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A B S T R A C T

Objective: Sleep problems is the most common side effect of methylphenidate (MPH) treatment in ADHD youth
and carry potential to negatively impact long-term self-regulatory functioning. This study aimed to examine
whether applying machine learning approaches to pre-treatment demographic, clinical questionnaire, en-
vironmental, neuropsychological, genetic, and neuroimaging features can predict sleep side effects following
MPH administration.
Method: The present study included 83 ADHD subjects as a training dataset. The participants were enrolled in an
8-week, open-label trial of MPH. The Barkley Stimulant Side Effects Rating Scale was used to determine the
presence/absence of sleep problems at the 2nd week of treatment. Prediction of sleep side effects were per-
formed with step-wise addition of variables measured at baseline: demographics (age, gender, IQ, height/
weight) and clinical variables (ADHD Rating Scale-IV (ADHD-RS) and Disruptive Behavior Disorder rating scale)
at stage 1, neuropsychological test (continuous performance test (CPT), Stroop color word test) and genetic/
environmental variables (dopamine and norepinephrine receptor gene (DAT1, DRD4, ADRA2A, and SLC6A2)
polymorphisms, blood lead, and urine cotinine level) at stage 2, and structural connectivities of frontostriatal
circuits at stage 3. Three different machine learning algorithms ((Logistic Ridge Regression (LR), support vector
machine (SVM), J48) were used for data analysis. Robustness of classifier model was validated in the in-
dependent dataset of 36 ADHD subjects.
Results: Classification accuracy of LR was 95.5% (area under receiver operating characteristic curve (AUC)
0.99), followed by SVM (91.0%, AUC 0.85) and J48 (90.0%, AUC 0.87) at stage 3 for predicting sleep problems.
The inattention symptoms of ADHD-RS, CPT response time variability, the DAT1, ADRA2A DraI, and SLC6A2 A-
3081T polymorphisms, and the structural connectivities between frontal and striatal brain regions were iden-
tified as the most differentiating subset of features. Validation analysis achieved accuracy of 86.1% (AUC 0.92)
at stage 3 with J48.
Conclusions: Our results provide preliminary support to the combination of multimodal classifier, in particular,
neuroimaging features, as an informative method that can assist in predicting MPH side effects in ADHD.

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by symptoms of inattention, hyper-
activity, and impulsivity. Methylphenidate (MPH) is the most

frequently prescribed first-line therapeutic agent for ADHD, and it is
reportedly effective in approximately 70% of children with the disorder
(Santosh and Taylor, 2000). MPH is generally well tolerated by the
patients and severe adverse events are rare. A recent meta-analysis also
demonstrated that MPH has favorable tolerability and good efficacy in
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child and adolescents and could be recommended as first-choice med-
ication (Cortese et al., 2018). However, MPH is associated with a dis-
tinctive pattern of relatively common, less severe, but often impairing
side effects that vary from one individual to another as in most psy-
chiatric conditions (Cortese et al., 2013; Vitiello, 2008). From a clinical
perspective, the goal of the initial titration of MPH treatment would be
to establish the best therapeutic response at the lowest dose with the
fewest side effects. Although there has been a considerable degree of
interest in the predictors of therapeutic response to MPH on the
grounds of optimizing individual treatment, limited work has been
done in depth examining the predictors of MPH side effects. Given the
importance of minimizing side effects in establishing the optimal
therapeutic dose of MPH, it could be clinically useful to identify any
biological/cognitive characteristics within the patients that determine
the occurrence of adverse events.

In the current study, we aim to identify predictors of the occurrence
of sleep problems, which is one of the most common side effects of MPH
treatment in ADHD youth (Feldman and Reiff, 2014). Sleep side effects
are important for several reasons that are directly relevant to opti-
mizing clinical care. First, considerable data (both correlational and
causal) indicates that sleep loss negatively impacts daytime attention
and mood in youth (Baum et al., 2013; Beebe, 2011; Beebe et al., 2009,
2010). As such, sleep side effects may be notably counterproductive to
optimal treatment response (Lee et al., 2011), emerge more frequently
in stimulant-naïve group (Wigal et al., 2012) and a reason of dis-
continuation (Wigal et al., 2006). Second, several studies indicate that
sleep problems precede the onset of mood disorders (e.g., Gregory et al.,
2009), raising concern that this side effect could increase vulnerability
to comorbid problems with mood in ADHD youth. Finally, increasing
evidence suggests that sleep plays a critical role in aspects of brain
development and learning (Dahl, 2007; Ednick et al., 2009; Tononi and
Cirelli, 2006), with notable interplay between sleep and neural circuitry
involved in attentional and emotional control (e.g. fronto-striatal cir-
cuitry) (Beebe et al., 2009; Yoo et al., 2007). These converging evi-
dences suggest that sleep side effect followed by MPH treatment carry
potential to negatively impact long-term self-regulatory functioning
(Stein, 1999; Van der Heijden et al., 2007).

