
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4706  | https://doi.org/10.1038/s41598-021-83350-6

www.nature.com/scientificreports

A hybrid deep neural 
network for classification 
of schizophrenia using EEG Data
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Schizophrenia is a serious mental illness that causes great harm to patients, so timely and 
accurate detection is essential. This study aimed to identify a better feature to represent 
electroencephalography (EEG) signals and improve the classification accuracy of patients with 
schizophrenia and healthy controls by using EEG signals. Our research method involves two steps. 
First, the EEG time series is preprocessed, and the extracted time-domain and frequency-domain 
features are transformed into a sequence of red–green–blue (RGB) images that carry spatial 
information. Second, we construct hybrid deep neural networks (DNNs) that combine convolution 
neural networks and long short-term memory to address RGB images to classify schizophrenic 
patients and healthy controls. The results show that the fuzzy entropy (FuzzyEn) feature is more 
significant than the fast Fourier transform (FFT) feature in brain topography. The deep learning (DL) 
method that we propose achieves an average accuracy of 99.22% with FuzzyEn and an average 
accuracy of 96.34% with FFT. These results show that the best effect is to extract fuzzy features as 
input features from EEG time series and then use a hybrid DNN for classification. Compared with the 
most advanced methods in this field, significant improvements have been achieved.

Schizophrenia is a mental disorder from which 1% of the global population suffers1. In a clinic, doctors directly 
judge schizophrenia by electroencephalography (EEG). Although this method has a certain effect, it needs a sub-
stantial amount of time and energy and is not suitable for a large number of accurate diagnoses of schizophrenia. 
Researchers subsequently introduced a model using a computer, which reduced the workload and accelerated 
the diagnostic speed of EEG.

EEG is a low-cost and noninvasive measurement network tool and an effective tool for recording brain activ-
ity 2. In recent years, EEG has been extensively utilized in the research and diagnosis of various nervous system 
diseases, including epilepsy3, Alzheimer’s disease (AD)4 and schizophrenia5. EEG signals show the complex 
information in the brain, which has a high dimension and contains a considerable amount of information, and 
are difficult to analyze directly. Therefore, some auxiliary means are necessary to extract useful information 
about the brain. Feature extraction is an effective method for studying EEG data. By extracting some useful 
features from a large quantity of original signals, the purpose of reducing feature dimensions is achieved, and 
the physical meaning of individual features is not destroyed during this process. For schizophrenia, some feature 
extraction methods (such as those employed for time-domain features6 and frequency-domain features7) have 
been proposed to quantify EEG signals for studying state changes in the brain. Currently, whether time-domain 
features or frequency-domain features can more effectively distinguish brain differences between patients with 
schizophrenia and healthy controls remains ambiguous. Therefore, one of the purposes of this study is to compare 
the ability of different features to extract EEG signals.

Machine learning (ML) can be used to develop computer-aided diagnostic tools for clinical applications and 
explore the pathophysiological mechanisms of diseases. ML has revolutionized the field of schizophrenia by 
providing a tool to solve the high complexity of EEG signals. In the past few years, traditional ML technology 
(that is, a non-deep learning (DL) algorithm) has been the only method of choice in EEG analysis and has been 
combined with various feature extraction methods 8,9. In a relatively new development, DL algorithms have been 
extensively applied in medical image and signal processing and have shown high research potential. In most 
cases, their performance exceeds traditional machine learning techniques10. In the process of disease diagnosis 
and classification, an increasing number of researchers have applied DL to the field of EEG to study mental 
diseases11–14. We performed a search on Web of Science and PubMed using the following group of keywords: 
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“schizophrenia” AND “EEG” AND (“machine learning” OR “deep learning”). References from 2000 until 2019 
were utilized for further analysis; the accuracy of these articles is reflected in Table 1. In addition, an increasing 
number of researchers have employed hybrid structures to design neural network structures. Specifically, the 
convolutional neural network (CNN) is used for learning task-related features, processing pictures, and min-
ing interchannel correlation from frames via designed convolutional filters. Long-short-term memory (LSTM) 
networks are composed of recurrent networks that include memory to model temporal dependencies in time 
series problems. This approach gives us a way to structure our research.

In this study, we propose DL algorithms for use in the analysis of EEG signals for schizophrenia research to 
improve the classification accuracy. We first divide the EEG signal into three bands and extract different domain 
features from each band. These bands are then constructed to input red–green–blue (RGB) images into our 
network. Furthermore, we construct a hybrid DL network that integrates a CNN and LSTM for processing the 
EEG-based schizophrenia classification and obtains a high classification accuracy.

This article is organized as follows: “New method” describes the proposed method and the DL structure, and 
“Results” introduces the specific baseline method. The data acquisition method is presented in  “Comparison with 
Different Deep Learning Models”. “Discussion” describe the experimental results that are achieved and present 
a discussion, respectively. The conclusions are detailed in “Conclusions”.

New method
EEG signals are nonstationary signals that contain complex brain activity information, but some of these features 
cannot be estimated from these signals. To preserve the continuous time relationship and internal characteristics 
of the EEG time series, we divide each trial into 6 time windows (each time window is 400 ms, and adjacent time 
windows overlap by 200 ms). The EEG signals contain multiple frequency characteristics. Based on previous 
research, the frequency band power of the EEG in the θ, α, and β bands of schizophrenic patients is different 
than that of healthy controls 15–17. Therefore, we divide the whole frequency spectrum into three sub-bands: theta 
(4–7 Hz), alpha (8–13 Hz), and beta (14–30 Hz).

