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Abstract

Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity

both play a role in protection and pathology associated with ocular infection. Previously we

have shown that M1-type macrophages are the major and earliest infiltrates into the cornea

of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-

macrophages was similar to wild-type (WT) control mice. However, it is not clear whether

the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected

mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1

activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more

susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice

were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice

were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did

WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death

and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with aviru-

lent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not

affect latency-reactivation seen in WT control mice. Severity of virus replication and eye dis-

ease correlated with significantly higher inflammatory responses leading to a cytokine storm

in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our

study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection,

eye disease, and survival but not in latency-reactivation.

Author summary

Macrophages circulating in the blood or present in different tissues constitute an impor-

tant barrier against infection. We previously showed that the absence of M2 macrophages

does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an
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essential role of M1 macrophages in protection from primary HSV-1 replication, death,

and eye disease but not in latency-reactivation.

Introduction

HSV-1 infection impacts global populations with mild to severe health complications. The

virus establishes lifelong latent infections in neurons, but reactivation can be triggered in

response to a variety of stimuli [1,2]. The HSV-1 life cycle involves an initial pre-clinical innate

immune response phase that controls the severity of infection and is characterized by neutro-

phils, macrophages, NK cells, dendritic cells, NKT cells, and their functions [3]. The role of the

adaptive immune response in protecting against ocular HSV-1 infection and disease had been

extensively studied [4], but little is known about the role of the early host innate immune

response in controlling the severity of infection and disease. Macrophages are innate cell

responders and are known to be early-responders to HSV-1 infection along with other innate

immune cells [5,6]. We previously investigated the time at which various immune cells infil-

trated the cornea of infected mice and found that macrophages with M1 phenotype were the

dominant corneal infiltrates as early as 1 hour post ocular infection [5]. Macrophages are clas-

sified as M1 and M2 phenotypes based on the environmental cues [7,8]. Cytokines like IFNγ
or GM-CSF promote differentiation of total macrophages toward M1 polarization whereas,

cytokines like IL-4 or M-CSF promote macrophage differentiation toward M2 polarization

[9,10]. A proper equilibrium between the M1 and M2 macrophage subtypes must be main-

tained to avoid detrimental host states leading to various diseases and inflammatory conditions

[11].

M1 phenotypes are believed to be involved in initiating and advancing inflammatory dis-

ease conditions whereas, M2 phenotypes are associated with the resolution and repairing

phases of inflammation [12,13]. Our previous work showed that injection of IFNγ DNA into

wild-type (WT) mice increased primary and latent infection in latently infected mice, while

injection of CSF-1 DNA reduced primary and latent infection in these mice [9]. Similarly, we

have shown that ocular infection of WT mice with a recombinant virus expressing IL-4

(HSV-IL-4), which promoted macrophage responses toward M2, was more efficacious against

both primary and latent infection than mice infected with a recombinant virus expressing

IFNγ (HSV- IFNγ) [10].

We recently showed that although M2 macrophages are involved in resolving inflammatory

diseases, absence of the macrophage M2 population (M2-/- mice), did not have a major impact

on viral replication, latency-reactivation, or eye disease after ocular HSV-1 infection and

infected mice behaved similar to wild-type mice. In contrast, mice overexpressing M2 macro-

phages (M2-OE mice) had significantly higher primary viral replication, phagocytic activity,

and latency [14]. Our results showed that it is important to maintain a homeostatic balance of

M1 and M2 macrophage populations. After conceptualizing M2 phenotype functions and pos-

sible side-effects of M1 macrophages, we asked what role, if any, the absence of M1 macro-

phages may play in HSV-1 infection. Thus, we used STAT1 (signal transducers and activators

of transcription-1) conditional knockout mice lacking M1 macrophages (M1-/- mice in this

study) [15]. In our previous studies we pushed macrophage responses toward M1 in the pres-

ence of M2 or vice versa [9,10]. Similar to our M2-/- study [14], we also evaluated the effect of

absence of M1 (and presence of M2) phenotypes on primary viral replication, eye disease, and

latency-reactivation using M1-/- mice.
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In our current study, we found that M1-/- mice were highly susceptible to infection with vir-

ulent HSV-1 strain McKrae, while WT control mice were refractory to infection. Virus replica-

tion was also significantly higher in the eyes of M1-/- infected mice and in their bone marrow

(BM)-derived macrophages than in control WT mice. Infected M1-/- BM-derived macro-

phages had significantly less expression of 24 of 32 tested cytokines and chemokines than did

control WT infected macrophages. We also found that corneas of M1-/- infected mice had sig-

nificant upregulation of inflammatory pathways compared to control mice. Adoptive transfer

of WT mouse bone marrow M1 macrophages to M1-/- mice partially restored survival and

ocular virus replication in recipient M1-/- mice to levels similar to those of control WT mice.

To confirm our finding that the absence of M1 macrophages augments disease severity, we

showed that after infection with avirulent HSV-1 strain KOS, M1-/- mice were protected from

death but still had significantly higher virus replication in the eyes and more eye disease than

did WT mice. However, levels of latency and reactivation were similar in M1-/- and control

mice. Hence, our results demonstrate that M1 macrophages are essential to control primary

virus infection, survival, and eye disease but not latency-reactivation.

Results

Effect of HSV-1 infection on NOS2 and Arg1 expression in bone marrow-

derived macrophages from M1-/- mice

Macrophages display great plasticity and can change their function in response to different sti-

muli and based on their activation state are divided to M1 and M2 [7]. Currently, there is no in
vivo markers for M1 and M2 identification, while NOS2 and ARG1 had been used widely as

markers of M1 and M2 for in vitro studies, respectively [9,16–18]. To determine the effect of

HSV-1 infection on NOS2 and ARG1 expression, BM cells were isolated from WT and M1-/-

mice and cultured in vitro with IL-4 to generate M2, or IFNγ to generate M1, macrophages.

M1 and M2 macrophages were harvested on day 6 post treatment and infected with 1 pfu/cell

of HSV-1 strain McKrae for 24 hr. Total RNA was isolated and expression of NOS2 and ARG1

were measured by qRT-PCR (Fig 1). ARG1 levels were similar in macrophages isolated from

WT and M1-/- mice (Fig 1A, p>0.05) suggesting that the absence of M1 macrophages does not

affect ARG1 expression. As expected, NOS2 levels were significantly lower in M1-/- mice than

in WT mice (Fig 1B, p<0.001), suggesting that the absence of M1 macrophages in M1-/- mice

affects NOS2 but not ARG1 expression in isolated macrophages. These results confirm a previ-

ously published study showing that the absence of STAT1 in macrophages reduced NOS2 but

not ARG1 expression [15,19].

Macrophages isolated from M1-/- mice are more susceptible to HSV-1

infection than macrophages from WT mice

Previously we reported that macrophages isolated from signal transducers and activators of

transcription-1 deficient (STAT1-/-) mice were more susceptible to HSV-1 replication than

were macrophages from different strains of WT mice [20]. In this study we tested if macro-

phages from M1-deficient mice similar to macrophages from STAT1-/- mice are susceptible to

HSV-1 infection. Thus, we isolated BM from WT and M1-/- mice. After isolation, macrophages

were infected with 0.1 pfu/cell or 1 pfu/cell of HSV-1 strain McKrae for 12, 24, and 48 hr. As a

control, Rabbit skin (RS) cells were infected with 0.1 pfu/cell or 1 pfu/cell of HSV-1 strain

McKrae for 24 and 48 hr. The kinetics of virus replication were quantitated by determining the

amount of infectious virus at various times post-infection using a plaque assay.
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Fig 1. Validation of macrophage phenotype. Bone marrow-derived macrophages from WT and M1-/- mice were

polarized into M1 and M2 phenotypes as described in Materials and methods. The cells were then infected with 1 pfu/

cell of HSV-1 strain McKrae for 1 hr and harvested 24 hr PI. Total RNA was isolated and subjected to TaqMan

qRT-PCR using ARG-1 (M2 marker) and NOS2 (M1 marker) specific primers. Expression of ARG1 and NOS2 mRNA

was normalized to that of GAPDH RNA. Each bar represents the mean ± SEM from two independent experiments

(N = 4). Panels: A) ARG1; and B) NOS2.

https://doi.org/10.1371/journal.ppat.1009999.g001
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Virus replication did not differ significantly between cells infected with M1-/- or WT virus

at 12 hr post-infection (PI) (Fig 2A, p>0.05), but M1-/- cells displayed significantly more virus

replication at 24 and 48 hr PI (Fig 2A, p<0001, at both time points). Virus replication in M1-/-

cells infected at 1 pfu/cell, was significantly higher at 12, 24, and 48 hr PI than seen in WT

infected cells (Fig 2B, p<0.001). At both time points (24 and 48 hr PI) and dose of infection

(0.1 pfu/cell or 1 pfu/cell), virus replicated more efficiently in RS cells and the differences were

not statistically significant between time points (Fig 2C, p = 0.5, at both time points). These

results showed that the absence of M1 macrophages leads to higher virus replication than in

WT infected macrophages. Thus, similar to macrophages from STAT1-/- mice, the absence of

M1-/- in macrophages also makes them more susceptible to infection than macrophages from

WT mice. Similar to this study, we previously reported that macrophages polarized toward the

M1 state had less virus replication than in M2 polarized macrophages [9].