Shared features of neural systems governing attention and sleep/
wake regulation may partially explain high rates of sleep problems as
side effects of MPH treatment. The presumed therapeutic action of MPH
involves the dopaminergic and noradrenergic neurotransmitter systems
in prefrontal and striatal regions (Wilens, 2008). In particular, MPH
increases dopamine and norepinephrine concentrations in the pre-
frontal cortex. Increases in dopamine and norepinephrine by MPH are
thought to increase wakefulness and lead to enhanced performance on
tasks requiring vigilance and mental awareness, as well as to produce
decreased need for sleep or sleep disturbance (Huang et al., 2011;
Wisor et al., 2001). Although the exact mechanism is unclear, many of
the neurotransmitter systems (e.g., dopamine, norepinephrine, ser-
otonin) and brain regions (prefrontal and striatal [caudate, putamen])
involved in the regulation of sleep/wakefulness (Lazarus et al., 2013;
Vetrivelan et al., 2010) are also related to the regulation of attention/
arousal and pharmacological mechanisms of psychostimulants
(Owens et al., 2013). As such, indices and correlates of functioning in
key neural systems (e.g. fronto-striatal) involved in both sleep/wake
and attention regulation could help to identify those youth at highest
risk for sleep side effects following MPH use.

Dopaminergic and noradrenergic genes have been implicated in
modifying the therapeutic response to MPH (Wilens, 2008). The do-
pamine transporter gene (DAT1) and the dopamine D4 receptor gene
(DRD4) are the most extensively studied (Arnsten, 2011;
Froehlich et al., 2010). The alpha-2A adrenergic receptor gene
(ADRA2A) and the norepinephrine transporter gene (SLC6A2) have also
been the focus of recent studies (Mick and Faraone, 2008). Candidate
genetic predictors of MPH side effects have been reported. For instance,
Stein and colleagues demonstrated that side effects varied as a function

of the DAT1 polymorphism (Stein et al., 2005). McGough and collea-
gues found that an increased risk of irritability was associated with
dopamine gene variants (McGough et al., 2006). However, to date,
there is no study examining objective biological markers that can pre-
dict sleep problems as a side effect of MPH treatment in ADHD.

In addition to genetic factors in ADHD, it is possible that environ-
mental risk factors (e.g., lead, nicotine) and interplay between genetic
predisposition and environmental exposure modulate neurocircuits and
neurotransmitter systems related to action of MPH (Nigg et al., 2010).
As for neuropsychological endophenotypes of ADHD, the continuous
performance test (CPT) and the Stroop color word test (SCWT) have
been employed to measure neurocognitive functioning and its changes
with MPH treatment in ADHD (Kebir et al., 2009; Kim et al., 2013).
Thus, these variables may have clinical utility as predictors of treatment
response in ADHD. With regard to neuroimaging measures, diffusion
tensor imaging (DTI) has emerged as a powerful technique for
searching clinically relevant biomarkers or measuring response to
treatment in psychiatric disorders (van Ewijk et al., 2012). DTI research
into ADHD has yielded support to the frontostriatal model of the dis-
order (Casey et al., 2007; van Ewijk et al., 2012).

Machine learning is an area of artificial intelligence concerned with
the construction and study of systems that can learn from data
(Orru et al., 2012). Recent evidence indicates that the application of
machine learning classification techniques to psychiatric data may
allow prediction of treatment response or side effects at the individual
level (Orru et al., 2012). It is hoped that these methods could inform
and assist clinicians to make more effective clinical decisions prior to
treatment and would lead to fewer unsuccessful trials. To our knowl-
edge, there has been no study that applied machine learning ap-
proaches to predict side effects of MPH treatment in ADHD.

In this study we applied machine learning approaches using pre-
treatment demographic, clinical questionnaire, environmental, neu-
ropsychological, genetic, and neuroimaging information (or features) to
predict the presence or absence of MPH side effects in ADHD youth.
Based on the similarities in neurotransmitter systems and neural cir-
cuitry involved in both attention and sleep regulation, we hypothesized
that the biological/cognitive correlates of dopamine/norepinephrine
neurotransmitter systems and prefrontal-striatal neurocircuits in ADHD
would show significant predictive potential for differentiating between
the patients who will develop and not develop sleep problems as a side
effect to MPH administration.