Participants.  Fifty-four patients with schizophrenia [36 male patients and 18 female patients, with a mean 
age = (37.80 ± 1.34)] and fifty-five healthy controls [31 male controls and 24 female controls, with a mean 
age = 41.00 ± 1.59] were included in this study. The patients were recruited from Huilongguan Hospital in Bei-
jing, China. The schizophrenic patients were diagnosed according to the fourth edition of the Diagnostic and 
Statistical Manual of Mental Disorders (DSM-IV) and World Health Organization (ICD-10, 10th revision of the 
International Classification of Diseases) criteria for a lifetime diagnosis of schizophrenia or schizophrenia spec-
trum disorder and were recruited from consecutive admissions to a psychiatric hospital. These patients had been 
treated with stable doses of antipsychotic medications. In addition, the healthy controls did not have any history 
of mental illness or drug abuse. This study complies with the Code of Ethics of the Declaration of Helsinki. The 
study protocol was approved by Beijing Huilongguan Hospital. All the participants provided written informed 
consent as approved by the institutional review board. The full name of the approving committee is Beijing Hui-
longguan Hospital’ s ethics committee, which affirmed its approval of the study.

Table 1.   List of published works on schizophrenia classification using EEG signals in recent years.

Author (year) EEG dataset Rest/task Sampling rate Channels Features Classifier Accuracy

Bose et al., 201616 57 schizophrenia patients and 24 
normal subjects Rest 256 23 Absolute power analysis SVM 83.33%

Johannesen et al., 201653 40 schizophrenia patients and 12 
healthy controls Task 1024 60 Morlet continuous wavelet transform SVM 87%

Jeong et al., 201754 30 schizophrenia patients and 15 
controls Task 1024 14 Mean subsampling technique SKLDA Over 98%

Piryatinska et al., 201755 45 boys suffering from schizophrenia 
and 39 healthy boys Rest 128 16 є-complexity of a continuous vector 

function RF 85.3%

Chu et al., 201756 10 normal and 17 markedly ill schizo-
phrenic patients Task 256 31 ApEn SVM 81.5%

Alimardani et al., 201857 26 subjects with schizophrenia and 27 
patients with BMD Rest 250 22 DB-FFR NN 87.51%

Alimardani et al., 2018 58 23 bipolar disorder and 23 schizophre-
nia subjects Rest 250 21 SSVEP SNR KNN 91.30%

Phang et al., 201959 45 schizophrenia patients and 39 
healthy controls Rest 128 16

Vector-autoregression-based directed 
connectivity (DC), graph-theoretical 
complex network (CN)

DNN-DBN 95%

Phang et al.,201960 45 schizophrenia patients and 39 
healthy controls Rest 128 16

Directed connectivity measures (VAR 
coefficients and PDCs) and topologi-
cal CN measures

MDC-CNN 91.69%

Oh et al.,201914 14 healthy subjects and 14 SZ patients Rest 250 19 – CNN 98.07%

Present work 54 patients with schizophrenia and 55 
healthy controls Rest 500 60 FuzzyEn CNN + LSTM 99.22%
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The characteristics of all the participants, including age, sex, illness course and age at disease onset, are shown 
in Table 2. Each characteristic is averaged, and the standard error (SE) is shown in parentheses. No statistically 
significant difference in the ages of the healthy controls and schizophrenia patients (p > 0.05) was obtained.

Feature extraction.  Accurately extracting EEG signal features is not only challenging but also an essential 
step in classification because this extraction determines the classification accuracy. The EEG signals of schizo-
phrenia can be extracted by time-domain feature methods and frequency-domain feature methods.

Time-domain feature extraction methods study EEG signals using variations in signal time series. The com-
plexity of EEG reflects the irregularity or unpredictability of brain activity. With the continuous advancement 
and development of nonlinear theory, many researchers are applying nonlinear analysis methods to EEG data 
analysis. Entropy is a nonlinear analysis method that can be used to measure the complexity. Entropy is the most 
commonly employed feature index among the time-domain features and is extensively employed in the diagnosis 
of diseases. Among the commonly employed entropies, fuzzy entropy (FuzzyEn) was developed based on other 
entropies. Compared with other entropies, such as information entropy, sample entropy and FuzzyEn have 
the advantages of excellent robustness and strong antinoise ability, and the algorithm complexity is lower. The 
entropy value measured by fuzzy entropy is continuously stable and less sensitive to the noise of EEG data, which 
renders it more suitable for analyzing chaotic signals. Previous studies have proven that the ability of FuzzyEn to 
detect and recognize signals is superior to the ability of other entropies for both epilepsy18 and schizophrenia19.

The frequency-domain feature extraction method primarily studies the EEG signal by converting the original 
time-domain signal into the frequency-domain signal, which reflects the relationship between the frequency and 
its corresponding amplitude and can mine the deeper features of signals. Among the common frequency-domain 
features, the Fourier transform (FT) is extensively applied. Compared with other frequency-domain features, the 
FT has a low computational cost and can be easily implemented. In addition, the Fourier transform requires that 
the signals in the frequency domain are stable EEG samples. This type of analysis is most suitable for studying 
EEG signals. Signals are generally continuous, but computers cannot process continuous signals, so only con-
tinuous signals are discretized. The discrete Fourier transform (DFT) reflects the discrete form of the FT in the 
time and frequency domains. The fast Fourier transform (FFT) is essentially a simple DFT algorithm. In previous 
studies, many researchers have preferred the FFT when processing EEG signals for frequency-domain features20.

According to the current research results in related fields, FuzzyEn and FFT are typical algorithms for time- 
and frequency-domain features, and both feature extraction methods have been proven to achieve excellent 
results and are extensively utilized in various biological signal research. In this study, to select better features 
to represent EEG signals, we compare the two features that are extensively applied in the time and frequency 
domains: FuzzyEn and FFT.