To further confirm these results, infected macrophages from WT and M1-/- mice were

infected with 1pfu/cell of HSV-1 and infected cells were harvested 24 hr PI. Total RNA was iso-

lated from infected cells and subjected to TaqMan qRT-PCR to estimate levels of gB mRNA.

GAPDH mRNA level was used as an internal control. The results showed significantly higher

gB copy number in macrophages from M1-/- mice than in those from WT mice (Fig 2D,

p<0.01). These results suggest that the absence of STAT1 in M1 macrophages has a profound

effect on virus replication and is indispensable for control of virus replication.

Detection of GFP expression in infected macrophages by FACS

To confirm that macrophages isolated from M1-/- mice are permissive to HSV-1 replication,

monolayers of macrophages isolated from M1-/- and wild-type control mice were infected with

1 pfu or 10 pfu/cell of HSV-GFP+ virus or were mock-infected. The kinetics of virus replica-

tion were quantified by FACS analysis using the GFP tag to determine the percent GFP+

infected cells. We found that M1-/- infected macrophages had a significantly higher percent of

GFP-positive cells at 1 pfu/cell (Fig 3A, 5.40% in M1-/- vs 0.16% in WT, 1 pfu) and the level of

GFP-positive cells after infection with 10 pfu/cell of virus increased to 22.7% in M1-/- infected

macrophages with only 0.82% GFP-positive cells in the WT macrophage control group (Fig

3A, 10 pfu). No significant differences were detected between mock-infected M1-/- and WT

macrophages (Fig 3A, Mock). The average percent GFP-positive WT and M1-/- macrophages

with and without infection described above was determined from three separate experiments.

The percent GFP-positive cells in mock-infected WT and M1-/- macrophages was similar (Fig

3B, p>0.05). M1-/- macrophages infected with either 1 pfu (Fig 3B, p<0.001) or 10 pfu (Fig 3B,

p<0.0001) had significantly more GFP-positive macrophages than WT mice infected with

similar amounts of virus. Thus, FACS analysis confirmed our results for viral replication and

viral mRNA expression, suggesting that STAT1 contributes to the resistance of WT macro-

phages to HSV-1 replication but not infection.

M1-/- mice display compromised phagocytic function with enhanced virus

dose

Along with neutrophils and dendritic cells, macrophages are also professional phagocytes as

they internalize and kill invading pathogens, a process known as phagocytosis [21]. Bone mar-

row-derived macrophages were isolated from WT and M1-/- mice and infected with HSV-1

strain McKrae or mock-infected and incubated with FITC labeled beads for 2 hr as described

in Materials and methods. The cells were then scraped out and collected in FACS tubes and

stained with F4/80 antibody. The extent of phagocytosis was measured by flow cytometry

using a phagocytosis assay kit (IgG-FITC). The number of FITC positive cells was significantly
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Fig 2. Replication of HSV-1 in macrophages isolated from M-/- mice. (A, B, C) Virus replication. Subconfluent monolayers of

macrophages derived from M1-/- and WT mice were infected with 0.1 or 1 pfu/cell of HSV-1 strain McKrae for 12, 24, or 48 hr as

described in Materials and methods. Similarly, subconfluent monolayers of RS cells were infected with 0.1 or 1 pfu/cell of McKrae virus for

24 and 48 hr. Virus replication in macrophages infected with 0.1 pfu/cell of McKrae (Panel A); 1 pfu/cell McKrae virus (Panel B); in RS

cells infected with 0.1 and 1 pfu/cell of McKrae virus (Panel C); and gB transcript in infected macrophages (Panel D) was determined at
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higher in M1-/- macrophages infected with 1 pfu/cell of HSV-1 than in macrophages isolated

from WT mice (Fig 4A, 1 pfu, 8.08% in M1-/- group vs 3.85% in WT group). In contrast, the

number of FITC positive cells after HSV-1 infection with 10 pfu/cell in M1-/- infected macro-

phages was lower than in WT infected macrophages (Fig 4A, 10 pfu, 3.3% in M1-/- group vs

4.69% in WT group). The mock group showed no significant differences between the WT and

M1-/- mice (Fig 4A, Mock, 1.24% for WT macrophages vs 2.31% for M1-/- macrophages).

The average percentage of FITC positive cells from WT and M1-/- cells infected with 1 or 10

pfu/cell of HSV-1 or mock-infected was determined from three separate experiments. Percent

phagocytosis in mock-infected WT and M1-/- cells were similar (Fig 4B, p>0.05, Mock). Per-

cent phagocytosis in M1-/- cells after infection with 1 pfu/cell of HSV-1 was significantly higher

than in WT infected cells (Fig 4B, M1-/- versus WT group, p<0.01, 1 pfu). In contrast, after

infection of M1-/- cells with 10 pfu/cell of HSV-1 the level of phagocytosis declined to levels

similar to those of WT infected cells (Fig 4B, M1-/- versus WT group, p>0.05, 10 pfu). These

results demonstrate that phagocytosis is enhanced in macrophages isolated from M1-/- mice

after infection with 1 pfu/cell but declines when cells are infected with 10 pfu/cell of HSV-1.

This reduced phagocytosis could be due to high dose of virus infection (10 pfu/cell) which may

have shot down the host immune response leading to lower phagocytosis. Complementing

this study, we previously showed that higher levels of M2 macrophages are associated with

higher phagocytosis [14].

Macrophages from M1-/- mice after infection have higher chemokine and

cytokine expression compared to macrophages from WT mice

Results described above in Figs 3 and 4 shown that HSV-1 replicates more efficiently in macro-

phages isolated from M1-/- mice than in macrophages from WT mice. To determine if the

absence of M1 macrophages affects cytokine and chemokine production after HSV-1 infec-

tion, macrophages isolated from WT and M1-/- mice were infected with HSV-1 strain McKrae

as described in the Materials and methods. Twenty-four hours PI, cytokine and chemokine

levels were determined in culture media collected from wells containing infected cells using a

Luminex bead-based multiplex cytokine profiling assay as we described previously [9,22]

(Table 1). M1-/- infected macrophages had significantly higher levels of GM-CSF, IL-1α, IL-1β,

IL-5, IL-6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), LIF, LIX, IP-10, KC, MCP-1, MIP-1α, MIP-

1β, MIP-2, MIG, RANTES, TNF-α, and KC than WT infected macrophages (Table 1).

GM-CSF and M-CSF levels were higher in M1-/- infected macrophages than WT infected mac-

rophages but the differences were not statistically significant (Table 1, p>0.05). However, lev-

els of Eotaxin, IFNγ, IL-2, IL-4, IL-3, IL-7, IL-15, and VEGF did not differ between WT and

M1-/- infected macrophages (not shown). These results suggest that the absence of M1 macro-

phages alters the expression of many, but not all cytokines and chemokines secreted by M1-/-

macrophages. Many of the elevated cytokines and chemokines are pro-inflammatory and may

contribute to higher virus replication in M1-/- macrophages than in WT macrophages.

indicated times by standard plaque assays. Each point represents the mean ± SEM from two independent experiments (N = 4). D) gB

transcript in infected macrophages. Bone marrow-derived macrophages from WT and M1-/- mice were infected with 1 pfu/cell of McKrae

for 24 hr. Total RNA was isolated and TaqMan RT-PCR was performed using gB-specific primers as described in Materials and methods.

Estimated relative copy number of HSV-1 gB was calculated using standard curves generated from pAC-gB1. Briefly, DNA template,

serially diluted 10-fold such that 5 μl contained from 103 to 1011 copies of LAT, was then subjected to TaqMan RT-PCR with the same

primer set. The copy number for each reaction was determined by comparing the normalized threshold cycle of each sample to the

threshold cycle of the standard. GAPDH expression was used as a normalization control.

https://doi.org/10.1371/journal.ppat.1009999.g002
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Fig 3. FACS analyses of isolated macrophages. Subconfluent monolayers of macrophages isolated from M1-/- and WT mice

were infected with 1 or 10 pfu/cell of HSV-GFP+ virus. At 24 hr PI, cells were harvested for FACS analysis. The percent of cells

positive for GFP-expression are shown. Panels: A) Representative plots of HSV-GFP+ infected with 1 or 10 pfu/cell or mock-

infected macrophages; and B) Percentage plots of HSV-GFP+ infected or mock-infected macrophages and quantified by FACS.