2. Methods

The present study included 83 ADHD subjects (9.5 ± 2.6 years, 65
boys) recruited from the Seoul National University Hospital in Korea.
ADHD was diagnosed according to DSM-IV criteria using the Kiddie-
Schedule for Affective Disorders and Schizophrenia-Present and
Lifetime Version (K-SADS-PL) (Kaufman et al., 1997). ADHD patients
with an intelligence quotient (IQ) below 70, a past or an ongoing his-
tory of either tic disorder, obsessive compulsive disorder, language
disorder, learning disorder, convulsive disorder, pervasive develop-
mental disorder, schizophrenia, bipolar disorder, or brain damage, a
past history of taking stimulants or atomoxetine longer than 6 months,
or a recent history of taking stimulants or atomoxetine over the last 4
weeks were excluded from the study (Hong et al., 2014). The study
protocol was approved by the institutional review board for human
subjects at the Seoul National University Hospital. Detailed information
about the study was given to parents and children, and written in-
formed consents were obtained prior to study entry. At baseline, the
parents completed the ADHD Rating Scale-IV (ADHD-RS) (DuPaul et al.,
1998) and Disruptive Behavior Disorder rating scale (DBD) (Silva et al.,
2005), and the participants undertook the CPT (Greenberg and
Waldman, 1993), SCWT (Golden, 1978), genetic/environmental
testing, and DTI scans.

The participants were enrolled in an 8-week, open-label trial of
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MPH. Initial doses of MPH were maintained for 2 weeks, and the doses
were adjusted at the 2nd and the 4th week of treatment. The doses were
titrated upward until sufficient therapeutic effects were achieved, on
the basis of the subjects’ and the parents’ reports of symptom im-
provement and adverse effects, and then the doses were maintained for
the remainder of the 8 weeks. After enrollment at baseline, our study
involved four visits at the 2nd, 4th, 6th and 8th weeks. At each visit, we
interviewed both the participants and their parents using the Barkley
Stimulant Side Effects Rating Scale (Barkley et al., 1990) to determine
the presence/absence of side effects. This is a 17-item scale of com-
monly reported adverse events associated with MPH treatment in
ADHD. The “insomnia or trouble sleeping” question was used to de-
termine the presence or absence of sleep problems. If the answers from
the participants and their parents were incongruent, we thoroughly
examined the reason why one of them reported sleep problems while
the other didn't. After discussion, the interviewer, a well-trained child
and adolescent psychiatrist, decided the occurrence of sleep problems if
difficulty in falling asleep were at least one day per week after starting
MPH treatment. Determination of the sleep side effects was conducted
at the 2nd week of the treatment to examine innate susceptibility to
sleep side effects at initial dose of methylphenidate whose effects could
be similar across participants. In addition, all subjects were retained at
the 2nd week without reporting considerable suffering from side effects
and deciding to drop-out from the current study.

Genomic DNA was extracted from whole blood lymphocytes using a
G-DEXTM II Genomic DNA Extraction Kit (Intron, Korea). The DRD4
exon III VNTR polymorphism and the 40-base pair VNTR polymorphism
located in the 3’-UTR of DAT1 were genotyped, as previously described
(Hong et al., 2012). For the ADRA2A and SLC6A2, the detection of a
single nucleotide polymorphism was based upon analysis of primer
extension products generated from previously amplified genomic DNA,
using a chip-based matrix-assisted laser desorption/ionization time-of-
flight (MALDI-TOF) mass spectrometry platform (Sequenom, California,
USA). The ADRA2A (MspI and DraI) and SLC6A2 (G1287A and A-
3081T) polymorphisms were genotyped as previously described
(Hong et al., 2012). As for environmental factors, we measured blood
lead and urine cotinine based on the evidence of our prior ADHD re-
search (Cho et al., 2010). For the lead measurement, a volume of 5 ml
of venous blood was collected from each child in metal-free tubes and
samples were assayed using previously described methods (Kim et al.,
2010). We used urine cotinine as a biomarker for environmental to-
bacco smoke exposure and it was measured using cotinine direct ELISA
kits (BioQuant, San Diego, CA, USA), as previously described
(Cho et al., 2013).