Fuzzy entropy.  FuzzyEn is a nonlinear indicator to evaluate the occurrence probability of newly generated pat-
terns based on fuzzy theory. In 2007, Chen et al.21, based on the sample entropy (SampEn) algorithm, proposed 
a new algorithm for measuring the complexity of time series-fuzzy entropy. By blurring the similarity measure-
ment formula, the limitation of SampEn is eliminated22,23.

The FuzzyEn algorithm is described as follows:

(1)	 For a time series of N length, the algorithm is expressed as [u(1),u(2),⋯,u(N)].
(2)	 Carry out phase space reconstruction of the original time series and define the dimension m(m ≤ N− 2) 

of phase space. After reconstruction, as shown in formula (1),

i = 1, 2, . . . ,N −m+ 1 , U0(i) is the average, and the formula is shown in (2) 

(3)	 The distance dmij  is defined as the maximum difference between the corresponding elements of vector Xm
i  

and vector Xm
j  , that is,
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Table 2.   Comparison of the demographic characteristics between healthy controls and schizophrenic patients.

Characteristics Normal (n = 55) Schizophrenia (n = 54) t/χ2 value P-value

Mean age (SE), years 41.00 (1.59) 37.80 (1.34) 0.464 0.597

Male/female 31/24 36/18 – –

Mean illness course (SE), year – 15.07 (1.22) – –

Mean (SE) age at disease onset – 24.21 (0.96) – –
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(4)	 The similarity between vector Xm
i  and vector Xm

j  is defined by the fuzzy membership function (dmij , n, r) , 
as shown in formula (4):

µ

(

dmij , n, r
)

 are exponential functions; n and r are the gradient and the width, respectively, of the exponen-
tial functions.

(5)	 ∅
m(n, r) is shown in formula (5):

(6)	 By adding dimension m + 1, the ∅m+1(n, r) function is obtained:

(7)	 The FuzzyEn is

(8)	 However, the length of the time series N is limited in the actual operation, and the FuzzyEn is estimated 
as follows:

The similarity tolerance limit r and the dimension m of the phase space reconstruction parameters are the 
main parameters in this algorithm, and r represents the width of the boundary of the exponential function in 
practical application. In general, the larger is the r value, the greater is the amount of information that is lost, the 
smaller is the r value, and the more sensitive the result to noise will be. The r value is usually 0.1–0.25 times the 
standard deviation (SD) of the original time series, while the m value is usually 1 or 2. The parameters r = 0.25 
and m = 2 are utilized in this study.

Fast Fourier transform.  The FFT algorithm is an improved version of the DFT algorithm that involves fast 
implementation of the DFT method24. According to previous research 25, the DFT execution time is higher than 
the FFT execution time. Compared with the DFT algorithm, the FFT algorithm can obtain faster results when 
analyzing EEG signals. In previous studies, the FFT algorithm has been employed as a frequency-domain signal 
to extract features of various neurological disorders, including epileptic seizures26 and AD27.

The FFT algorithm is described as follows:

(1)	 The number of sequence points is N = 2M , and M is an integer; then, the DFT of x(n) is expressed as fol-
lows:

(2)	 The DFT operation of N points is decomposed into two groups of DFT operations of N/2 points, that is, 
x(n) is decomposed into two groups: the first group is the even term; the second group is the odd term. 
The decomposition process is shown in formula (10):

(3)	 Decompose x(k) into even and odd groups.
	   If k takes an even number, when k = 2r, r = 0, 1, 2, . . . , N/2− 1,
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If k takes an odd number, when k = 2r + 1, r = 0, 1, 2, . . . , N/2− 1,

(4)	 If g(n) = x(n)+x(n+N/2)

Based on these calculations, the DFT of one N point can be decomposed into two DFTs according to parity 
because the previously mentioned N is even, and the DFT can be further decomposed to the first decomposition. 
The DFT of one N point can also be decomposed into two arrays according to parity. From 1 to 2, and from 2 to 
4… According to this rule, the DFT can be decomposed M times into two points of addition and subtraction. 
This kind of process forms the butterfly algorithm of the FT. In this study, the FFT uses 200 sampling points, 
and the EEG data frequency is 500 Hz.

Making images.  In the previous section, we introduced the features of FuzzyEn and FFT for different appli-
cations. The standard approach in EEG data analysis is to form a feature vector of all electrodes. However, this 
approach disregards the spatial, spectral, and temporal structure of the data. Conversely, to maintain the spatial 
structure, we recommend converting the measurement results into a two-dimensional (2D) image and using 
multiple color channels to represent the spectral dimension.

The EEG electrodes are distributed in the three-dimensional space of the cerebral cortex sphere. To convert 
the spatial distribution of the electrodes into a 2D image and maintain the relative distance between adjacent 
electrodes, we project the electrodes from the position in three-dimensional space onto the two-dimensional 
surface. To ensure that the distance between all points and the center point is proportional, we use the azimuthal 
equidistant projection (AEP) in surveying and mapping applications28. In our example, the sphere can be applied 
to approximate the shape of the head covering or it can be used to calculate the projection on the two-dimensional 
surface, where the head apex is tangent to the electrode position. In addition, the use of isometric projection 
methods helps to interpret image and feature map visualization data and classify cognitive load levels better than 
standard nonspatial methods29. When applying AEP to the three-dimensional electrode position, we obtained 
the two-dimensional projection position of the electrode (Fig. 1). The spatial distribution of cortical activity 
is represented by the width and height of the image. We apply the Clough-Tocher scheme30 to interpolate the 
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Figure 1.   Projection of the electrode positions. (A) Locations of the electrodes in the original 3D space; (B) 2D 
projection of the electrode locations using the AEP.
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scattered power measurements over the scalp and estimate the values between the electrodes over a 32 × 32 
mesh. The choice of 32 for the image size is a trade-off between the signal resolution and the computational cost.

