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A B S T R A C T

Hemolytic uremic syndrome (HUS) is a well-described process that is known to cause severe renal
dysfunction, thrombocytopenia, and anemia. HUS is typically associated with toxins (shiga-like and
shigella toxin) found in strains of E. coli and Shigella spp [1–3]. We present a case of a 27 year-old man with
jaundice, thrombocytopenia, and renal dysfunction who was found to have HUS in the setting of Shigella
sonnei infection. Outside of developing countries, cases of HUS related to S. sonnei are largely unreported.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Hemolytic uremic syndrome (HUS) is a thrombotic micro-
angiopathy characterized by thrombocytopenia, anemia, and renal
dysfunction. HUS can have long-term consequences including
hypertension, reduced renal function that may be chronic,
neurologic sequelae, and death [1,4]. It most commonly occurs
in the setting of infection caused by enterohemorrhagic E. coli
(EHEC) and Shigella dysenteriae serotype 1. However, other less
common infectious etiologies have also been implicated: bacteria
such as Citrobacter and Streptococcus pneumoniae, viruses such as
HIV, EBV, and H1N1, and in the post-kidney transplantation state
influenza A, parvovirus and CMV [5,6].

The unifying trait among the most common causes of HUS is the
ability to produce and release shiga or shiga-like toxins (Stx). After
ingestion of the pathogen, Stx is produced by the microorganism
and absorbed by the gut epithelium into the circulation. The toxin
is then able to bind to the glycolipid receptor globotiraosylcer-
amide (Gb3), which is expressed in the kidney and brain [1–3,7–9].
After receptor binding, the toxin is internalized, leading to a
complex constellation of events including coagulation and
inflammation.
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Shigella sonnei is the most common type of Shigella species in
developed countries, including the United States. To date, there is
limited documented association of S. sonnei and HUS in developed
or developing nations. Recognizing HUS caused by atypical
infectious organisms is important because HUS is a medical
emergency that requires urgent management. It is important not to
remove HUS from the differential diagnosis just because stool
studies do not identify a Shiga toxin or cultures do not grow E. coli
or Shigella dysenteriae.

Case presentation

A previously healthy 27-year old man presented to his primary
care provider with 2 days of subjective fever, chills, headache,
abdominal pain, vomiting, dark urine (despite adequate hydra-
tion), and at least 24 loose “dark brown to black” stools. He was told
he had streptococcal pharyngitis and given a prescription for
azithromycin. One day later he was hospitalized at an outside
facility for worsening symptoms. Laboratory evaluation there
showed platelets 4 K/mm3, hemoglobin 11.4 g/dL, LDH 2070 U/L,
haptoglobin 7 mg/dL, creatinine 2.3 mg/dL, and UA positive for
blood and protein. Peripheral smear revealed presence of
schistocytes. He was given intravenous corticosteroids and
ceftriaxone prior to transfer to our facility for further management.

On physical examination temperature was 37 �C, pulse 69/
minute, and blood pressure 135/75 mmHg. He had scleral icterus,
abdominal tenderness, cutaneous jaundice, and petechiae on his
arms and torso. Laboratory evaluation showed sodium 137 mEq/L,
potassium hemolyzed, BUN 41 mg/dL, creatinine 2.1 mg/dL, WBC
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6.2 K/mm3, hemoglobin 11.4 g/dL, platelets 3 K/mm3, total bilirubin
5.4 mg/dL (direct 0.3), fibrinogen 358 mg/dL, reticulocyte count
1.8%, and LDH 2028 U/L. Urinalysis was significant for 2+ blood.
Abdomen/Pelvis CT revealed heterogeneous enhancement of the
right renal cortex without evidence of obstruction, nonspecific
colonic hyper-attenuation without evidence of acute bowel
inflammation, and a small volume of free fluid in the pelvis. Other
labs ordered on hospital day 1 included ADAMTS13 and stool
studies to evaluate for presence of E. coli/Shiga toxin; however,
stool studies were unable to be collected until hospital day 3 as
diarrhea had strangely abated, and ADAMTS13 had to be sent out to
another laboratory.