Each point represents the mean ± SEM from two independent experiments (N = 4).

https://doi.org/10.1371/journal.ppat.1009999.g003
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Fig 4. Phagocytosis assay on in vitro derived bone marrow-derived (BM) macrophages. Bone marrow cells from WT

and M1-/- mice were cultured and differentiated into macrophages with appropriate culture conditions as described in

Materials and methods. After generating macrophages, adhered cells were infected with 1 or 10 pfu/cell of McKrae virus

for 1 hr. Infected cells were harvested 24 hr PI and incubated with latex beads complexed with rabbit IgG-FITC. Cells were

stained with F4/80 AF 564 antibody and analyzed by flow cytometry. Panels: A) Representative plots of WT and M1-/- BM

cells; and B) Percentage phagocytosis plots from three separate experiments.

https://doi.org/10.1371/journal.ppat.1009999.g004
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Absence of M1 macrophages leads to higher virus replication in mouse eyes

To determine the effects of absence of M1 macrophages on HSV-1 replication in vivo, WT and

M1-/- mice were ocularly infected with 2 X 105 pfu/eye of virulent HSV-1 strain McKrae. Tear

films were collected from day 1 to day 7 PI from ten mice per group and viral titers were deter-

mined by standard plaque assay as described in Materials and methods. Infected M1-/- mice

had significantly higher viral titers in their eyes from days 2–5 PI than did WT mice (Fig 5A,

p<0.05 for all 4 points). A peak of virus replication was observed on day 4 PI in both WT and

M1-/- mice and declined thereafter. The effect of M1 macrophage absence on survival of

infected mice was evaluated. All M1-/- infected mice died by day 10 PI, whereas all of infected

WT mice survived ocular infection (Fig 5B, p<0.001, Fisher exact test). These results suggest

that M1-/- mice are highly susceptible to HSV-1 infection and that M1 plays a crucial role in

controlling virus replication in the eye. Similar results were reported for STAT1-knockout

mice, with STAT1 completely deleted, while in this study M1-/- mice lack STAT1 only in mac-

rophages [23].

Table 1. Cytokine/chemokine detected in HSV-1 infected BM-derived macrophages a.

Mouse strain

Cytokine/Chemokine M1-/- WT P value

G-CSF 57.2 ± 8.3 35.4 ± 3.2 0.0704

GM-CSF 54.8 ± 3.2 23.7 ± 3.0 0.0021

IL-1α 50.4 ± 4.1 18.8 ± 1.2 0.0018

IL-1β 89.6 ± 6.1 28.4 ± 0.9 0.0006

IL-5 19.7 ± 0.4 3.3 ± 0.3 0.0001

IL-6 3029.0 ± 110.3 379.3 ± 40.8 0.0001

IL-9 109.3 ± 8.8 67.0 ± 5.6 0.0154

IL-10 37.5 ± 6.1 8.0 ± 0.7 0.0086

IL-12 (p40) 10.0 ± 1.4 1.9 ± 0.3 0.0048

IL-12 (p70) 5.0 ± 0.5 3.2 ± 0.0 0.0228

LIF 1.6 ± 0.4 0.2 ± 0.2 0.0352

IL-13 42.7 ± 4.3 9.6 ± 0.6 0.0016

LIX 61.9 ± 4.7 32.0 ± 7.6 0.0287

IP-10 (CXCL10) 10871.7 ± 358.3 3285.7 ± 131.2 0.0001

KC (CXCL1) 679.3 ± 28.5 384.9 ± 9.8 0.0006

MCP-1 (CCL2) 9639.3 ± 422.5 1084.8 ± 74.3 0.0001

MIP-1α (CCL3) 1542.0 ± 69.5 640.2 ± 13.8 0.0002

MIP-1β (CCL4) 24402.7 ± 6150.8 2461.7 ± 47.4 0.0234

M-CSF 9.5 ± 1.3 6.1 ± 0.3 0.0634

MIP-2 (CXCL2) 2649.3 ± 103.9 1332.0 ± 72.3 0.0005

MIG (CXCL9) 1199.3 ± 55.7 7.4 ± 0.8 0.0001

RANTES (CCL5) 610.7 ± 91.7 68.1 ± 2.6 0.0041

TNF-α 126.8 ± 10.2 67.1 ± 4.3 0.0057

aCytokine/chemokine levels in culture media were analyzed using mouse 32-plex panels and are shown as pg/ml. Experimental procedures are described in Materials

and methods. Briefly, isolated macrophages from BM were infected with 10 pfu/cell of HSV-1 strain McKrae for 1 h at 37˚C, washed with PBS, and incubated for an

additional 24 h in fresh media. Infected cell supernatants were collected. Levels of Eotaxin, IFNγ, IL-2, IL-4, IL-3, IL-7, IL-15, and VEGF did not differ between WT and

M1-/- infected macrophages. Results indicate mean ± SEM (n = 3). In contrast to infected macrophages described above, cytokines and chemokines levels in mock

infected macrophages for both M1-/- and WT groups was below detection level.

https://doi.org/10.1371/journal.ppat.1009999.t001
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Fig 5. Virus replication and survival of M1-/--infected mice. A) Virus replication in tears of infected mice. WT and

M1-/- mice were ocularly infected with 2 X 105 pfu/eye of McKrae virus without corneal scarification. Tear films were

collected on days 1–7 PI and virus titers were determined by standard plaque assays as described in Materials and

methods. Each point represents the mean ± SEM of 20 eyes per group. p-values less than 0.05 were considered

statistically significant and marked by a single asterisk (�); and B) Absence of M1 macrophages enhanced mortality in
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Adoptive transfer of M1 macrophages rescues virus replication in the eye

and improves survival and eye disease in infected M1-/- mice

Because the absence of M1 macrophages in M1-/- mice makes them highly susceptible to ocular

infection with virulent HSV-1 strain McKrae (Fig 5), we tested if adoptive transfer of M1 mac-

rophages from WT mice to M1-/- mice could rescue the phenotype of M1-/- mice. Bone mar-

row from WT mice were isolated and polarized toward M1 macrophages using IFNγ
treatment as we described previously [9,10]. M1 generated macrophages were adoptively

transferred to M1-/- mice by tail vein injections and 2 hr hours later, recipient M1-/- mice were

ocularly infected with 2 X 105 pfu/eye of virulent HSV-1 strain McKrae. WT mice were simi-

larly infected and used as controls. Virus replication, percent survival, corneal scarring, and

latency were recorded. Tear films from ten infected mice per group were collected from days 1

to 7 PI and virus titers were determined by standard plaque assays as described in Materials

and methods. Virus titers in the eyes of recipient M1-/- mice on days 2 and 3 were lower than

in WT mice (Fig 6A, day 2–3 PI, p<0.05). Also, virus titers in M1-/- mice on day 4 was lower

than in WT mice but the differences were not statistically significant (Fig 6A, day 4 PI,

p>0.05). Thus, compared with results shown in Fig 5A, adoptive transfer of M1 macrophages

from WT mice to recipient M1-/- mice significantly reduced virus replication in the eyes of

infected mice compared with non-recipient M1-/- mice and WT mice. In addition, lower virus

replication in M1 recipient M1-/- mice than in WT mice on days 2–4 post ocular infection

could be due to a protective role of transferred macrophages at early times PI.

Survival of WT mice and M1-/- mice that received WT-derived M1 macrophages (Fig 6A)

was monitored for 28 days with 35% of M1-/- mice that received an M1-macrophage transfer

and 90% of control mice, surviving ocular infection (Fig 6B, p<0.05, Fisher exact test). Survival

between M1-/- mice that did or did not receive a macrophage transfer was statistically signifi-

cant (compare M1-/- mice in Fig 5B with M1-/- mice in Fig 6B, p<0.05, Fisher exact test). This

suggests that reduced mortality in M1-/- recipient mice is due to the transfer of M1 macro-

phages from WT mice rather than from another defect associated with conditional STAT1

knockout in macrophages. Mice generally die between days 6–9 PI from encephalitis, at which

time most of the transferred macrophages could have died. The half-life of macrophages in
vivo is short, which is likely why the transfer did not completely rescue survival but did rescue

virus replication in the eye.