Figure 2 illustrates the process of generating RGB images from the EEG data. First, we divide the EEG time 
series into three sub-bands (theta, alpha and beta) and calculate the FuzzyEn or FFT values for the three fre-
quency bands. Second, the AEP process is repeated for the theta, alpha, and beta bands to produce three topo-
graphical activity maps, which are then merged to form an image with three (color) channels. Last, these three 
(color) channels are fed into the hybrid DNN for representation learning and classification.

Construction of the hybrid DNN.  We propose a model based on hybrid DL to distinguish schizophrenic 
patients from healthy controls (Fig. 3). First, we divided each experiment into 6 time windows. In this way, a sin-
gle RGB image can be constructed from the EEG signal in a time window. When the time window slides, an RGB 
image sequence can be obtained from the EEG signals. Second, we construct the hybrid DNN, which includes 
two types of DL structures: a CNN and an LSTM unit. The CNN unit processes images and extracts features 
from the RGB images. The LSTM unit is an improved recurrent neural network (RNN) structure that models 
context information with long-term sequences of arbitrary length. Third, the useful information obtained by the 
network is entered into the fully connected (FC) layer. Last, the model ends with a softmax (SF) layer to achieve 
the binary classification result (i.e., schizophrenia or normal).

CNN.  CNNs are a subset of DL networks that have received widespread attention in recent years and are often 
applied for image recognition. The CNN architecture consists of three types of layers: (1) convolutional, (2) 
pooling, and (3) FC layers 31.

Figure 2.   Process of generating RGB images. (1) EEG time series values from multiple locations are acquired; 
(2) EEG time series is divided into three subbands: theta, alpha and beta; (3) features are extracted for the 
three prominent frequency bands; (4) topographical maps are formed for each feature, and the sequences of 
topographical maps are combined to form a sequence of 3-channel images.

Figure 3.   Structure of the hybrid DNNs. The EEG time series generates 6 RGB images. The images enter the 
CNN and then enter the LSTM layer, followed by the fully connected layer. The classification is carried out by 
the SF layer.
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(1)	 Convolutional layer: The convolutional layer is composed of a filter (kernel), which passes the EEG image 
and outputs a feature map. The convolution operation is expressed as

where n, p, f and s denote the matrix of the input picture, the padding size, the matrix of the filter, and 
the stride, respectively. The size of the output matrix is y × y . Next, the activation function follows the 
convolution layer and provides a nonlinear attribute structure, which gives the DNN the learning ability 
to conduct hierarchical nonlinear mapping. The most commonly employed activation function in CNNs 
is referred to as a rectified linear unit (ReLU, f (X) = max(0, x) ), which provides better performance in 
terms of generalization and learning time.

(2)	 Pooling layer: The pooling layer decreases the size of the feature map by the average (average pooling) 
or maximum (max pooling) while preserving the significant features, which reduces the computational 
intensity and prevents overfitting. The size of the output matrix is y × y,

where n denotes the matrix of the input picture, f is the matrix of the filter, and s is the number of strides.
(3)	 FC layer: The convolution layer (+ ReLU) and pooling layers are followed by one or more FC layers. The 

following equation is used to connect each neuron in this structural layer with each neuron in the next 
layer:

where w and b represent the weight and the deviation, respectively; x represents the output of the previous 
layer; y represents the output of the current layer; i represents the previous layer; and j represents the current 
layer. The output of the last FC layer is input into the SF function, and the class is predicted by determin-
ing the probability that each EEG signal indicates a normal person or a schizophrenic patient.where w 
and b represent the weight and the deviation, respectively; x represents the output of the previous layer; y 
represents the output of the current layer; i represents the previous layer; and j represents the current layer. 
The output of the last FC layer is input into the SF function, and the class is predicted by determining the 
probability that each EEG signal indicates a normal person or a schizophrenic patient.

We compare four CNN models with different depths and configurations in Table 3. The convolutional layer 
parameters are denoted by Conv < Layer i (1, 2, and 3) >—< number of kernels > , where Layer i (1, 2, 3) repre-
sents the ith convolutional layer. CNN structure A only involves two convolutional layers (Conv1–32) that are 
superimposed, followed by a max pooling layer (Max-pooling1). Compared to configuration A, configuration 
B adds two more convolutional layers (Conv2–64), which are followed by another max pooling layer (Max-
pooling2). Compared to configuration B, configuration C adds a convolutional layer (Conv3–128), followed 
by another maximum pool layer (Max-pooling3). Compared to configuration C, Configuration D starts with 
4 layers of Conv1–32 convolutional layers instead of 2 layers. An FC layer with 512 nodes (FC-512) is added to 
the architecture.

We adopt an architecture that mimics a visual geometry group (VGG) network that is used in image classifi-
cation tasks32. In our research, the input three color channels of the RGB image size of the networks are 32× 32 
pixels. All the convolutional layers use small 3× 3 receptive fields, a stride of 1 pixel, a padding of 1 pixel and 
an ReLU activation function. This work uses the largest pool for subsequent operations. The maximum value in 

(15)y =
n+ 2p− f

s
+ 1

(16)y =
n− f

s
+ 1

(17)yj =
∑

wj ∗ xi + bj

Table 3.   Configuration information of different CNN models. The convolutional layer parameters are denoted 
as Conv < Layer i (1, 2, 3) >—< number of kernels > .