The working diagnosis on admission was thrombotic throm-
bocytopenic purpura (TTP), as his diarrhea had resolved at the time
of transfer and no stool samples had been collected during his
severe diarrheal illness. Due to the emergent nature of his
condition, he was treated with plasma exchange and corticoste-
roids, but antimicrobials were not continued during his hospitali-
zation at our facility. He received a total of three plasma exchange
treatments for possible TTP while awaiting ADAMTS13 results. His
platelet count increased daily (counts from hospital day 1 were 5,
20, 86, and 176 K/mm3).

A stool sample was collected and cultured on hospital day 3, and
the Shiga toxin EIA was negative. The ADAMTS13, which was sent
to Mayo Clinic Laboratories in Rochester, MN, resulted on hospital
day 4, with ADAMTS13 activity of 81% (>70% normal). Plasma
exchange and intravenous corticosteroids were discontinued given
the now more likely diagnosis of HUS. On hospital day 5, stool
cultures resulted positive for a Shigella sonnei isolate. Platelet
count, renal dysfunction, and hemolysis continued to resolve even
after discontinuing plasma exchange and corticosteroids, which is
consistent with HUS.

Unfortunately, this patient had no insurance, and because he
was self-pay, he was insistent that he be discharged as soon as
possible. At the time of discharge on hospital day 5, his platelet
count was 214 K/mm3, creatinine was 1.2 mg/dL and LDH was
196 U/L. He was seen by his primary care provider within two
weeks of discharge, and 3 months after that, symptoms had not
recurred when a member of the team contacted him. The patient
declined recommended follow-up laboratory investigation to
ensure continued resolution of thrombocytopenia and renal
dysfunction.

Discussion

For over 20 years, Shigella dysenteriae type 1 and EHEC have
been known to cause hemorrhagic colitis via production of Shiga
toxin (Stx) or Shiga-like toxins (Stx-1 and Stx-2), respectively [1–
3,7]. A more serious complication related to infection with these
microbes is hemolytic uremic syndrome (HUS). We present a case
of HUS in the setting of Shigella sonnei isolated from stool culture,
which prompts a discussion on the mechanisms of how Shiga
toxins cause HUS and how bacteria that do not typically cause HUS
can obtain genes for these toxins. First, it is important to discuss
the possibility that EHEC infection was present in this patient but
missed in laboratory evaluation. A stool sample was not collected
during the early phase of his diarrheal illness, and studies have
shown that samples cultured 6–7 days after onset of diarrhea have
sensitivity for detecting EHEC as low as 33% [10]. Furthermore,
Shiga toxin EIA is 33–76% sensitive, and can be falsely negative in
EHEC infections if tested later in the course of illness when
lysogenic phages are less numerous; in contrast, PCR is known to
be more sensitive, reaching over 90% in some studies [11,12]. Rectal
swab earlier in the course, testing the S. sonnei isolate for stx genes,
and further evaluating for EHEC serologies or PCR may have helped
better elucidate S. sonnei’s true role in this patient’s case of HUS.
Shiga toxins are type 2 ribosome-inactivating proteins, or RIPs,
that consist of an A subunit surrounded by 5 identical B subunits,
which are responsible for the toxin’s ability to enter target cells
[8,9]. Shigella dysenteriae produces its toxin via activation of the
chromosomally located stx gene; but the EHEC Stx-1 and Stx-2 are
produced via lysogenic incorporation of genes carried into the
bacterium by lambdoid bacteriophages, followed by the lytic cycle
that allows for toxin release [8,9,13,14].

Infection of the GI tract with these bacteria typically causes a
watery diarrhea; however, development of hemorrhagic colitis
indicates toxin production and risk for extra-intestinal disease,
including HUS. Once the Shiga toxins gain access to the circulation,
they affect target organs by binding to Gb3 receptors located in the
kidney and brain. This allows Shiga toxin entrance into renal
tissues, followed by inflammation, lysis, and destruction of those
cells. Destruction of glomerular cells can cause hematuria, and
severe cases of HUS may require dialysis. Gb3 is also expressed on
platelets, causing activation, aggregation, and severe thrombocy-
topenia, and eventually causing microvascular thrombosis [8].