To determine the effect of macrophage transfer to M1-/- mice on eye disease, the severity of

corneal scarring (CS) was evaluated on days 7, 14, and 28 PI in surviving mice following ocular

infection of mice described in Fig 6. CS was also examined in WT control mice infected simi-

larly. CS in recipient M1-/- mice was similar to that in WT mice at all three time points and

data for day 28 PI is shown in Fig 6C (P>0.05). Thus, partial rescue of survival in recipient

M1-/- mice did not affect CS when compared to WT mice.

To determine the effect of M1 macrophage transfer on HSV-1 latency, TG from surviving

latently infected WT and M1-/- recipient mice were isolated on day 28 PI. Latency in individual

mouse TG was determined by qRT-PCR using primers from the LAT region of the HSV-1

genome. LAT RNA copy number in TG of WT and M1-/- recipient mice determined as

described in Materials and methods, were similar in these mice (Fig 6D; p>0.05). Thus, the

level of latency in TG of infected M1-/- recipient mice was similar to that of WT mice. Taken

together, data presented in Fig 6 suggest that transfer of M1 macrophages from WT mice to

infected mice. Survival in the above ocularly infected mice was monitored for 28 days. The graph represents survival

from two different experiments.

https://doi.org/10.1371/journal.ppat.1009999.g005
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Fig 6. Virus replication, survival, corneal scarring (CS) and LAT expression after adoptive transfer of M1 macrophages to M1-/- recipient mice. A)

Virus replication in tears of infected mice. WT and M1-/- mice, after receiving M1 macrophages from WT mice, were ocularly infected with 2 X 105 pfu/

eye of virulent HSV-1 strain McKrae. Tear films were collected from ocularly infected mice on days 1–7 PI and virus titers were determined by standard

plaque assays as described in Materials and methods. Each point represents the mean + SEM of 20 eyes per group: B) Survival of M1-/- recipient mice.

Survival in the above infected mice was monitored for 28 days and the graph represents the average results from two different experiments using 9 WT

mice and 3 M1-/- recipient mice; C) CS in M1-/- recipient mice. Corneal scarring (CS) in surviving mice were examined on day 28 PI as described in

Materials and methods. CS scores represent the average ± SEM from 6 eyes for M1-/- mice and 18 eyes for WT mice; and D) Latency levels in the TG of

latently infected M1-/- recipient mice were analyzed. On day 28 PI, individual TG from each mouse were harvested and quantitative RT-PCR was
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M1-/- mice partially rescued survival, and completely rescued virus replication in the eye, CS,

and latency compared with WT control mice.

Effect of avirulent HSV-1 strain KOS virus on virus replication, survival,

eye disease, latency, and reactivation in M1-/- mice

As shown above, M1-/- mice were highly susceptible to virulent HSV-1 strain McKrae and the

transfer of M1 macrophages into M1-/- mice produced a phenotype that mostly mimicked the

WT phenotype. Therefore, avirulent HSV-1 strain KOS was used to determine how the

absence of M1 macrophages affected eye disease, latency, and reactivation. Sixteen WT and

M1-/- mice from two separate experiments were ocularly infected with 2 X 105 pfu/eye of KOS

virus after corneal scarification. Tear films were collected on days 1 to 7 PI from 16 mice per

group and virus titers were determined by standard plaque assays. M1-/- mice had significantly

higher viral titers on days 1 and 2 PI than did WT mice (Fig 7A, p<0.05), while virus titers on

days 3 to 7 were similar in both mouse strains (P>0.05). These results suggest that similar to

infection with McKrae virus, infection of M1-/- mice with the avirulent KOS strain enhances

viral replication during early time point PI.

Survival over 4 wk was monitored in two separate experiments using groups of 16 WT or

M1-/- mice that had been infected ocularly in both eyes with avirulent strain KOS described

above. All 16 infected mice in the WT and M1-/- groups survived ocular infection (p = 1;

ANOVA) (not shown). In contrast to infection with virulent HSV-1 strain McKrae, and as

expected, the absence of M1 did not alter survival in ocularly infected and WT mice.

To determine the effect of M1 absence on corneal scarring and angiogenesis, KOS virus

infected WT and M1-/- mice were scored for corneal scarring/corneal disease and angiogenesis

on days 3, 5, 7, 10, 14 and 28 PI as described in Materials and methods. Our data indicates no

significant differences on days 3 and 5 PI between the groups (Fig 7B, p>0.05). However, on

days 7,10,14 and 28 PI, corneal scarring/corneal disease was significantly higher in M1-/-

infected mice than in WT infected mice (Fig 7B, p<0.001). Similar to corneal scarring/corneal

disease, angiogenesis was not significant on days 3 and 5 PI between the groups (Fig 7C,

p>0.05), while it was significantly higher on days 7, 10, 14 and 28 PI in M1-/- infected mice

than in WT infected mice (Fig 7C, p<0.001). These results suggest that absence of M1 macro-

phages lead to higher levels of pro-inflammatory cytokines and severe eye disease, which is

consistent with our previous study showing early detection of pro-inflammatory M1 macro-

phages in the eye of infected mice [5].

We investigated the impact of the absence of M1 on latency and reactivation in surviving

WT and M1-/- mice on day 28 PI. HSV-1 replication in eyes during the first two days of infec-

tion was higher in M1-/- than in WT mice (Fig 7A) and M1-/- mice also had more severe eye

disease (Fig 7B and 7C). Higher virus replication on days 1 and 2 PI in M1-/- mice may increase

latency-reactivation in infected mice. TG from surviving WT and M1-/- mice were harvested

on day 28 PI and latency levels were determined by qRT-PCR based on HSV-1 LAT expression

as described in the Materials and methods. Unlike elevated viral replication, latency (i.e., LAT

expression) was lower in M1-/- mice than in WT mice (Fig 7D, p>0.05). These results suggest

that the absence of M1 did not affect the establishment and/or maintenance of latency.

performed. In each experiment, estimated relative LAT copy number was calculated using standard curves generated from pGEM-5317. Briefly, DNA

template was serially diluted 10-fold such that 5 μl contained from 103 to 1011 copies of LAT, then subjected to TaqMan PCR with the same set of

primers. The copy number for each reaction was determined by comparing the normalized threshold cycle of each sample to the threshold cycle of the

standard. GAPDH expression was used to normalize relative LAT RNA copy number in the TG. LAT copy number represents the average ± SEM from

6 TG for M1-/- mice and from 18 TG for WT mice; p-values were determined using one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1009999.g006
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Fig 7. Virus replication, eye disease, latency, and reactivation after infection with avirulent HSV-strain KOS virus. WT and M1-/-

mice were ocularly infected with 2 X 105 pfu/eye of avirulent HSV-1 strain KOS following corneal scarification as described in Materials

and methods. A) Virus replication in tears of infected mice. Tear films were collected on days 1–7 PI and virus titers were determined

by standard plaque assays as described in Materials and methods. Each point represents the mean ± SEM of 32 eyes per group: B and C)

Eye disease. Corneal scarring/corneal disease and angiogenesis were examined on days 3, 5, 7, 10,14 and 28 PI as described in Materials

and methods. Scores represent the average ± SEM from 10 eyes on days 3, 5, 7 and 10, while 30 eyes for each group of mice on days 14

PLOS PATHOGENS Effect of M1 macrophages on ocular HSV-1 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009999 October 15, 2021 15 / 32

https://doi.org/10.1371/journal.ppat.1009999


Finally, we asked whether higher virus replication in the eye correlates with faster reactiva-

tion in M1-/- mice, in contrast to its lack of correlation with latency levels. Virus reactivation

was analyzed by explanting individual TG from infected mice on day 28 PI. Consistent with

latency levels, time of reactivation was also similar between WT and M1-/- mice (Fig 7E.

p>0.05). Thus, in M1-/- mice the time to explant reactivation correlated with the level of

latency.

Overall, the above results following KOS virus infection suggest that the absence of M1

macrophages affects early stages of virus replication and eye disease, but not latency-reactiva-

tion. This is in line with the function of the innate immune response to infection in the absence

of immunity to the infection [24]. It also confirms the important role of macrophage subtypes

in protecting from eye disease [25].

Possible factors causing mortality in M1-/- mice

M1-/- mice used in this study are in a C57BL/6 background but, in contrast to parental mice,

we have shown that M1-/- mice are highly susceptible to infection with virulent HSV-1 strain

McKrae but not to the avirulent strain KOS. To determine what factors, contribute to high

mortality, we looked at 754 myeloid innate immunity genes to identify cells being recruited

into the eye and brain. WT and M1-/- mice were ocularly infected with 2 x 105 pfu/eye of HSV-

1 strain McKrae without corneal scarification. Corneas and brain were isolated on day 4 PI

(the peak of virus replication in the eye) and total RNA was isolated from three mice per group

and analyzed on an nCounter FLEX platform as described in Materials and methods.