The image acquisition and processing implemented herein was
based on standard protocols and methods, and is identical to our recent
analysis performed in the same cohort (Hong et al., 2014). In brief, for
each individual, we seeded streamlines throughout all of white matter
and reconstructed the connectome using Automated Anatomical La-
beling (AAL) atlas (Tzourio-Mazoyer et al., 2002). The network-based
statistic (NBS) (Zalesky et al., 2012, HYPERLINK " 2010) (http://www.
nitrc.org/projects/nbs/) was used to identify regional brain networks
showing a significant between-group difference in inter-regional con-
nectivity strength. We identified networks that comprised axonal fiber
bundles traversed by a different number of streamlines between ADHD
patients and healthy controls (Hong et al., 2014). A tract-averaged FA
value was extracted for each fiber bundle, by averaging the FA values
over all voxels intersected by at least one streamline. We utilized the
track-averaged FA value of the ADHD group in the current study. Ex-
cluding drop-outs and participants with severe head motion (absolute
displacement >5 mm estimated by rmsdiff function built in FMRIB
Software Library v6.0), neuroimaging data of 67 subjects (including 8
subjects with sleep problems) was available for stage 3 analysis. For this
study, analysis focusing on direct frontostriatal connectivity was per-
formed using the 10 frontal lobe structures (except the olfactory cortex,
paracentral lobule, and supplementary motor area) and two major

striatal regions (the caudate nucleus and putamen) (Tzourio-
Mazoyer et al., 2002). Streamlines connecting between a frontal and a
striatal ROIs were isolated, resulting in a total of 80 pair-wise con-
nections (i.e., 40 within each hemisphere and 40 crossing the hemi-
spheres). Mean FA was extracted from each existing pair-wise connec-
tion.

We used Waikato Environment for Knowledge Analysis (WEKA)
(Hall et al., 2009), an open source machine learning framework, to
apply and evaluate performance of various classification algorithms to
differentiate between patients who developed and did not develop sleep
side effects. In the dataset, the above-noted genetic, environmental,
neuroimaging, neuropsychological, and clinical attributes were in-
cluded (see Table 1). In addition, demographic and clinical attributes of
age, gender, IQ, height and weight at baseline, and initial MPH dose

Table 1
Demographic, clinical, and neuropsychological characteristics, genotype fre-
quencies, and lead and cotinine levels of the ADHD participants at baseline.

Training dataset
(n = =83)

Independent dataset
(n = =36)

Age, mean (SD) years 9.5 (2.6) 8.5 (2.5)
Female, n (%) 18 (21.7%) 4 (11.1%)
IQ, mean (SD) 107 (14) 110.4 (15.9)
Handedness (right), n (%)a 74 (90.2%) 34 (94.4%)
CPT, mean (SD)
Omission errors 65.7 (20.8) 65.0 (20.6)
Commission errors 64.2 (16.9) 67.1 (20.8)
Response time variability 63.4 (17.6) 63.9 (16.2)
SCWT
Word test 45.2 (11.0) 38.9 (11.9)
Color test 45.0 (10.5) 43.4 (11.0)
Color-Word test 46.5 (11.7) 43.1 (13.2)
Interference 53.6 (11.3) 52.1 (8.7)
ADHD-RS, mean (SD)
Inattention 15.1 (5.7) 14.8 (5.7)
Hyperactivity-impulsivity 11.0 (5.9) 11.2 (6.5)
Total 26.1 (10.5) 26.0 (10.8)
ADHD subtypes, n (%)
Combined 44 (53.0%) 17 (47.2%)
Inattentive 32 (38.6%) 8 (22.2%)
Hyperactive-impulsive 1 (1.2%) 4 (11.1%)
Not otherwise specified 6 (7.2%) 7 (19.4%)
Comorbid disorders, n (%)
Oppositional defiant

disorder
16 (19.3%) 4 (11.1%)

Anxiety disorder 2 (2.4%) 3 (8.3%)
Genotype
DAT1, n (%)a

With 10/10 66 (80.5%) 32 (88.9%)
Without 10/10 16 (19.5%) 4 (11.1%)
DRD4, n (%)a

With 4/4 42 (51.2%) 21 (58.3%)
Without 4/4 40 (48.8%) 15 (41.7%)
ADRA2A MspI, n (%)a

G/G 38 (46.3%) 16 (44.4%)
G/C+C/C 44 (53.7%) 20 (55.6%)
ADRA2A DraI, n (%)a

C/C 22 (26.8%) 9 (25.0%)
C/T+T/T 60 (73.2%) 27 (75.0%)
SLC6A2 G1287A, n (%)a

G/G 34 (41.5%) 21 (58.3%)
G/A+A/A 48 (58.5%) 15 (41.7%)
SLC6A2 A-3081T, n (%)a

A/A 29 (35.4%) 7 (19.4%)
A/T+T/T 53 (64.6%) 29 (80.6%)
Environmental measure
Lead (µg/dL), mean (SD) 1.5 (0.4) 1.4 (0.5)
Cotinine (µg/g), mean (SD) 0.7 (1.3) 0.9 (1.4)

