the true values over
510 iterations (Figure 3c). The plot tracks the devel-
opment of individual parameters and the concurrent
fitness value given as a solid line with values on the
right-hand y-axis. After an initial steep improvement

Figure 2. Numerical root finding.
The challenge of numerically locating multiple roots is a balance between search resolution and computation time.
a) Seven-state kinetic scheme with three open (grey) and four closed conformations (black). The identity of the 14 transition rates is
noted as color-coded small letters from a to n with constrained parameters in black. b) The left-hand table gives example parameters
for input in the model shown in A. With these parameters; the four roots are located as demonstrated in the right-hand plots. The
lower plot is an expansion of the upper plot at the region indicated by the arrow.

CHANNELS 91



in fitness value, the rates remain almost unaltered
between iteration 20 and 37, before all parameters
are disturbed at iteration 38, and NM restarted.
Without these restarts, the algorithm gets stuck in
local minima with sub-optimal parameter settings.

Global parameter optimization using the genetic
algorithm and particle swarm

Figure 3 shows that NM return rate estimates close
to the true values when provided with an initial
guess. Figure 4 explores how well two global

optimization algorithms, GA and PS, substitute
an initial guess. The overall purpose is to let the
global optimization run without an initial guess,
but for comparative reasons, GA and PS were
seeded with the same set of 200 random para-
meters within the bounds of 0.01 to 200,000 s−1.

The step-wise development of GA (Figure 4b)
is reminiscent of the elite being preserved from
one generation to the next. The smooth develop-
ment of PS (Figure 4d), on the other hand, stems
from the constant movement of all particles,
including the best from the former iteration.

Figure 3. Nelder-Mead optimization with an initial guess.
a) Five-state kinetic scheme with two open (grey) and three closed conformations (black) and ten transition rates given as color-
coded small letters from a to j with constrained parameters in black. MR denotes that parameter c is set to maintain microscopic
reversibility. b) The table shows how NM with a basis in an initial guess estimate parameter values that approach the true values. c)
NM improves the parameters given as an initial guess over 510 iterations; of these, those that change the fitness value are included
in the plot. The eight parameters are color-coded as in a and b, and the right-hand insert shows the true values. The solid grey line
follows the right-hand Y-axis and illustrates how the fitness value improves.
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Both GA and PS converge toward unique local
minima that NM further optimizes to new unique
minima (Figure 4c,e). The observation that each

of these four local minima have parameters that
diverge substantially from the true rates, but fit-
ness values that come close, illustrate the

Figure 4. Rate optimization with GA and PS before NM
a) Scheme specifying how three closed (black) and two open (gray) states are connected with rates labeled as small letters with
color-codes that apply to all figure panels. The box specifies constrained parameters, MR is short for microscopic reversibility. The
right-hand table gives rate values for individual parameters. The table shows initial rate estimates by GA and PS, and the final
estimates from NM using the best GA or PS estimate as input. b) Progress of GA fitting with the best set of parameters from a
population of 200 is plotted over 92 iterations. The remaining iterations are from NM optimization based on the best GA solution.
From a 300 iteration NM optimization, only 35 iterations where the fitness value changes are included. The eight parameters are
color-coded as in a and b, and the right-hand insert shows the true values. The solid grey line follows the right-hand Y-axis and
illustrates how the fitness value improves. c) Each panel illustrates how the function value changes with the given parameter when
the remaining rates are fixed. The upper values in each panel are based on the final GA estimate while the lower values are from the
final NM estimate. d and e as b and c with PS instead of GA.
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importance of correct initial seeding. The best
fitness value of the initial set of random para-
meters is 9901 and the worst 628,890.

With PS optimization, j immediately settles at
the lowest possible value, and linger at this
extreme while the remaining parameters converge
toward values that minimize the fitness function
when j is stuck at 0.01 s−1. This tendency was
observed during several trials (not shown). The
minima plot (Figure 4e) reveals that, by the end
of PS optimization, the minimal value of j is not
optimal; an increased value would improve the
fitness function output. NM immediately takes
advantage of the possibility missed by PS, and
improve all parameters to a new minimum where
all parameters are at local minima values. While
this immediately suggests a weakness of PS

optimization, that particles get absorbed at the
boundary conditions, it also demonstrates
a promising feature; PS rapidly identifies
a parameter with the essential property of keeping
the longest closet dwell-time long.

Optimization with expanding limits

In Figure 5, PS and NM combines with a stepwise
expansion of the border conditions. With initial
lower and upper limits of 10 and 2000 s−1 PS
identifies a set of parameters (PS in Figure 5b)
that serve as a starting point for NM optimization.
The borders are expanded by factor 10 in both
directions, so the lower and upper limits become
1 and 20,000 s−1. The starting parameters detected
by PS improves with NM optimization (NM#1 in