Differentially expressed genes were identified in WT and M1-/- infected mice by normaliz-

ing samples to housekeeping genes in infected WT mice. The list of statistically significant

upregulated and downregulated genes in infected corneas (Fig 8A) and brain (Fig 8B) is

shown. Of the 158 genes in M1-/- mice, 142 were upregulated in cornea after infection and the

first 22 significantly upregulated genes are shown (Fig 8A, all significantly differ from their

corresponding genes in WT infected mice, upregulated). The 20 significantly downregulated

genes compared to WT mice, are shown in Fig 8A (all significantly differ from their corre-

sponding genes in WT infected mice, downregulated). Of the many upregulated genes in cor-

neas, CCL5 and CD86 were upregulated in M1-/- mice and are known to be M1 markers and

are widely expressed in a variety of other cells, e.g., NK cells, dendritic cells, and memory T

cells [26,27]. CCL5 also has a role in inflammation, chemotaxis, and immune cell migration

[28]. CCL5 are known to act as chemoattractant for TH1 cells and other primary immune cells

[29]. We also saw significantly higher Chil3 gene expression in corneas from infected M1-/-

mice compared to WT mice (21.49-fold) (Fig 8A, upregulated) which is a marker for M2 mac-

rophages along with other M2 markers, e.g. ARG1, Mrc1 and Fizz1 [30]. CCL7 is expressed in

various cell types, e.g., stromal cells, airway smooth muscle cells, and keratinocytes, under

physiological conditions, and in tumor cells under pathological conditions. CCL7 was

and 28 PI. p-values were determined using two-way ANOVA; D) LAT expression in TG of infected mice. To analyze latency levels in

the TG of latently infected mice on day 28 PI, 20 TG per mouse group were harvested, and quantitative RT-PCR was performed on

individual TG from each mouse. In each experiment, the estimated relative LAT copy number was calculated using standard curves

generated from pGEM-5317 as described in Fig 6. GAPDH expression was used to normalize relative LAT RNA expression in the TG.

p-values were determined using one-way ANOVA; and E) Explant reactivation in TG from latently infected mice. TG from latently

infected mice were individually isolated on day 28 PI. Each individual TG was incubated in 1.5 ml of tissue culture media at 37˚ C.

Media aliquots were removed from each culture daily for up to 5 days and plated on indicator RS cells to assess the appearance of

reactivated virus. Results are plotted as the number of TG that reactivated daily. Numbers indicate the average time that TG from each

group first showed CPE ± SEM. Reactivation is based on 10 TG for WT mice and 8 TG for M1-/- mice. p-values were determined using

one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1009999.g007
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upregulated in M1-/- mouse corneas by 9.37-fold relative to WT mouse (Fig 8A, upregulated)

after infection and has potent chemoattractant activity for a variety of leukocytes, e,g. mono-

cytes, eosinophils, basophils, dendritic cells (DCs), NK cells, and activated T lymphocytes.

CCL7 also recruits a leukocyte subtype to infected tissues to address pathologic invasion and

fine-tune the immune response [31]. Most importantly, HSV-1 gB was significantly upregu-

lated in M1-/- mouse corneas (11.71-fold relative to WT) after infection (Fig 8A, upregulated).

ICP22 level was significantly upregulated in M1-/- mouse corneas (14.65-fold relative to

WT) after infection (Fig 8A, upregulated). Higher expression of gB and ICP22 transcripts in

M1-/- infected mouse corneas also confirm higher virus titers in the eyes of M1-/-infected mice.

In contrast, expression of HSV-1 gK in infected M1-/- and WT mouse corneas was similar (S1

Fig). To address inflammation activity in infected corneas, IL-1β, a potent pro-inflammatory

cytokine [32], was also significantly upregulated in M1-/- mice (11.35-fold) (Fig 8A, upregu-

lated). Gzmb, a pro-inflammatory gene expressed by CD4+ cells, mast cells, activated macro-

phages, neutrophils, basophils, dendritic cells (DCs), and T regulatory cells [33–37], was

upregulated by 6-fold in M1-/- infected corneas compared with WT corneas (Fig 8A, upregu-

lated). We found no difference in the expression of Arg1, NOS2, IL-4, IL-6, IFNγ, CD4, CD8,

FOXP3, CD25, or Prf1 which are mainly involved in macrophage or T cell identification and

differentiation (S1 Fig).

Fig 8. Nanostring gene expression analysis of infected cornea and brain on day 4 PI. WT and M1-/- mice were ocularly infected with 2 X 105 pfu/eye of

McKrae virus without corneal scarification. Corneas and brain were collected on day 4 PI and total RNA from pooled corneas per mouse and individual

brain were isolated. Total RNA concentration in each well remained at 20 ng/μl. Expression of the 764 gene myeloid immune panel was analyzed as

described in Materials and methods. Differentially expressed genes were identified for each group by normalizing samples to housekeeping genes and

infected WT mice. A) Upregulated and downregulated genes in cornea after infection. Out of 158 genes totally expressed, the first 22 upregulated genes and

the first 20 downregulated genes in infected corneas of M1-/- mice are shown: B) Upregulated and downregulated genes in brain after infection. Out of 31

genes totally expressed, 19 were upregulated, and 12 were downregulated in brain of M1-/- mice when compared to WT infected mice; and C) Venn

Diagram showing common genes expressed in corneas and brain of infected mice. IL4rα, Itgb2 and Kit were commonly expressed in corneas and brain of

infected mice with different p-values. N = 3 mice corneas or brain.

https://doi.org/10.1371/journal.ppat.1009999.g008
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In M1-/- mouse brains, 25 genes were upregulated, and 12 were downregulated relative to

WT infected mice (Fig 8B). However, looking at gene expression in the brain, we found mini-

mal differences in upregulated and downregulated gene expression in M1-/- mice relative to

that of WT mice (Fig 8B). We saw no significant difference in HSV-1 gB expression in brain

(S1 Fig) signifying that virus is not replicating as efficiently in brain as in infected corneas on

day 4 PI. Venn diagrams illustrated 158 and 31 upregulated or downregulated genes in cornea

and brain of M1-/- mice relative to WT mice (Fig 8C). However, only three common genes

[IL-4rα, Itgb2, and Kit were detected in cornea and brain of infected mice (Fig 8C)]. These

three common genes followed a contrasting pattern of expression in infected corneas and

brain with higher fold difference in corneas and very minor expression in brain relative to WT

mice. IL-4 which acts through IL-4rα is an anti-inflammatory cytokine with a crucial role in

regulating macrophages [24]. Kit is a tyrosine kinase receptor expressed on some fully differ-

entiated immune cells, e.g. dendritic cells, natural killer cells, and mast cells, highlighting its

possible role in the pathogenesis of a wide variety of inflammatory diseases [38]. Finally,

ITGβ2 (Integrin Subunit β2) combines with different alpha chains to form different integrin

heterodimers and among its related pathways are MET, which promotes cell motility, integrin

pathway, blood-brain barrier, and immune cell transmission [39].

We further analyzed these results using Metascape. Upregulated and downregulated genes

in infected corneas and brain in each group were analyzed to determine their associations with

relevant genetic pathways (Fig 9). The top two upregulated pathways identified in M1-/- mouse

corneas were inflammatory response (GO:0006954) and leukocyte migration (GO:0050900)

(Fig 9A), which directly correlate with our results. The top two downregulated pathways in

M1-/- mouse corneas were erythrocyte homeostasis (GO:0034101) and regulation of DNA-

binding transcription factor activity (GO: 0051090) (Fig 9B). The top two upregulated path-

ways in M1-/- mouse brains were: Hematopoietic cell lineage (ko04640) and positive regulation

of vasculature development (GO:1904018) (Fig 9C). Lastly, the top downregulated pathways in

M1-/- mouse brains were transcriptional regulation by RUNX1(R-MMU-8878171) and muscle

structure development (GO:0061061) (Fig 9D).

Taken together, our results suggest that the loss of M1 macrophages enhances the inflam-

matory immune response, which is the likely cause of lethality in M1-/- mice.

Discussion

Herpes simplex virus type 1 (HSV-1), also known as herpes stromal keratitis, is a major cause

of impaired vision in humans [4,40] and the type of infiltrating immune cells following acute

virus replication and after reactivation from latency may protect from, or cause a pathologic

response to, infection [41–44]. After ocular HSV-1 infection and in the absence of previous

infection, innate immune cells playing important role in clearing virus from the eye [45–47].