ADHD, attention deficit hyperactivity disorder; ADHD-RS, ADHD rating scale;
ADRA2A, alpha-2A adrenergic receptor gene; CPT, continuous performance
test; DAT1, dopamine transporter gene; DRD4, dopamine D4 receptor gene;
SCWT, Stroop color word test; SLC6A2, norepinephrine transporter gene.

a ADHD (n=82).
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were included for the dataset. We used Wrapper subset evaluation
method which evaluates attribute sets by using a learning scheme and
identifies features that optimize the prediction performance (Kohavi
and John, 1997) Wrapper subset evaluation method was used for fea-
ture evaluation and forward greedy hill-climbing augmented with a
backtracking algorithm to search and select the subset of feature space.
To avoid the overfitting and to increase the generalization of results,
Wrapper subset evaluation method was applied with ten-fold cross
validation. This gave list of features along with how many times they
were chosen (this varies from 0% to 100% time) out of ten folds. Fea-
tures which were chosen in each fold of ten-fold carried a selection
weight of 100% while features which were never selected had a se-
lection weight of 0%. The final feature subset used in this paper was
chosen from the feature space generated from each fold of ten-fold cross
validation. Generated feature space for this paper mostly included the
features which consistently performed well in each fold of ten-fold
(30% or more) cross validation stage. Following this method made the
results less prone to overfitting and more generalizable to new in-
stances. Features selected have a computational importance with or
without clinical relevance or importance; thus, an experienced clinician
should decide how to interpret the selected features.

We applied three different machine learning algorithms: support
vector machines (SVM), a decision tree algorithm (J48), and Logistic
Ridge Regression (a regression-based approach which handles multi-
collinearity well) with nested ten-fold cross validation to compare the
performance of various algorithms. Researchers recommended that it is
better to use nested ten-fold cross validation for evaluating the per-
formance of classifiers in case of small sample sizes (e.g., a sample size
less than 250) (Hawkins et al., 2003). We chose SVM which is com-
monly used for modeling complex nonlinear hypothesis spaces when
sample sizes are small. We used sequential minimal optimization (SMO)
algorithm for training the SVM classifier (Keerthi et al., 2001). We used
SVM with second order polynomial kernel and tuned the model for
optimum cost parameter from 1 to 100 (details are available upon re-
quest). J48 is an implementation of C4.5 decision tree algorithm
(Quinlan, 1996). in WEKA. J48 decision tree gives an outcome model
which is easy to interpret and applicable in clinical practice. Classifi-
cation accuracy and area under receiver operating characteristic (ROC)
curve (AUC) of these algorithms were compared to find the best clas-
sifier for sleep side effects. Based on the cost and burden of obtaining
various measures, we set up three stages (see below) and examined
whether classification accuracy and AUC could be improved by addi-
tion of the measures with each stage. We think that examining tests in
tranches based on increasing cost provides data to say whether or not
different groups of tests are worth the additional cost.

Stage 1: demographics (age, gender, IQ, height/weight) and clinical
information (ADHD-RS, DBD, initial MPH dose).
Stage 2: stage 1+ neuropsychological (CPT, SCWT) and genetic/

environmental (DAT1, DRD4, ADRA2A, SLC6A2, lead, cotinine)
measures.
Stage 3: stage 2+ neuroimaging measures (frontostriatal con-
nectivity of DTI).

Finally, we tested reproducibility and robustness of our classifier
models using an independent dataset. From the study titled “ADHD
translational research center” (http://clinicaltrials.gov/show/
NCT02623114), an independent group consisted of 36 ADHD subjects
(8.5 ± 2.5 years, 32 boys) were recruited from the Seoul National
University Hospital. All participants fulfilled the same inclusion and
exclusion criteria described above. Demographic, clinical, neu-
ropsychological, genetic/environmental and neuroimaging data were
collected in the same manner. For the estimation of frontostriatal
connectivity in the independent sample, we applied identical pre-
processing methods in the previous research of our group (Hong et al.,
2014), except NBS approach. Briefly, deterministic streamlines were
generated within 80 pair-wise connections of fronto-striatal circuit.
Streamlines selected as a key classifier in the training dataset were re-
gistered to FA map of each subject, then a tract-averaged FA value was
extracted as features representing structural connectivity. After ad-
ministration of MPH, sleep side effects at the 2nd week were rated from
each subject included in the independent dataset. A set of classifiers in
each stage was combined in a step-wise manner, then, applied for the
prediction of sleep side effects at the 2nd week of treatment using all 3
machine learning algorithms.

3. Results

3.1. Demographic and clinical characteristics

The initial mean dosage of MPH was 16.0 ± 6.2 mg per day (range,
10–36 mg per day) in the training data. The mean overall ADHD-RS
score decreased from 26.1 ± 10.5 at baseline to 17.9 ± 9.4 at the 2nd
week of treatment. Of the DSM-IV subtypes of ADHD, the combined
subtype was the most common (53.0%), followed by the inattentive
(38.6%) subtype (Table 1). Among the 83 ADHD subjects, 10 of them
developed sleep problems during the first 2-week of MPH trial.