Figure 5. Rate optimization with PS, NM and expanding limits
a) Scheme specifying how three closed (black) and two open (gray) states are connected with rates labeled as small letters with
color-codes that apply to all figure panels. The box specifies constrained parameters; MR is short for microscopic reversibility. b) Rate
values for individual parameters. The table shows the true rates that simulated data is based on and rates after an initial PS search
with limits 10 to 2000 s-1. Furthermore, two consecutive rounds of NM optimization improve the best ranking PS estimate, one with
limits 1 to 20000 s-1 (NM#1) and one with limits 0.1 to 200000 s-1 (NM#2). c) Rate estimation begins with 19 rounds of PS
optimization; each iteration represents the best estimate of 100 particles. Iteration 20 to 45 covers the first round of NM
optimization; the remaining follow the final round of NM. Only iterations where the fitness value change are included in the plot.
The right-hand box shows the true values while the right Y-axis and solid grey line track the progressing fitness value. d) Plots for
each parameter showing the results of 20 optimization trials.
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Figure 6. Seven-state model optimization with PS, NM and expanding limits
a) Scheme specifying how four closed (black) and three open (gray) states are connected with rates labeled as small letters with color-
codes that apply to all figure panels. The box specifies constrained parameters. b) Rate values for individual parameters. The table
shows the true rates that data simulation is based on. Third column show rates after an initial PS search with limits 10 to 2000 s-1.
Furthermore, two consecutive rounds of NM optimization improve the best ranking PS estimate, one with limits 1 to 20000 s-1 (NM#1)
and one with limits 0.1 to 200000 s-1 (NM#2). c) Rate estimation begins with 11 rounds of PS optimization; each iteration represents the
best estimate of 100 particles. Iteration 11 to 33 covers the first round of NM optimization; the remaining follow the final round of NM.
Only iterations where the fitness value change are included in the plot. The right-hand box shows the true values while the right Y-axis
and solid grey line track the progressing fitness value. d) Plots for each parameter showing the results of 20 optimization trials.
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Figure 5b). The lower and upper limits are further
expanded by a factor 10 to 0.1 and 200,000 s−1 and
optimized by NM (NM#2 in Figure 5b).

The plot in Figure 5(c) demonstrates how the PS
algorithm immediately anchor parameter j at the
lower limit with a substantial improvement in the
fitness value. In the following iterations parameters e,
f, and i linger at the upper limit witch correspond with
their relatively elevated true rates. With these four
parameters sorted as either low or high-end rates,
the remaining parameters, with the exception of b,
find values within a factor three of their true values.
With this starting point, two rounds of NM optimiza-
tion bring all parameter values close to their true rates.

Figure 5(d) tests the robustness of the approach.
Out of 20 tests, 17 results in fits where all para-
meters are within a factor three of the true para-
meters, while three tests deviate more but also
settle at poorer fitness values.

Figure 6 tests the approach with expanding limits
against a seven-state model based on the nicotinic
acetylcholine receptor [7]. As with the five-state
model in Figure 5, PS is efficient in finding para-
meters that belong in the low and high-end of rates
(Figure 6b,c). With a step-wise increment of the
limits, NM successfully identifies the ten parameters
without any initial guessing or fixed values provided.

Figure 6(d) show that of 20 runs, SCAIN_fit cor-
rectly identify all parameters in 17 while the three that
are less successful also suffer from poorer fitness
values.

Discussion

Kinetic analysis of single-channel recordings is
a uniquely well-suited technique to study protein
function in detail. Patch-clamp approaches allow the
experimenter to directly observe openings and clo-
sures of a single channel at a µs time scale for many
minutes or even hours. This is unprecedented; no
other technique enables the extraction of such rich
kinetic information. However, the deduction of the
full information from a sequence of dwell times
require advanced probabilistic and mathematical
tools. While most of the methods used in the
SCAIM_fit script build on well-described techniques
for correcting for missed events [9,10] and fitting
a model to a sequence of dwell times [14], the global

parameter search and root-finding approach are
novel.

For each parameterized model fitted to the
sequence of dwell times, roots to det[W(s)] cor-
responding to the number of states are required.
With a global search for parameters, the root-
finding algorithm must deal efficiently with extre-
mely parameterized models, as the example in
Figure 2 demonstrate. With bisection, the number
of bracket points increases exponentially with
search iterations, so if two roots are numerically
similar and the root search space wide, the
approach becomes ineffective. SCAIM_fit deals
with this problem using a modified bisection
algorithm that continuously sort and discard les-
ser promising bracket points. Sorting comes at
a price in time, which in most cases, makes
simple bisection a better option. However, if
bisection is allowed to stall at difficult root pro-
blems, computation becomes inefficient.

Here two global search approaches are tested for
their ability to replace the user-dependent initial gues-
sing on which the two alternative fitting programs
HJCFIT and QUB rely. Figure 4 shows examples of
how PS and GA get stuck at local minima with rate
estimates far from the true values. The fitness values
after optimization with NM, on the other hand,
approach the global minimum (Figure 4e vs.
Figure 5d). This suggests that the parameter landscape
can contain several wrong rate combinations that
return promising fitting values and hence highlight
the importance of qualified parameter guessing when
such are required. Notably, unrealistic parameter esti-
mations will not match, e.g. single-channel dwell time
histograms, and are therefore easily dismissed by the
alert experimenter.

Figure 5 demonstrates that a stepwise opening
of the full parameter space dramatically facili-
tates the identification of correct rate estimates.
When the search space of PS is limited below
the full extent of the true parameters, the algo-
rithm successfully determine the trends of sev-
eral parameters (Figures 5 and 6b). With these
trends, established, consecutive rounds of NM
optimization with gradually increasing limits
bring the PS estimates close to the true values.
Figures 5d and 6d demonstrate the robustness of
the approach but also show the importance of
evaluating several fitting experiments.
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Conclusion

Analysis of single-channel data is a unique
approach to gain unprecedented insights too how
proteins operate. The SCAIM package described
here provides an opportunity for general users to
deduce kinetic schemes from single-channel data.
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