A < 2,0,0 >  B < 2,2,0 >  C < 2,2,1 >  D < 4,2,1 > 

Input ( 32× 32 3-channel EEG data)

Conv1–32

Conv1–32 Conv1–32 Conv1–32 Conv1–32

Conv1–32 Conv1–32 Conv1–32 Conv1–32

Conv1–32

Max-pooling1

Conv2–64 Conv2–64 Conv2–64

Conv2–64 Conv2–64 Conv2–64

Max-pooling2

Conv3–128 Conv3–128

Max-pooling3

FC-512
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each feature map is selected to reduce the number of output neurons, which is a process that is performed over 
a 2× 2 window with a stride of 2 pixels. The main parameters of the CNN model are listed in Table 4.

LSTM.  LSTM is an improvement over the RNNs, which have been previously employed in EEG analyses33,34. 
Compared to traditional RNNs, the innovation of LSTM networks is the addition of three control units (“cells”): 
(1) a forget gate, (2) an input gate and (3) an output gate. The structure of a typical LSTM unit is shown in Fig. 4, 
and the mechanisms of the gates are described as follows:

Forget gate: The gate decides what previous information should be forgotten. The current step’s input xt and 
the hidden state ht−1 from the prior unit are concatenated into a new vector. Multiplying by the weight parameter 
Wf  of the gate, every element’s value of the output vector ft is scaled from 0 to 1 via the elementwise sigmoidal 
operation σ. A ‘0′ element enables the corresponding information in Ct−1 to be eliminated, while a ‘1′ means that 
the corresponding information is allowed to be passed through. The output ft of the gate is formalized as Eq. (18).

Input gate: The gate determines how much of the input xt of the network is saved to the unit state Ct . The 
fulfillment of the input gate’s function requires cooperation between two parallel layers. The tangent layer out-
puts candidate information Ct for selection, while the sigmoidal layer acts as the forget gate and decides what 
candidate information will be selected by outputting the decision vector it . After the elementwise multiplica-
tion of the candidate information by the decision vector Ct × it is performed, the final update information that 
should be added to the cell state is determined. The function of the two layers is formalized by Eqs. (19) and (20).

(18)ft = σ
(

Wf · ⌈ht−1, xt⌉ + bf
)

(19)it = σ(Wi · ⌈ht−1, xt⌉ + bi)

(20)C̄t = tan (Wc · ⌈ht−1, xt⌉ + bc)

Table 4.   Main parameters of the CNN model.

Layer Filter size Number of filters Number of neurons Stride Padding

Conv1 3 × 3 32 – 1 1

Max-pooling 1 2 × 2 – – 2 0

Conv2 3 × 3 64 – 1 1

Max-pooling 2 2 × 2 – – 2 0

Conv3 3 × 3 128 – 1 1

Max-pooling 3 2 × 2 – – 2 0

Figure 4.   Detailed structure of a typical LSTM unit; its context and sequence learning function is based on the 
three gate mechanisms.
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Therefore, the cell state Ct of the current chain is a combination of the reserved historical information of Ct−1 , 
and the updating information selected from Ct (Eq. 21).

Output gate: The gate decides which hidden state ht in the current chain to output via multiplication of the 
decision vector ot by the candidate information selected from Ct , as shown in Eqs. (22) and (23).

Our RNN, which is based on the LSTM structure, learns contextual time series information from the feature 
sequences extracted from the CNN and then determines the overall classification of schizophrenia or normal 
according to the LSTM output in each time step. Because brain activity is a dynamic process, changes between 
trials may contain additional information about potential mental states.

Training and testing.  We train the hybrid DNN with the optimization algorithm adaptive moment estima-
tion (Adam)35, a learning factor of 1× 10−3 and decay rates of the first moment and second moment of 0.9 and 
0.999, respectively. This work uses the Adam optimizer to update the parameters of the proposed network struc-
ture. Note that the Adam optimizer can make the network converge at a faster speed to improve the efficiency of 
the training process. The batch size is set to 32 to update the parameters of the proposed recurrent-convolutional 
network. To avoid overfitting and improve the generalization ability, dropout36 (set to 0.5) is applied to the FC 
layers. The network converges after approximately 33,660 iterations and 180 epochs.

In total, 200 training epochs were run. The epoch refers to the iteration over the entire training set. This study 
uses a tenfold cross-validation37method. First, randomly divide the EEG signals into ten equal sets. Nine groups 
are used as training models, and one group is used to test the system performance. By transmission testing and 
training of the data set, this strategy was repeated ten times. The accuracy value reported in this study is the 
average value obtained from ten evaluations.

Statistical test.  A statistical test was performed with SPSS 16.0. For the group comparisons of the demo-
graphic and clinical variables, we used chi-square tests for categorical variables and independent-sample t-tests 
for continuous variables. To explore the differences among the conditions, a paired t-test was computed. All p 
values were two-tailed, and the significance level was set to p < 0.05 and corrected using the false discovery rate 
(FDR)38 and Bonferroni correction 39. Pearson’s r coefficients were computed to investigate the correlations.

Baseline methods.  Our study compared our method with various commonly employed classifiers, includ-
ing the support vector machine (SVM), K-nearest neighbor (KNN) and logistics regression (LR) classifiers. 
All baseline methods are compared with our method using a tenfold cross-validation method. Here, we briefly 
describe the details and parameters used in these methods.

SVM: An SVM is based on statistical learning theory and uses kernel functions to transform linearly insepa-
rable problems in low-dimensional space into linearly separable problems in high-dimensional space. The SVM 
hyperparameters, which consist of the regularization penalty parameter (C) and the radial basis function (RBF) 
kernel SD ( γ = 1/σ ) inverse, are selected.

KNN: The KNN is a supervised learning algorithm that uses k-nearest examples to classify data labels. The 
majority vote on the sample neighbors determines the label of the sample. The Euclidean metric is used to 
measure distance.

LR: LR is used to describe the relationship between the independent variable X and the dependent variable Y 
and predict the dependent variable Y. The dependent variable Y is a real number between 0 and 1 that represents 
the probability of obtaining two results in the binary classification. The LR selects the optimal regularization 
parameter C and searches the log range of [ 10−2, 103].