The process described above reviews the well-described
pathophysiologic mechanism of toxins produced by EHEC and
Shigella dysenteriae. However, most of the clinical and scientific
data available focus only on toxin production by these two
bacterial species. The case we report above appears to be a case of
HUS related to intestinal Shigella sonnei infection, although EHEC
certainly may also have been present. Upon more extensive review
of the literature, there is convincing evidence that Shigella sonnei
has been shown to acquire genes that enable it to produce Stx-1
and Stx-2.

As mentioned above, genes for Stx are known to be carried in
lambdoid prophages, or “Stx-converting bacteriophages,” which
can insert DNA into bacterial host chromosomes via transposition
or recombination [13]. E. coli and Shigella spp. are close genetic
relatives, enabling Shigella spp to obtain toxin genes from E. coli.
This indicates that a previously non-toxigenic Shigella sonnei could
obtain virulence genes if invaded by a phage carrying the toxin
genes, and in fact, several researchers have isolated Shigella sonnei
that produce either Stx-1 and Stx-2a [13,15–17]. The question then
arises, how does a non-toxin producing Shigella sonnei bacterium
come into contact with a bacteriophage carrying Stx genes
typically found in E. coli? One study looking at two separate
urban wastewater treatment plants found that there were Stx
gene-carrying phages in samples of raw sewage as small as 10 mL,
with an estimated 1–10 free phages/mL of sewage [18]. Another
study sampled feces from 100 healthy individuals and found that
62% of samples carried Stx gene-carrying phages, which were able
to infect and propagate in cultures of Stx-negative E. coli C600 and
O157:H7, as well as Shigella sonnei [19]. These free Stx-2 phages
survive longer in water environments than their bacterial hosts
and remain infective, allowing them to transfer stx genes when
they do come into contact with a host [20]. Other possibilities
include conversion of typically non-HUS producing bacterium
(such as Shigella sonnei) into HUS-producing strains inside the
intestinal tract by ingestion of free Stx-carrying bacteriophages
from contaminated food or water or by co-infection with an Stx-
toxin producing E. coli or Shigella dysenteriae that lyses and releases
bacteriophages in the intestine, the latter of which is certainly a
possibility in our patient [8,19].

Common practice dictates that one should treat Shigella
diarrheal illnesses, typically with ceftriaxone or ciprofloxacin;
however, special attention to monitoring for HUS should be given
when using ciprofloxacin or trimethoprim-sulfamethoxazole.
These and other antimicrobials are known to trigger increased
production of Shiga toxin when the SOS response inactivates the
phage cI repressor protein, leading to activation of stx genes and
transition from lysogenic to lytic phase [8,9,13,21,22]. One study
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reported that HUS developed in 5 out of 9 children (56%) given
antibiotics for E. coli O157:H7 diarrhea compared to 5 out of 62 (8%,
P < 0.001) who were not given antibiotics [21]. In contrast,
meropenem and azithromycin have been shown to reduce phage
induction and Stx2 production, and may therefore be safe
treatment options for EHEC infections [23,24]. Our patient did
receive azithromycin early in his course of illness and it may have
contributed to earlier resolution of his diarrhea, but does not seem
to have prevented development of HUS.

Conclusion

Although the organisms that are well known to be associated
with HUS are Shigella dysenteriae serotype 1 and E. coli O157:H7,
our case and the discussion presented above indicates that
clinicians must still be astute in monitoring for HUS when treating
illness due to other Shigella organisms, such as S. sonnei. Use of
certain antimicrobials can put patients with EHEC at risk of
increased Shiga toxin production, but azithromycin is likely a safe
option for those with severe infections. Of note, increased toxin
production secondary to antimicrobial use is not applicable to
Shigella dysenteriae, whose gene is chromosomally located and
therefore not dependent on the SOS response and phage lytic
phase. We propose checking platelet count and creatinine 1 week
after onset of diarrheal illness to monitor for signs of HUS. There is
no reported evidence to support this; however, one study from
Bangladesh reported 30 children with S. sonnei who were admitted
to the hospital at a median of 5 days into diarrheal illness, 2 of
whom were also diagnosed with HUS [25].
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