In the independent data, initial mean dosage of MPH was
20.9 ± 9.3 mg (range, 5–45 mg per day), and ADHD-RS score at
baseline was 26.0 ± 10.8. The most common subtype of ADHD was
combined (47.2%), followed by inattentive subtype (22.2%). Sleep side
effects emerged to 15 of 36 subjects (41.7%) in the independent sample.

3.2. Prediction of sleep side effects of MPH treatment

In the training dataset, all three machine learning algorithms well
predicted the presence/absence of the sleep side effects after MPH
treatment at stage 1 (SVM, accuracy 89.7% (AUC 0.83); J48, accuracy

Table 2
Classification accuracy and area under receiver operating characteristic (ROC) curve (AUC) performance of the classifiers for predicting sleep problems.

Support Vector Machine J48 Logistic Ridge Regression
Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

Training dataset
Stage 1 89.7% 40.0% 97.1% 0.83 85.9% 20.0% 95.6% 0.76 85.9% 50.0% 91.2% 0.87
Stage 2 92.3% 40.0% 100% 0.87 83.3% 30.0% 91.2% 0.78 92.3% 70.0% 95.6% 0.92
Stage 3 91.0% 37.5% 98.3% 0.85 90.0% 25.0% 98.4% 0.87 95.5% 100% 94.9% 0.99
Independent dataset
Stage 1 58.3% 0.0% 100% 0.50 58.3% 0.0% 100% 0.50 58.3% 0.0% 100% 0.51
Stage 2 66.7% 40.0% 85.7% 0.63 72.2% 40.0% 95.2% 0.71 66.7% 40.0% 85.7% 0.66
Stage 3 66.7% 40.0% 85.7% 0.63 86.1% 86.7% 85.7% 0.92 69.4% 46.7% 85.7% 0.70

Stage 1: demographics and clinical information.
Stage 2: stage 1+neuropsychological/genetic/environmental measures.
Stage 3: stage 2+neuroimaging measures.
ADHD, attention deficit hyperactivity disorder; MPH, methylphenidate.
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85.9% (AUC 0.76); Logistic Ridge Regression, accuracy 85.9% (AUC
0.87), Table 2). Escalated AUC were found when combining neu-
ropsychological and genetic/environmental measures at stage 2.

Logistic Ridge Regression classification accuracy was 95.5% (sen-
sitivity 1.00; specificity 0.95; AUC 0.99) at stage 3 for predicting sleep
problems at the 2nd week of treatment (Table 2). Wrapper subset
evaluation method demonstrated the inattention symptoms of ADHD-
RS, CPT response time variability, the DAT1, ADRA2A DraI, and
SLC6A2 A-3081T polymorphisms, and the structural connectivities be-
tween the left middle frontal gyrus (orbital part) and left caudate, left
inferior frontal gyrus (orbital part) and left putamen, right middle
frontal gyrus and right putamen, left superior frontal gyrus (orbital
part) and right caudate, and left medial orbitofrontal gyrus and right
caudate as the most differentiating subset of features (Fig. 1). SVM and
J48 classification accuracies at stage 3 were 91.0% (sensitivity 0.38;
specificity 0.98; AUC 0.85), and 90.0% (sensitivity 0.25; specificity
0.98; AUC 0.87), respectively. Fig. 2 shows the AUCs of the classifiers.
Examining Logistic Ridge Regression, the best performing algorithm,
classification accuracy and AUC continued to improve between all
stages and was best at stage 3 (Table 2).

3.3. Performance validation of key subset of features in the independent
dataset

At stage 1, demographic and clinical features performed just above
the chance level classification accuracy in all three machine learning
algorithm (Table 2). However, step-wise combination of the differ-
entiating features enhanced prediction performance at stage 2 and 3.

After combination of structural connectivity features, J48 algorithm
predicted 86.1% (sensitivity 0.87; specificity 0.86; AUC 0.92) of the
sleep side effect at stage 3. Logistic ridge regression and SVM achieved
69.4% (sensitivity 0.47; specificity 0.86; AUC 0.70) and 66.7% (sensi-
tivity 0.40; specificity 0.86; AUC 0.63) accuracy, respectively at stage 3.

4. Discussion

To our knowledge, the present study is the first to apply machine
learning approaches using demographic, clinical neuropsychological,
genetic, environmental, and neuroimaging data together to predict
MPH side effects in ADHD. As hypothesized, the indices and correlates
of functioning in key neurotransmitter and neural systems involved in
both sleep/wake and attention regulation showed significant predictive
potential for sleep side effects following MPH treatment.