Results
Data recording and preprocessing.  The EEG data were recorded using a 64-channel EEG system pro-
duced by Brain Products, Germany, according to the international 10–20 system. The impedances were kept 
below 5 kΩ, and the sampling rate was 500 Hz. During recording, each participant was seated upright and asked 
to remain quiet and relaxed with open eyes in an acoustically and electrically shielded room. In this experi-
ment, the recording time lasted 2 min. In addition, the effects of brain activity and psychological factors were 
disregarded.

The whole data preprocessing and analysis procedure was implemented on BrainVision Analyzer 2.0. First, 
new referencing was used to select the available electrodes (The following electrodes were deleted: HEOGL, 
HEOGR, VEOGL, and VEOGU.). Second, bandpass filtering was used to obtain the frequency bands from 0.5 to 
50 Hz with a slope of 24 dB/oct. The EEG recordings were divided into 1,400-ms lengths for each segmentation 
and 55 trials. Third, baseline correction was performed in the range for the mean value calculation beginning at 
0 ms and ending at 1400 ms to eliminate EEG noise caused by spontaneous EEG activity. Fourth, ocular correc-
tion was utilized to correct the signal interference caused by blinking or eye movements. Artifact rejection was 
then used to remove the false signals produced by the equipment or the action of the subject. Last, the EEG data 
of the 60 electrodes were exported for further analysis.

(21)Ct = Ct−1 × ft + C̄t × it

(22)ot = σ(Wo · ⌈ht−1, xt⌉ + bo)

(23)ht = tan (Ct)× ot
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Comparison of the feature.  For the group analysis, a relation analysis based on the direct contrast 
between the schizophrenia patients and the healthy controls was carried out to generate the brain topographic 
map for each group (significance level = 0.05). As shown in Fig. 5, brain topographic maps of the FuzzyEn and 
FFT features are displayed for the entire time series.

The FuzzyEn maps show that the FuzzyEn value of the patients with schizophrenia is significantly larger 
than that of the normal controls (corrected p < 0.05), and large differences exist in the frontal region compared 
with other regions. The FFT maps show that the FFT values for the schizophrenia patients are similar to those 
for the normal control group (corrected p < 0.05), and no significant differences exist between the regions of the 
brain from the FFT. In addition, we applied a repeated-measures analysis of variance (ANOVA) as the statistical 
tool. Depending on the ANOVA results, we evaluated the statistical significance of the differences in the features 
between the groups of subjects and observed a significant group effect [F = 334.208; p < 0.001] in FuzzyEn and a 
small group effect [F = 9.595; p  < 0.01] in FFT.

Classification results.  We present our classification results derived by extracting the FuzzyEn and FFT fea-
tures from the 6 time windows. The purpose was to seek the best-performing models for the generated images. 
The accuracies for the validation set and the test set of our proposed methods and baseline methods are reported 
in Table 5.

We discovered that the accuracy of our proposed methods for the validation set is higher than that for the test 
set because the test set was selected from the model with the highest accuracy for the validation set. Considering 

Figure 5.   Brain topographic maps for different features of the two groups. In the first two columns, the 
darker the color is, the higher the feature values are. The third column takes the logarithm of the p-value of the 
statistical test: the redder the color is, the greater the differences are.

Table 5.   Comparison of the classification results.

Method Model

FuzzyEn FFT

Validation accuracy 
(%) Testing accuracy (%)

Validation accuracy 
(%) Testing accuracy (%)

Baseline methods

SVM – 93.01 – 88.97

KNN – 91.72 – 91.70

Logistic Regression – 91.38 – 91.36

Proposed methods

A < 2,0,0 >  – 92.33 – 90.12

B < 2,2,0 >  98.66 96.34 97.50 93.07

C < 2,2,1 >  99.22 99.22 98.44 96.34

D < 4,2,1 >  99.34 94.94 98.44 92.49
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the randomness of the data, the models with the highest accuracy for the validation set may not be those with 
the highest accuracy for the test set, so the calculated indicators from the validation set are generally better than 
those from the test set.

We determine that the accuracy of the FuzzyEn feature is higher than that of the FFT feature. For the baseline 
methods, the FuzzyEn value of each model is higher than the FFT value in terms of the testing accuracy. For the 
proposed methods, the FuzzyEn value of each model is higher than the FFT value in terms of the testing accuracy 
and the verification accuracy. Therefore, we can conclude that the FuzzyEn features have a more substantial role 
in the classification results than the FFT features.

In the proposed methods, we discover that the testing accuracy is different when the convolution layer is 
different. The findings negate the notion that the greater is the number of layers that are included, the higher is 
the accuracy. In particular, using FuzzyEn features, we achieve the best performance with the B architecture (test-
ing accuracy of 99.22%), which contains 5 convolution layers and is marginally better than the other methods.

Figure 6 shows a bar graph of the testing accuracies of the two features for all the methods. We observe that 
the proposed methods are superior to the baseline methods. We determined that the best result is obtained with 
the C < 2,2,1 > architecture and the FuzzyEn feature. The differences among the accuracy rates between the four 
DL methods are not statistically significant.

To further study the performance of the best-performing architecture (i.e., C architecture), we draw the 
accuracy and loss curves in Fig. 7. From the accuracy curve in Fig. 7A, we can observe that as the number of 
training epochs increases, the validation and testing accuracy show an overall upward trend. When the number 
of epochs of training reaches 180, the algorithm quickly converges to an ideal state, and the accuracy tends to 
be stable and reaches approximately 99.22%. In contrast to the accuracy curve, Fig. 7B shows that the training 
loss, validation loss and test loss are gradually reduced, and when the number of training epochs reaches 180, 
the testing loss reaches a stationary state of approximately 0.019.