Thus, the influx of cellular infiltrates into the eye have considerable importance after ocular

HSV-1 infection [48]. We recently evaluated the time-course of various immune cell infiltra-

tions into the cornea of infected mice from 1 hr to 28 days PI [5]. We noted a significant

increase in the total macrophage population after 12 h PI in infected mouse corneas that was

primarily due to infiltration of CCR2+ migratory macrophages, mostly in M1 status (MHC

II+). The number of CCR2- resident macrophages, mostly unpolarized (M0), increased gradu-

ally over time and peaked at 48 h PI. Further, resident M2 macrophage levels peaked at 12 h

PI, concurrent with M1 macrophage infiltration. Thus, macrophages are early-responders to

virus infection and their levels correlated strongly with HSV-1 replication as we reported pre-

viously [49–52]. In another of our past studies, we showed that macrophages play a very critical
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role in preventing T cell autoreactivity [53]. Depletion of macrophages by clodronate treat-

ment resulted in CNS demyelination associated with CD4+ T cells in ocularly infected mice.

Based on their polarization, macrophages are divided into M1 (classically polarized) and

M2 (alternatively polarized) macrophages [7]. Macrophage activation status creates a delicate

balance between M1 and M2 phenotypes [8] and increased M2 macrophage expression corre-

lated with higher phagocytosis and higher primary virus replication and latency, while the

absence of M2 macrophages did not significantly alter HSV-1 infectivity relative to wild-type

mice [14]. To continue our previous work on roles of M1 and M2 macrophages [9,10], we gen-

erated knockout mice lacking M2-/- by deleting GATA3 in macrophages [14,54]. Our current

study used conditional knockout mice lacking STAT1 expression in macrophages (i.e., lacking

M1 expression and referred to as M1-/- mice), to study the role of M1 macrophages in control-

ling HSV-1 infection, [15,19]. As expected, these mice had significantly less Arg1 than did WT

macrophages, while NOS2 levels were similar in M1-/- mice and WT mice. In this study we

showed that macrophages from M1-/- mice are more susceptible to infection than are macro-

phages from WT mice. Previously, human blood monocytes [55–57] and BM-derived macro-

phages [58–61] were both shown to be resistant to HSV-1 infection. Similar to macrophages

isolated from M1-/- mice, macrophages isolated from STAT1-/- mice are also highly susceptible

Fig 9. Gene ontology expression in corneas and brain of infected WT and M1-/- mice. A and B) Upregulated and downregulated

pathways in corneas of infected M1-/- mice. Following Nanostring analysis, the genes were further analyzed by Metascape and based on

this analysis the top two upregulated pathways in infected corneas were: inflammatory response (GO: 0006954) and leucocyte migration

(GO: 0050900). The top two downregulated pathways were: erythrocyte homeostasis (GO:0034101) and regulation of DNA-binding

transcription factor activity (GO: 0051090); and B and C) Upregulated and downregulated pathways in brain of infected M1-/- mice. The

top two upregulated pathways in infected brains were: Hematopoietic cell lineage (GO: ko04640) and positive regulation of vasculature

development (GO:1904018). The top two downregulated pathways were: transcriptional regulation by RUNX1(R-MMU-8878171) and

muscle structure development (GO:0061061).

https://doi.org/10.1371/journal.ppat.1009999.g009
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to HSV-1 infection [20]. However, after HSV-1 infection, STAT1-/- macrophages had higher

virus titers than M1-/- infected macrophages. Similar to STAT1-/- mice, the absence of respon-

siveness to IFNα and IFNγ in macrophages isolated from M1-/- mice may contribute to their

susceptibility to HSV-1 infection [62–66]. Moreover, studies using an HIV infection model

have shown M1 polarized macrophages are susceptible to virus infection and can recruit other

cell populations like monocytes and T cells to the inflammation site [67].

Innate immune cells including neutrophils, macrophages, NK cells, dendritic cells and γδT

cells play a role in clearing virus from the eye [3], but very few studies have evaluated the role

of M1 macrophages and their function in HSV-1 infection. In this study, we demonstrated the

significance of M1 macrophages in controlling virus replication in the eyes of mice infected

with both virulent HSV-1 strain McKrae and avirulent HSV-1 strain KOS. Similar to this

study, STAT1-/- mice had significantly higher virus replication in their eyes than did WT mice

[68]. Activation of the IRF/STAT signaling pathway by IFNs and TLR push macrophages

toward the M1 phenotype (via STAT1) and IL-13 and IL-4 push macrophages toward the M2

phenotype (via STAT6) [69]. STAT1 and IRF7 are particularly important during virus infec-

tions because of their prominent role in regulating antiviral functions. When the activation of

these genes is disrupted, successful virus infection can be established [70]. Thus, absence of the

M1 phenotype leads to higher virus replication in vitro and in vivo. Similarly, macrophages

polarized toward the M1 phenotype by IFNγ treatment inhibit Ebolavirus (EBOV) infection in

mouse and human macrophages and in vivo administration of IFNγ reduces the morbidity

and mortality rate in infected mice [71]. In contrast to this study, depletion of macrophages by

liposomes containing dichloromethylene diphosphonate (L-Cl2MDP) did not significantly

alter virus replication in the eyes of infected mice [72]. The lack of any effect on virus replica-

tion could be due to the lack of complete depletion of macrophages by L-Cl2MDP that ranges

from 70–90% due to the tissues that was tested for the absence of F4/80+ expression [73,74].

STAT1 reduces virus infection and inflammatory responses in infected mice [23]. Similar

to this study, we have shown that the absence of M1 macrophages in M1-/- mice leads to higher

virus replication and mice succumb to infection around day 8–9 PI. This may be due to higher

viral replication in M1-/- mice and enhanced inflammatory innate immune responses. STAT1

is one of the transcription factors expressed by M1 macrophages can drive activation of inter-

feron stimulating genes and mediate antiviral activity in vivo and in vitro, which are crucial for

host defense against virus infections [75]. Several other studies have demonstrated the impor-

tance of STAT1 in controlling viral replication and associated pathogenesis [64,76]. Absence

of STAT1 has a similar effect in mice infected with LCMV, suggesting that STAT1 plays a key

role in protection and survival of infected mice [77]. Fully functional STAT1 is crucial to pro-

tect the nervous system from neurotropic virus infection and immunopathology [78]. To

establish the importance of M1 macrophages in protecting against infection with a virulent

strain HSV-1, we performed adoptive transfer of M1 macrophages derived from WT mice into

M1-/- mice. The M1-/- recipient mice displayed less virus replication in their eyes and were par-

tially rescued from death after M1 transfer, probably due to the short half-life of macrophages

after transfer [79,80]. Hence, our transfer experiment showed that M1 macrophages are crucial

in controlling virus replication and thus survival.

In this study we have shown that M1-/- mice are highly susceptible to infection with virulent

HSV-1 strain McKrae. Similarly, infection of M1-deficient mice with Cryptococcus neoformans
increases fungal replication and lung inflammation leading to death of infected mice [19]. In

addition to the high susceptibility of STAT1-/- mouse macrophages to HSV-1 infection, they

are also highly sensitive to infection by other microbial pathogens and viruses [62–66,78]. In

contrast to the higher susceptibility of M1-deficient mice to virulent McKrae virus infection,

their infection with avirulent HSV-1 strain KOS caused no death despite the mice having
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increased corneal scarification. To test the susceptibility of STAT1-/- mice to infection, we

infected them with avirulent HSV-1 strain KOS (2 X 105 pfu/eye) without corneal scarification

and used WT 129SVE parental mice as controls. All 24 WT 129SVE mice survived ocular

infection (100% survival), while 5 of 24 129SVE-STAT1-/- mice survived ocular infection (21%

survival). These differences were highly significant using Fisher exact test. Thus, in contrast to

the absence of STAT1 in macrophages (i.e., M1-/- mice in this study), the global absence of

STAT1 in STAT1-/- mice makes them susceptible to even the avirulent strain of HSV-1. In

humans, partial STAT1 deficiency leads to mycobacterial and viral diseases [81,82]. Taken

together, our study and studies done in different disease models, illustrates the importance of

M1 macrophages in host-pathogen interactions. The absence of STAT1 using LysM-Cre mice

may also affect the levels of neutrophils in M1-/- mice but the reduction in the levels of neutro-

phils in these mice is unlikely to affect HSV-1 infectivity since studies have shown that neutro-

phils are dispensable for providing protection against HSV-1 infection [83–85].