By using three different types of machine learning algorithm(SVM,

Fig. 1. Key fronto-striatal tracts in prediction of sleep side effects following methylphenidate treatment. This figure is a deterministic streamline data from single
subject which is visualized with the TrackVis Software. Tracts connecting (a) left middle frontal gyrus (orbital part) - left caudate and left inferior frontal gyrus
(orbital part) - left putamen (b) left superior frontal gyrus (orbital part) - right caudate, and left medial orbitofrontal gyrus - right caudate, and (c) right middle frontal
gyrus and right putamen were selected as differentiating features.MFG, middle frontal gyrus; SFG, superior frontal gyrus; OFG, orbitofrontal gyrus; Caud, Caudate;
Puta, Putamen.

Fig. 2. Comparison of AUC performance of the classifiers at stage 3. (a) Training dataset (b) Independent dataset. ADHD, attention deficit hyperactivity disorder;
AUC, area under receiver operating characteristic (ROC) curve.
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Logistic Ridge Regression and J48 decision tree), the presence/absence
of sleep side effects after MPH administration was successfully pre-
dicted in the present study. In the training dataset, all three algorithms
showed superior prediction performance. A step-wise combination of
neuropsychological and genetic/environmental measures (stage 2) as
well as neuroimaging features (stage 3) further increased the classifi-
cation accuracy and AUC. Current findings suggest that individuals
with sleep side effects following MPH treatment might have differential
profile across gene-brain-behavior. Differential treatment responses to
MPH by DAT1, DRD4 and ADRA2A DraI genetic polymorphisms
(Froehlich et al., 2011; Kim et al., 2010; Winsberg and Comings, 1999),
CPT performances (Rapport et al., 1986), or frontostriatal dysconnec-
tivity (Hong et al., 2015) have been found in ADHD subjects. Together
with those evidences, current findings may account for why sleep side
effects is present only in a subpopulation of ADHD patients.

Key features from training dataset could well predict presence/ab-
sence of sleep side effect after MPH treatment in the independent da-
taset. The best accuracy was achieved by the J48 algorithm, followed
by logistic regression and SVM. Decision trees have a strength in in-
corporating the interaction effects between variables (Zhao and
Zhang, 2008), while linear regression model and SVM do not take those
into account. Given the evidence that clinical phenotype is inevitably
inter-correlated with genetic or neurobiological changes (Prathikanti
and Weinberger, 2005), superior performance of J48 may attribute to
consideration of interactions among classifiers in the prediction of new
dataset.

Sonuga-Barke and colleagues found that side effects related to sleep
were not predictable from patients’ demographic and clinical char-
acteristics, such as age, gender, height, weight, and psychiatric co-
morbidity (Sonuga-Barke et al., 2009). They suggested that these side
effects may be predictable from correlates related to underlying me-
chanisms of action of MPH. Their finding and suggestion are in line
with our results, which showed that the classification accuracy and
AUC by Logistic Ridge Regression improved with the addition of neu-
ropsychological/genetic/environmental measures to demographics and
clinical information (85.9% to 92.3%, 0.87 to 0.92, respectively), and
further improved with the addition of neuroimaging measures (92.3%
to 95.5%, 0.92 to 0.99, respectively). Overall, our ability to predict
sleep side effects using all variables was successful. However, given the
current cost of the imaging and genetic studies and the relatively low
risk of treatment with MPH, we do not think that this is of substantial
immediate clinical utility.

It is important to note that the DAT1, ADRA2A DraI, and SLC6A2 A-
3081T polymorphisms were included in the most differentiating subset
of features. These polymorphisms were reported to be associated with
treatment response to MPH (Kim et al., 2010; Hong et al., 2012;
Park et al., 2013). Our prior research also suggested ADRA2A DraI as
one of the key features in predicting MPH treatment responders
(Kim et al., 2015). Considering prior evidence and pharmacogenetic
action of ADRA2A, norepinephrine pathway could play an important
role in both eliciting treatment response and adverse effects with regard
to MPH administration in ADHD. It has been well recognized that the
mode of action of MPH in ADHD treatment is in its blockade of not only
the dopamine transporter (DAT) but also the norepinephrine trans-
porter (NET) (Solanto, 1998; Spencer et al., 1996). In the frontal cortex,
where DAT density is low and NET density is higher, it is unlikely that
blockade of the DAT accounts for the elevation of dopamine levels in
this region. Thus, it has been postulated that dopamine is transported
by the NET in the frontal cortex, since dopamine has a higher affinity
for the NET as compared with its affinity for the DAT (Madras et al.,
2005). ADHD medications have one pharmacological effect in common,
which is to elevate extracellular levels of dopamine and norepinephrine
in the frontal cortex.

