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Abstract
The radiation of angiosperms is marked by a phenomenal diversity of floral size, shape, color,
scent, and reward. Through hundreds of years of documentation and quantification, scientists
have sought to make sense of this variation by defining pollination syndromes as the convergent
evolution of common suits of floral traits across distantly related species that have evolved by
selection to optimize pollination strategies. Now, with the rise in popularity of community
science platforms like iNaturalist, anyone – not just scientists – can collect data. Thanks to the
availability of high-quality community-science datasets, we have an unprecedented number of
observations of natural flowering plant diversity. These datasets provide an opportunity to
develop new tools and to examine new traits, such as flowering time, that may help further
characterize pollination syndromes. Here we test the hypothesis that flowering phenology can
also be an important trait of a pollination syndrome; particularly of the “hummingbird flower”
syndrome, which is usually characterized by red color, long corolla tubes, and exserted stamens.
We produced a novel flower color dataset by using GPT-4 with Vision (GPT-4V) to assign flower
color to 11,729 North American flowering plant species from community science photographs.
We then mapped those species-specific colors to 1,674,908 citizen scientist observations of
flowering plants. We demonstrate constrained flowering time in the eastern U.S. for species with
red or orange flowers relative to species with flowers of other colors. Importantly, the onset of
flowering corresponds closely to the arrival of hummingbirds. Our findings reveal an opportunity
to expand the suite of traits included in pollination syndrome and suggest that the hummingbird
pollination syndrome can include flowering phenology. Our methods demonstrate an effective
pipeline for leveraging the enormous amount of community science data by extracting valuable
information about patterns of trait variation.
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Introduction
Adaptation in response to selection for optimized pollination is fundamental to the

incredible diversification of flowering plants.1–4 The multi-dimensional response to selection has
generated the evolution of correlated suites of traits associated with particular pollination
strategies or pollinator vectors across angiosperms. Although agents of selection are complex
and the phenotypic responses are highly variable, these so-called pollination syndromes have
been a useful organizational theme for understanding the convergent evolution of flower color,
size, shape, smell, and reward.5–9 Here, we leverage community science data and create a
computer-vision-powered data extraction pipeline to compile an enormous dataset of North
American flowering plants. We use this dataset to explore pollination syndromes and test how an
additional trait – flowering phenology – can extend our knowledge of what it means to be a
“hummingbird flower.”

Pollination syndromes reflect convergent evolution of suites of traits across distantly
related plants in response to selection to optimize pollination strategies. For instance,
wind-pollinated (anemophilous) flowers typically lack visual or olfactory appeal, presenting
simple, inconspicuous blooms without bright colors or scents.9 In contrast, species pollinated by
bees or butterflies (entomophilous) feature conspicuous flowers with abundant pollen and nectar.
These flowers often possess specialized landing areas highlighted by UV-absorbing pigments to
attract their pollinators.10 Fly-pollinated (myophilous or sapromyophilous) plants may exhibit
less vibrant flowers, ranging from those with accessible nectar and pollen to blooms mimicking
the appearance and scent of decay or rotting meat, often in shades of maroon or brown with
speckled patterns.11,12 Meanwhile, hummingbird-pollinated (ornithophilous / “trochilophilous”)
flowers are typically bright red or orange, tubular in shape, wide, have exserted stamens, and
produce lots of nectar, catering to the feeding preferences of their avian pollinators.2,5,7 These
pollination syndromes are not universal and represent simplifications of broad patterns;
nevertheless, they can reveal dominant selective forces shaping reproductive strategies in
flowering plants.8

As with any attempt at finding general patterns in the complexity of biological life, the
ability to test the utility of pollination syndromes and expand upon the generalities of syndromes
is limited by data availability. Naturalists, evolutionary biologists, and botanists have been
compiling data over hundreds of years to formulate hypotheses about these syndromes, and yet
our datasets are small relative to the enormous diversity of natural variation. Efforts to organize
and standardize data across experiments have resulted in some useful datasets such as the TRY
Plant Trait Database.13,14 Although this database is very large and has been actively curated for
over 15 years, it is still limited in its scope – for example it only contains flower color data for
around 2,500 of the 15,000-20,000 flowering plant species in North America. Recently, datasets
that are orders of magnitude larger have been collected through community science projects.
This has been part of a movement to provide the general public with platforms, such as
iNaturalist (www.inaturalist.org), to document natural diversity. Yet these datasets often lack
curation, formatting, and trait specifications necessary for broader scientific inquiry. For
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example, of over 44 million iNaturalist observations of flowering plants (as of September 2024)
in our North American study area, only roughly half (53.7%) have research-grade species
identifications. Despite these limitations, the rise of community science platforms offers a
promising avenue for accessing large volumes of biodiversity data; this wealth of unstructured
data presents both a challenge and an opportunity for expanding our understanding of pollination
syndromes.15

The charismatic traits specifically associated with pollination syndromes, such as color,
are ideal types of traits to mine from community science datasets. Color is among the most
noticeable phenotypes to human observers, and perhaps unsurprisingly, some pollination
syndromes are associated with a specific color or set of colors. For example, yellow flowers tend
to attract generalist pollinators, blue flowers often attract bees, and flowers pollinated at night
(e.g. by bats or hawkmoths) tend to be white.9,16 These associations are thought to often be driven
by visual differences among pollinators – for example, many insects cannot see red and therefore
have innate preference for other colors.5,9,17,18 In contrast, hummingbirds can see in the long
wavelength spectrum and tend to specialize on red and orange flowers.5,9,17–19