The process of M1-M2 polarization is highly dynamic and plastic in nature. After induction

by pro-inflammatory mediators, M1 macrophages produce significant amounts of pro-inflam-

matory cytokines (TNFα, IFNγ, IL-6, and IL-12) [12,86]. In contrast, M2 macrophages, which

are induced by exposure to IL-4, IL-13, IL-10, or glucocorticoids, do not secrete high levels of

pro-inflammatory cytokines but do produce high levels of anti-inflammatory cytokines (IL-10,

TGF-β, and IL-1 receptor antagonist), as well as the enzyme, arginase 1 (ARG1) [86,87]. In this

study we have shown that macrophages isolated from M1-deficient mice following infection

with HSV-1 secreted significantly more GM-CSF, IL-1α, IL-1β, IL-5, IL-6, IL-9, IL-10, IL-12

(p40), IL-12 (p70), LIF, LIX, IP-10, KC, MCP-1, MIP-1α, MIP-1β, MIP-2, MIG, RANTES

(CCL5), and TNF-α than did WT infected macrophages. These results confirm the previous

report that M2 macrophages participate in the blockade of inflammatory responses [12]. Look-

ing further into the cause of higher viral replication, death, and eye disease in M1-/- mice, we

analyzed the mechanism of cellular influx produced after HSV-1 infection into the cornea and

brain of infected mice. Using a panel of mouse myeloid innate immune genes, we found that

after infection the inflammatory pathway was upregulated in corneas of M1-/- mice relative to

WT mice. CCL5, CCL7, IL-1β, CCL12, and CCL19 were all upregulated in corneas of M1-/-

mice, which promoted inflammatory reflux into the corneas of infected M1-/- mice. In addition

to upregulated CCL5 in corneas of M1-/--infected mice, HSV-1 infected macrophages from

M1-/- mice also had significant CCL5 upregulation. CCL5 is chemotactic for T cells,

eosinophils, and basophils, and is involved in leukocyte recruitment into inflammatory sites

[88]. We also found elevated CCR5 expression in the CNS of HSV-2 infected mice [89] and

severe HSV-1 encephalitis was associated with CCR5 upregulation in the CNS of infected mice

[90].

We found that increased virus replication and inflammatory cytokines/chemokines in the

eyes of mice during primary infection correlated with the absence of M1 macrophages. HSV-1

infection is a severe eye disease and virus infection triggers the host immune response [91].

This influx of pro-inflammatory cytokines and chemokines could produce a cytokine storm

that worsens the disease after infection. The term cytokine storm was first used in an influenza

infection model to describe the pro-inflammatory nature of cytokine overproduction in a

short time and is associated with uncontrolled pro-inflammatory responses and significant

immunopathology [92]. Development of a cytokine storm with attendant pulmonary damage

has subsequently been reported in other viral, bacterial, and fungal infections and more

recently, in COVID-19 [93,94]. Our Luminex and Metascape results clearly demonstrate that

the inflammatory pathway takes the lead in pathology of infected M1-/- mice. Pathology associ-

ated with HSV-1 infection is a consequence of the host immune response mounted after virus

infection [4]. Thus, the absence of M1 macrophages contributes to increased eye disease.
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However, the absence of M1 macrophages did not alter levels of latency-reactivation in M1-/-

mice relative to WT mice. Thus, higher virus replication in the eye and higher eye disease did

not correlate with the level of latency-reactivation in the absence of M1 macrophages. The

absence of this correlation is consistent with our previous work showing that M2 anti-inflam-

matory macrophages protect mice from latency-reactivation [9,10,14]. Consequently, M1 mac-

rophages play an important role during primary viral infection.

In summary, our results show that the absence of M1 macrophages was associated with

increased inflammation and increased virus replication in the eyes of infected mice. Our study

also showed that: 1) the transfer of M1 macrophages can rescue mortality and morbidity in

HSV-1 infected M1-/- mice; 2) M1 macrophages play a key role in early phases of infection and

in clearing virus replication; and 3) M1 pro-inflammatory macrophages play a more important

role than in M2 macrophages during primary HSV-1 infection. Finally, in contrast to our

recent published study showing that M2-deficient mice behave similar to WT mice [14], mice

lacking M1 macrophages become highly susceptible to HSV-1 infection.

Materials and methods

Ethics statement

All animal procedures were performed in strict accordance with the Association for Research

in Vision and Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision

Research and the NIH Guide for the Care and Use of Laboratory Animals (ISBN 0-309-05377-

3). Animal research protocols were approved by the Institutional Animal Care and Use Com-

mittee of Cedars-Sinai Medical Center (Protocols #5030 and #8837).

Mice

6-8-week-old C57BL/6 WT mice were purchased from The Jackson Laboratory (Bar Harbor,

ME, USA). LysMCreSTAT1flfl [B6.129P2-Lyz2tm1(cre)Ifo/J-StattmBiat] mice of similar age were

used with a conditional Stat1 null allele in macrophages and was developed by M. Mueller

(Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna,

Vienna, Austria) [15]. The Cre in LysMCreSTAT1flfl [B6.129P2-Lyz2tm1(cre)Ifo/J-StattmBiat]

mice knockout STAT1 in macrophages and Cre is not active in mast cells, NK cells, basophils,

and eosinophils and is markedly low in dendritic cells compared with macrophages [95–97].

LysM-Cre is extensively used to achieve genetic manipulation in mouse [98]. The M gene in

LysM is expressed weakly in myeloblasts, moderately in immature macrophages, and strongly

in both mature macrophages and macrophage-rich tissues [99]. In a comparative analysis of

multiple myeloid cell-specific Cre reporter strains, about 90–100% of macrophages were tar-

geted by the LysM-Cre mouse line. Mice with an inactivation of both copies of the LysM gene

develop normally and are fertile [100]. The absence of STAT1 expression in macrophages

blocked M1 activation in LysMCreSTAT1flfl mice, thus throughout this study we are calling

these mice M1-/-. 129SVE-STAT1-/- and 129SVE mice were purchased from Taconic Biosci-

ences (Rensselaer, NY, USA).

All mice were bred and maintained in the Cedars-Sinai Medical Center pathogen–free ani-

mal facility. Homozygous pups appeared to be healthy and were of normal size and body

weight.

Viruses and cells

Plaque-purified, virulent HSV-1 strain McKrae, avirulent strain KOS, and GFP-VP22 viruses

(a gift from Peter O’Hare; Marie Curie Research Institute, Surrey, United Kingdom) were used
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in this study. GFP-VP22 is a recombinant virus that contains the gene encoding a major tegu-

ment protein, VP22, linked to green fluorescent protein (GFP) [101,102]. Rabbit skin (RS)

cells were used to prepare virus stocks, culture mouse tear swabs, and determine growth kinet-

ics. RS cells were grown in Eagle’s minimal essential medium supplemented with 5% fetal

bovine serum.

Genotyping by PCR

For genotyping, tail snip samples were collected and lysed at 55˚C overnight in 100 μl lysis

buffer (100 mM Tris-HCl, pH 8.5, 5 mM EDTA, 0.2% SDS, 200 mM NaCl, and 1 mg/ml pro-

teinase K). After diluting the lysate 1:10 in distilled water, 1 μl was used as a PCR template.

Ocular infection

Mice were infected with 2 X 105 pfu per eye of McKrae virus as an eye drop in 2 μl of tissue cul-

ture media as we described previously [103]. Corneal scarification was not performed prior to

infection with McKrae virus. For KOS virus infection, mice received 2 X 105 pfu per eye of

KOS virus with corneal scarification as we described previously [104]. Before corneal scarifica-

tion and ocular infection, mice were anesthetized with ketamine + dexmedetomidine. Follow-

ing anesthesia and ocular infection, buprenorphine was administered by subcutaneous

injection. Buprenorphine was administered again the morning after infection.

Preparation of macrophages from bone marrow

Femoral bones were dissected and all remaining tissue on the bones was removed. Each bone

end was cut off and bone marrow was expelled. Bone marrow cells were cultured for 6 days.

To differentiate and activate macrophages, 20ng/ml M-CSF and GM-CSF [Peprotech, Rocky

Hill, NJ Catalog no. 315–02 (M-CSF) and 315–03 (GM-CSF)] was added along with the cells

to be cultured, as we described previously [14,20]. On day 3, M-CSF and GM-CSF were added

again to new media, and cells were returned to the incubator until day 6. On day 6, media was

removed, and cells were washed three times with PBS to remove floating cells. Macrophages

adhered to tissue culture dishes were scraped off and counted for procedures described below.

Flow cytometric analysis were done to determine the percentage of F4/80+ (for macrophages)

and CD11c+ (for DCs) cells in isolated adherent culture following staining the cells with anti-

F4/80 APC (Clone BM8; Cat no. 123115) and anti-CD11c BV421 (Clone N418; Cat no.

117330) mAbs from BD Biosciences, San Jose, CA and Biolegend USA. Stained cells were

gated for F4/80+ and CD11c+ cells as shown in S2 Fig. Percentage of positive macrophages

detected in this study is in line with previous studies [105,106]. Post experiment data analysis

was performed using FlowJo software v10.7.1 (BD Biosciences).