Previous studies have shown that the performance of the trained model is significant for both the validation 
set and the test set and can be simultaneously judged by the training loss and the validation loss and reaches the 
stable state; thus, the base model that was trained in this experiment shows a satisfactory fit.

Comparison with different deep learning models
To quantify the importance of the 6 time windows for our results, we also applied 5 time windows and 7 time 
windows and retrained our network. The results show that the classification effect of using 6 time windows is 
better than the classification effects achieved with the other time windows for both the DL methods and the 
ML methods.

Table 6 compares the training times and the number of parameters among the proposed methods. We note 
that the more complex is the structure of the network, the longer is the training time and the higher is the number 
of parameters. Most network parameters are located in the last two layers (i.e., FC layer and SF layer) and require 
more storage and computing power during training and testing. From the obtained results, the accuracy of the 
C model is the highest, and the training time and number of training parameters are moderate. Therefore, we 
focus on the C model in the following discussion.

In the VGG style network, to keep the size of the output after each stack constant (filter size × number of 
cores), we determined the number of filters in each layer. In addition, we manually reduced the amount of data 
that is required to manually extract power features from EEG signals.

Figure 6.   Testing accuracies of the two characteristics for all of the methods. The x-axis represents the different 
classifiers, and the y-axis represents the testing accuracy. The blue column represents the FuzzyEn value, and the 
orange column represents the FFT value.
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Discussion
Comparison of the FuzzyEn feature and FFT feature.  EEG signals are complex nonlinear dynamic 
signals5 and contain the dynamic properties of brain activity40. In this study, the eigenvalues of schizophrenic 
patients were higher than those of healthy controls. This finding is consistent with previous results. Fernández 
A et al. employed the Lempel–Ziv complexity (LZC) method to study healthy controls and patients with schizo-
phrenia and discovered that in terms of time-domain characteristics, patients show higher performance in the 

Figure 7.   Loss curve and accuracy curve of the best architecture. (A) Shows the loss curve of the best 
architecture. The blue curve represents the testing loss, the orange curve represents the validation accuracy, and 
the gray curve represents the training loss. (B) Represents the accuracy curve of the best architecture. The blue 
curve represents the testing accuracy, and the orange curve represents the validation accuracy.

Table 6.   Comparison of the training times and number of parameters of different structures.

Model Train time (per epoch) Number of parameters

A < 2,0,0 >  1185.596 s 557,885

B < 2,2,0 >  2209.655 s 906,717

C < 2,2,1 >  2696.328 s 1,806,749

D < 4,2,1 >  4276.018 s 1,825,565
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entire brain complexity 41. The EEG signals of subjects with schizophrenia were more random, and therefore, 
had a greater approximate entropy compared to the EEG signals of healthy subjects42. In addition, as previously 
reported using multiscale entropy, the complexity of schizophrenic patients is higher than that of the control 
group43. In the frequency-domain features, patients with schizophrenia had significantly higher theta power 
over the F4, F7, F8, P4 and O2 regions than healthy subjects44. Compared with the healthy control group, schizo-
phrenic patients have more active brain activity and are more likely to generate new EEG signal patterns45.

The statistical test results show that both the FuzzyEn feature and the FFT feature can be used to distinguish 
healthy controls from patients with schizophrenia, but the FuzzyEn feature is more significant and more easily 
distinguished between healthy controls and patients with schizophrenia. The main differences between schizo-
phrenic patients and healthy controls are concentrated in the frontal regions. This is consistent with previous 
research findings46–49. The frontal area is mainly responsible for memory problems related to behavior regula-
tion and cognitive perception 50. The impairment of metacognitive function in patients with schizophrenia may 
be caused by the frontal region51. According to previous research on social cognition in schizophrenia52, the 
abnormality observed in this area is based on dopamine signaling to the prefrontal cortex.

In addition to the differences in brain topographic maps, the two features are also different in terms of the 
classification performance. For the classification results, the FuzzyEn feature performs better than the FFT feature 
in all methods. The EEG signals using FuzzyEn features are more effective for classification than those using FFT 
features. For these results, the FuzzyEn feature retains the time sequence, which adequately remembers the rela-
tive characteristics of the original signals during the sliding of the time window. The hybrid DNN, which is based 
on FuzzyEn features, combines the time-, frequency- and spatial-domain characteristics. Therefore, the hybrid 
DNN may more easily extract additional effective features based on the FuzzyEn feature than the FFT feature.

Comparison with other studies of schizophrenia.  The classification problem of schizophrenia EEG 
signals involves extracting the discriminative features from EEG signals and then performing the classification. 
We compare our research with the related state-of-the-art techniques that have been developed in recent years, 
as shown in Table 1, which use different feature extraction and classification methods for classifying schizophre-
nia EEG signals.

In 2016, Bose et al. developed an SVM filter for the identification of schizophrenia based on the delta, theta, 
alpha, and beta bands that were extracted from EEG signals using a finite impulse response bandpass filter. 
In alpha power, the subject groups yielded a high classification accuracy of 83.33%. These results suggest that 
schizophrenic subjects can be identified by the absolute alpha 16. Johannesen et al. employed a Morlet continuous 
wavelet transform to extract time–frequency features in healthy communities and schizophrenic patients from 
EEG signals, and the SVM provided the highest classification accuracy of 87%53.