In the current study, serum lead and cotinine level were not selected
as key predictors of MPH-induced sleep side effects. These environ-
mental toxins have been associated with symptoms of ADHD in a

number of literatures (Cho et al., 2013; Froehlich et al., 2009) as well as
increased risk for sleep problems (Liu et al., 2015). However, evidence
that environmental toxins may increase sensitivity to sleep side effects
following MPH treatment has not yet been identified. Although we
could not find meaningful relationship between exposure to environ-
mental toxin and sleep side effects in the present study, potential me-
chanism of neurotoxicity induced by lead and cotinine, and their impact
on pharmacologic side effects may need further investigation.

Collectively, we could successfully predict sleep side effects after
MPH administration using several biological markers related with
ADHD. However, we did not assess co-existent sleep problems among
ADHD subjects at baseline. It has been suggested that subjective reports
of sleep disturbances also could be present in medication-free children
with ADHD (Konofal et al., 2010). Sleep problems in ADHD might be
multifactorial (Owens, 2005), however, underlying pathophysiology is
still less well understood. Further studies are needed to understand co-
occurrence of sleep problems in medication-free ADHD subjects.
Meanwhile, pharmacological actions of MPH on dopaminergic and
noradrenergic neurotransmitters (Wilens, 2008), and associated brain
circuits have been figured out clearly (Lazarus et al., 2013,
Vetrivelan et al., 2010). Here, we aimed to examine the occurrence of
sleep side effects particularly after MPH treatment based on biological
underpinning.

The application of our findings to real-world clinical care will re-
quire continued research examining the interplay of MPH, sleep side
effects, and treatment outcomes in ADHD. However, there are at least
two viable clinical approaches that could be used to manage patients
who are identified as vulnerable to sleep side effects, supporting the
clinical utility of this investigation. Namely, clinicians could 1) track
sleep and titrate medications to maximize therapeutic response while
minimizing sleep side effects, and/or 2) provide behavioral sleep in-
tervention or prevention strategies that have proven efficacy in psy-
chiatric populations (Haynes et al., 2006; Troxel et al., 2011).

There are several limitations to this study that deserve comment.
First, the sample size was small, and occurrence of sleep side effects
were only found in 10 among 83 participants in the training data.
Feature extraction can be affected by imbalance of classes, which might
be resulted in the low sensitivity of prediction models. Our findings
should be replicated in a larger sample. Second, this study was con-
ducted at one university center in Korea and, thus, we are unable to
make inference with regard to the generalizability across different re-
search centers or ethnic groups for any of the successful predictors
found in our results. Third, we were not able to collect objective data of
sleep problems such as polysomnography findings of the patients before
the start of MPH treatment. As noted above, we only examined the
occurrence of sleep side effects after MPH use; pre-existent sleep pro-
blems at baseline were not assessed. Fourth, genetic polymorphisms
included in our study were selected from several candidate gene asso-
ciation studies which had limited power and sample size. Further stu-
dies with genome-wide association design are needed to confirm whe-
ther SNPs associated with DAT or NET are involved in sleep side effects
following MPH treatment. Finally, the pharmacological treatment for
the ADHD subjects was with a single medication. The predictive po-
tential for other ADHD medications requires further investigation. The
specificity of the predictive markers of this study should be interpreted
cautiously since there was no placebo treatment arm.

In summary, the results of this study demonstrate that sleep side
effects following MPH treatment in ADHD can be identified at the in-
dividual level using a range of biological and cognitive measures in-
cluding genetic, neuroimaging, and neuropsychological data. From a
clinical perspective, our results provide preliminary support to the
combination of multimodal classifier, in particular, neuroimaging fea-
tures, as an informative method that can assist in predicting response
and adverse events to pharmacological treatments in ADHD. Prediction
of sleep side effects associated with MPH treatment would not only help
decide alternative treatment options initially such as using non-
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stimulants (e.g., atomoxetine, clonidine), but also reduce unsuccessful
trials and make preventive interventions including alarming the risk of
sleep side effects, providing behavioral intervention for sleep im-
provement or prescribing sleep medications (e.g., melatonin). Still, cost
of neuroimaging and genetic polymorphism tests are quite high, which
limits immediate utilization in the clinic. Further studies that examine
more extensive biological/cognitive correlates that may determine the
occurrence of sleep problems in medicated ADHD patients are needed
to provide a better understanding of the underlying pharmacological
mechanisms of MPH and its role on sleep-wake regulation.
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