Activation and infection of bone marrow-derived macrophages

BM-derived macrophages described above were seeded at 2 X 105 cells per well in a 24-well

plate. After overnight incubation, medium was replaced with fresh complete DMEM contain-

ing 50 ng/ml of murine IFNγ (Peprotech, Rocky Hill, NJ) and 100 ng/ml of lipopolysaccharide

(LPS; Sigma-Aldrich, St. Louis, MO) for M1 activation, or complete DMEM containing 10 ng/

ml of murine IL-4 (Peprotech) for M2 activation as we described previously [9,10,54]. On the

following day, cells were infected with 0.1 pfu/cell or 1 pfu/cell of HSV-1 strain McKrae for 1

hr. Infected cells were then washed three times with PBS and fresh complete DMEM was

added to each well. Infected cell monolayers were frozen at 12 and 24 hr PI. After two cycles of
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freeze thawing of infected cells, virus titer was determined by standard plaque assay using RS

cells as described [52].

Phenotype confirmation of macrophages isolated from M1-/- mice in vitro
Monolayers of unpolarized, or M1 or M2 polarized, macrophages derived from WT and M1-/-

mice were infected with 1 pfu/cell of McKrae virus at 37˚C for 24 hr. Infected cells were har-

vested and total RNA was isolated as described below to measure NOS2 (M2 marker) and

Arg1 (M1 marker).

Phagocytosis assay

Phagocytosis assay on BM-derived macrophages generated as above from WT and M1-/- mice

was performed using a Phagocytosis Assay Kit (IgG-FITC) from Cayman Chemical (Ann

Arbor, Michigan) as previously described [14]. Cells were gated for total leukocyte population

by SSC-A vs FSC-A. Macrophage (F4/80+) population was gated from the total leukocyte pop-

ulation and total F4/80+ population was assessed for FITC only which represented percentage

of phagocytosis. Phagocytosis was measured using FACS DIVA software.

Luminex xMAP immunoassay (magnetic bead kit)

BM cells isolated from WT and M1-/- mice were cultured and differentiated into macrophages

as described above. Differentiated macrophages were infected with 1 pfu/cell of HSV-1 strain

McKrae for 24 h. Media from infected cells were collected and Luminex assays were performed

in the Immune Assessment Core at the University of California, Los Angeles (UCLA, CA)

using mouse 32-Plex Magnetic Cytokine/Chemokine Kits purchased from EMD Millipore

(Billerica, MA) and used according to the manufacturer’s instructions as we described previ-

ously [9,22]. Fluorescence was quantified using a Luminex 200 instrument (Luminex Corp,

Austin, TX).

Viral titers from tears of infected mice

Tear films were collected on days 1–7 PI from WT and M1-/- mouse eyes infected with HSV-1

strain McKrae or KOS virus using a Dacron-tipped swab. Each swab was placed in 1 ml of tis-

sue culture medium and squeezed. The amount of virus was determined by standard plaque

assay on RS cells as described previously [107].

Monitoring corneal scarring/corneal disease and angiogenesis

The severity of corneal scarring/corneal disease lesions in mouse corneas was examined by slit

lamp biomicroscopy on days 14 and 28 PI. Scoring scale was: 0, normal cornea; 1, mild haze; 2,

moderate opacity; 3, severe corneal opacity but iris visible; 4, opaque and corneal ulcer; 5, cor-

neal rupture and necrotizing keratitis, as we described [108]. The severity of angiogenesis on

days 14 and 28 PI was recorded using on a 4 pt scale in which a grade of 4 for a given quadrant

of the circle represents a centripetal growth of 1.5 mm toward the corneal center. Scores of the

four quadrants of the eye were summed to derive the neovessel index (range, 0–16) for each

eye at a given time point [108]. Each cornea was examined and the mean ± SEM was calculated

for each group.

In vitro explant reactivation assay

WT and M1-/- infected mice were sacrificed on day 28 PI and individual TG were removed

and cultured in tissue culture media as described [9,109]. Media aliquots were removed from
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each culture daily and plated on indicator RS cells to detect reactivated virus. As media from

explanted TG cultures was plated daily, we could determine the time at which reactivated virus

first appeared in the explanted TG cultures.

RNA extraction, cDNA synthesis, and TaqMan RT-PCR

TG from individual mice were collected on day 28 PI, immersed in RNA stabilization reagent

(RNA Later, Thermo Fisher Scientific, Waltham, MA, USA), and stored at −80˚C until pro-

cessing. Total RNA was extracted as described [110,111]. Levels of LAT RNA from latent TG

were determined using custom-made LAT primers and probe as follows: forward primer, 50-

GGGTGGGCTCGTGTTACAG-30; reverse primer, 50-GGACGGGTAAGTAACAGAGTCT

CTA-30; and probe, 50-FAM-ACACCAGCCCGTTCTTT-30 (amplicon length = 81 bp).

For corneal tissues and cultured cells, total RNA was extracted and 1ug of total RNA was

reverse transcribed using a high-capacity cDNA reverse transcription kit (Applied Biosystems,

CA) according to the manufacturer’s protocol. mRNA expression levels of genes in the study

were determined using: (1) NOS2; assay ID (Thermo Fisher), Mm00440502_m1; amplicon

size, 66 bp; (2) ARG1; assay ID, Mm00475988_m1; 65 bp; and (3) gB-specific primers were

used to measure viral transcripts in corneas of infected mice on day 4 PI (forward, 50-AACG

CGACGCA CATCAAG-30; reverse, 50-CTGGTACGCGATCAGAAAGC-30) and probe (50-

6-carboxyfluorescein: FAM-CAGCCGCAGTACTACC-30); amplicon size 72 bp. GAPDH was

used as a loading control in all experiments. Quantitative real-time PCR (qRT-PCR) was per-

formed using the TaqMan gene expression assay kit in 384-well plates on ABI QuantStudio 5

(Applied Biosystems, Foster City, CA). Real-time PCR was performed in triplicate for each tis-

sue sample. The threshold cycle (Ct) values, representing the PCR cycle at which there is a

noticeable increase in reporter fluorescence above baseline, were determined using SDS 2.2

software. Copy number of LAT RNA and gB RNA were calculated using a standard curve gen-

erated using pGEM5317-LAT and pAc-gB1 DNA, respectively as we described previously

[110,112].

Nanostring gene expression analysis

WT and M1-/- mice were ocularly infected with 2 X 105 pfu/eye of HSV-1 strain McKrae. On

day 4 PI, cornea and brain tissues from infected mice were excised and total RNA was isolated.

Total RNA concentration of each well remained at 20 ng/μl. Hybridization was performed in a

total volume of 18 μl hybridization cocktail (3 μl of reporter Codeset, 2 μl of Reporter plus, 5 μl

of hybridization buffer, 3 μl of capture mix, and 5 μl of sample) were mixed and centrifuged.

Nanostring analysis was performed in a thermocycler at 65˚C for 20 hr. Samples were in a

12-well PCR strip that was loaded into the MAX/FLEX nCounter Prep (Nanostring Tech, Seat-

tle, Washington) loaded with consumables such as reagent plates and a cartridge for the

hybridization to take place. The preparation station ran for 3 hr, after which the cartridge was

transferred to the Digital Analyzer (Nanostring Tech, Seattle Washington) for imaging analy-

sis. A field of view of 240 was used for the experiment, and the Digital Analyzer ran for an

additional 3 hr for each cartridge.

For nanostring gene expression analysis, the gene panel nCounter Mouse Myeloid Innate

Immunity Panel was used (Cat no. XT-CSO-MM112-12), which contains probes for 754

genes, including 20 internal reference genes (8 negative, 6 positive, and 6 housekeeping) for

data normalization. In addition to the 754 genes used, we customized the panel to include ten

more gene probes including three HSV-1 genes (gB, gK, and ICP22) and seven additional

inflammatory and lymphocyte T cell markers not included in the original mouse myeloid

panel (CD4, CD8, Foxp3, Gzmβ, CD25, CD103 (ITGAE), and Prf1). RNA was purified with
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RNAeasy (Qiagen), as previously described [110] and analyzed with the nCounter platform.

The nSolver software 4.0 was used to analyze nanostring gene expression values and for princi-

pal components of probe counts, fold change and pathway analysis (Metascape).

Statistical analysis

For all statistical tests, p-values less than or equal to 0.05 were considered statistically signifi-

cant and marked by a single asterisk (�). P-values less than or equal to 0.001 were marked by

double asterisks (��). A two-tailed student t-test with unequal variances was used to compare

differences between two experimental groups. A one-way ANOVA test was used to compare

differences among three or more experimental groups. All experiments were repeated at least

three times to ensure accuracy.
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