In 2017, Jeong et al. developed a multimodal (audiovisual) emotion perception test. The discriminatory 
features were extracted using a mean subsampling technique from EEG recordings. Shrinkage linear discri-
minant analysis (SKLDA) can decrease the ill-conditioned covariance matrix, which provides a more accurate 
classification of the event-related potential (ERP), even when using an insufficient training sample size. Thus, 
SKLDA was employed for the classification and attained more than 98% accuracy54. Piryatinska et al. created 
a low-dimensional feature space, which decomposed the EEG signals of adolescent schizophrenic and control 
subjects using the є-complexity of a continuous vector function. They utilized a random forest (RF) classifier and 
achieved an average accuracy of 85.3%55. Chu et al. used three different types of International Affective Picture 
System (IAPS) pictures as visual stimuli and captured the associated brainwaves. They then employed the approxi-
mate entropy (ApEn) to extract features and classified them with an SVM. The researchers discovered that the 
classification accuracy of healthy controls and schizophrenic patients with obvious illness was as high as 81.5%56.

The following year, Alimardani et al. proposed an efficient feature selection algorithm named Davies–Bouldin 
fast feature reduction (DB-FFR) to select the most discriminative features to enhance the classification rate. These 
researchers applied a modified version of the KNN classifier and achieved an 87.51% classification accuracy for 
the EEG features of schizophrenia patients and bipolar mood disorder (BMD) patients57. The researchers also 
applied the steady-state visual evoked potential (SSVEP) of the EEG signals and extracted the power spectral 
densities. The feature was fed into five classifiers to characterize the EEG signals, and the KNN classifier provided 
the highest classification accuracy (91.30%), with the best feature set selected by the Fisher score between BMD 
and schizophrenic patients58.

In 2019, Phang et al. proposed a DNN with a deep belief network (DBN) architecture for the automated clas-
sification of schizophrenia (SZ) based on the EEG effective connectivity. The structure has a multilayer architec-
ture as an inherent feature extractor, which is able to learn hidden hierarchical representations of the complex 
brain network structure. These researchers employed directed connectivity (DC) based on vector autoregression 
(VAR), graph theory composite network (CN) metrics, and a combination of both as input features, and achieved 
95% significant classification accuracy for the θ and β bands59. In addition, for the same subjects, they applied 
combinations of various connectivity features as input features, including time- and frequency-domain metrics 
of the effective connectivity based on the VAR model and partial directed coherence (PDC), with complex 
network (CN) measures of network topology. The researchers designed a novel multidomain connectome CNN 
(MDC-CNN) based on a parallel ensemble of one dimensional (1D) and 2D CNNs to integrate the features from 
various domains and dimensions using different fusion strategies. The results showed that the MDC-CNN with 
combined connectivity features further improved the performance over single-domain CNNs and achieved a 
remarkable accuracy of 91.69% with a decision-level fusion60. In the same year, Oh et al. established an eleven-
layer CNN model to directly process the original EEG signals for analysis without any feature processing. The 
proposed model generated a classification accuracy of 98.07% using nonsample testing14.
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In the comparative studies, the researchers collected the subjects themselves. Our subjects were in accord-
ance with the usual format of the current collection: resting data for patients with small requirements, sampling 
rate = 500, and channels = 60. In Table 1, we also add these conditions. After observation, a unified conclusion 
cannot be obtained. In different studies, different information is collected for the subjects, different features are 
extracted, and different classifiers will affect the accuracy. Because of data limitations, the impact of the model 
is unknown. Given that a long time is needed to collect new data, we did not investigate it but will explore it in 
future studies. Therefore, we mainly focus on the accuracy of this study to show that the distinction between 
normal and schizophrenic patients can be achieved with a high accuracy.

It can be seen from Table 1 that most previous studies applied machine learning techniques to diagnose 
schizophrenia. These traditional methods are cumbersome and require feature extraction and selection before 
classification. In addition, these methods perform poorly when using large data sets. In some recently applied 
DL methods, the classification results of these studies have greatly improved compared with machine learning 
methods.

In this study, we propose a hybrid deep neural network model to classify schizophrenia. Compared with 
previous research, our experimental data are more numerous, and the amount of data is enlarged by sliding the 
time window. Before entering the model, we retained the brain electrodes by AEP mapping. This method has 
not appeared in previous research. We selected fuzzy entropy features and constructed the hybrid DNN model, 
which combines the advantages of a CNN and an LSTM. The classification accuracy rate reached 99.22%, and 
the experimental results are superior to those of previous studies. This result shows that our method provides a 
significant breakthrough in the classification of schizophrenia based on EEG data. In future research, the hybrid 
deep neural network classification method can also be applied to the diagnosis of EEG signals and other clas-
sifications of medical diseases.

Conclusions
In this study, we attempted to compare which feature of FuzzyEn and FFT is better and improve the accuracy 
of classification of schizophrenia in EEG signals. Our method involves two procedures. First, we convert EEG 
signals into a series of topology-preserving RGB images rather than standard EEG analysis techniques that dis-
regard this spatial information. Second, we use a hybrid DNN that consists of CNN and LSTM components to 
address the RGB images and differentiate schizophrenic patients and healthy controls. In the hybrid structure, 
the CNN is used to process the RGB images and extract features from them, and an LSTM is used to structure 
the contextual information for long-term sequences of arbitrary length.

We compared the features of FuzzyEn and FFT and discovered that the FuzzyEn feature has a better effect 
than the FFT feature in terms of the classification accuracy. In addition, we determined that the maximum clas-
sification accuracy of our proposed method can reach 99.22%, which is higher than the accuracy of the baseline 
method. In addition, we review the latest methods of schizophrenia classification based on EEG signals. Com-
pared with these studies, our study significantly improves the classification accuracy.

In the future, the proposed method will be trained using a more powerful graphics processing unit (GPU) 
to optimize the training time. A larger cohort of subjects with schizophrenia/healthy controls will be taken 
into account to further demonstrate and fully exploit the generalization potential of DL techniques for clinical 
applications.
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