Unlike flower color, one trait not typically included in pollination syndromes is flowering
time.20 However, limited studies have suggested that pollinator availability may broadly shape
where and when flowers of different colors occur. There are biogeographical patterns in some
flower colors – for example, white and yellow flowers are the predominant phenotype in the
arctic, where most pollinators are bees and flies.9,21,22 There are time-of-day patterns for some
cases - for example, white-flowered species tend to open at night when crepuscular (i.e., active
during twilight) or nocturnal pollinators such as hawkmoths and bats are active, and a previous
case study ties flowering phenology to hummingbird presence for an Andean plant species.9,23

However, it is still unknown if seasonal flowering phenology is more widely correlated with
pollination syndromes and related traits such as flower color.

We hypothesize that phenology is a key component of pollination syndromes, particularly
for red- and orange-flowering plants associated with hummingbird pollination. North America is
the ideal geographic region in which to test this hypothesis because of the spatial and temporal
structure of hummingbird movement in this region. The ruby-throated hummingbird,
Archilochus colubris, is the only species of hummingbird native to the eastern United States
(with the exception of rare vagrants). They spend their winters in Central America and then
migrate northward from March through May, where they breed, before migrating back to Central
America in the late summer.24 In contrast, hummingbirds are largely absent from the middle of
the United States, and several species (e.g. black-chinned, Anna’s, and rufous hummingbirds)
are present year-round along the west coast of the United States.

We predict that if the hummingbird pollination syndrome includes flowering phenology,
then the flowering times of red- and orange-flowering plants will be restricted in the eastern
United States, where pollination is limited by hummingbird migratory patterns. We expect no
such restriction in other regions of the U.S. or in species with other flower colors. Importantly
for our predictions, we observe a lag in the arrival of hummingbirds in the eastern U.S. relative
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to the overall onset of spring flowering. Between week 5 and week 12 of the year, flowers bloom
in the mid- to north-eastern U.S. without hummingbirds present. Given that red and orange
flowers are associated with the hummingbird pollination syndrome, we expect that these colors
will be depleted from this region during these early weeks of the year relative to other colors and
that the blooming of these plants will instead coincide with the arrival of hummingbirds after the
12th week of the year.

To test our hypotheses, we developed a novel pipeline that overcomes the challenge of
limited data availability by extracting large-scale trait data from community science observations
using an advanced computer vision model. Specifically, we mine the community science
platform iNaturalist alongside GPT-4 with Vision to efficiently analyze flower color patterns
across the U.S. This approach enables us to generate the most comprehensive dataset on North
American flower color to date. With this dataset, we test our hypotheses about
hummingbird-associated flowering phenology and demonstrate a scalable method for analyzing
large-scale phenotypic patterns in community science data.
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Figure 1: Summary of observation data. (A) Overall flowering phenology across all colors in the
dataset. While the average flowering time is roughly similar across latitudes, the range of
flowering times throughout the year decreases with increasing latitudes. Central black boxes
indicate the mean, and outer dashed lines indicate the 10th and 90th percentiles. (B) The flower
color frequencies in the iNaturalist data show similar patterns when broken down by species and
number of observations. The corresponding table can be found as Table S1. (C) Flower color
frequencies in the eastern U.S. (indicated by dashed overlay box on maps) in week 11 and week
21. In week 11, flowers are blooming throughout the eastern U.S., but hummingbirds have not
yet arrived. By week 21, hummingbirds have migrated up the eastern U.S. The flower color
distributions show a corresponding increase in the abundance of red and orange flower
observations in the eastern U.S. by week 21 compared to week 11.
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Figure 2: (A) Latitude of the northern edge (80th percentile of observations) of flower colors by
day of year and longitudinal section (sections visualized in panel B). The black line corresponds
to white flower color. Red and orange lag behind the other colors in the eastern U.S. (-96 to -59
degrees, right-most graph, indicated by dashed box). (B) Consolidated results from MaxEnt
maps corresponding to the difference in red and white flowering distributions in sliding windows
through the year. The color of each pixel corresponds to the number of days by which white
flower occupancy is inferred to occur before red flower occupancy for that pixel. Blue pixels
indicate where white flowers occur before red flowers. (C) Red vs. white flower normalized
abundance for each section of our study area (corresponding to grid overlaid on map in panel B)
across the day of the year.
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Figure 3: (A) The middle 50% latitude occupancy of red flowers, white flowers, hummingbirds,
and bumblebees by day of year within the study area. On the top row, red flowers and
hummingbirds are layered and white flowers and bumblebees are layered. The bottom row
highlights pollinator mismatch, with bumblebees layered on red flowers and hummingbirds
layered on white flowers. (B) Importance assigned to each variable in MaxEnt distribution
models for inferring the niche of white flowers (i) and red flowers (ii) in 15-day overlapping
windows through the year. Variables used for niche inference were seven environmental
variables, as well as the inferred hummingbird distribution for that window and the inferred
bumblebee distribution from that window. Black dividing lines indicate divisions between
seasons. Darker red indicates stronger inferred importance for predicting flowering distribution.
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Results
Generation of a North American flower color database.

We created a database of flower color for 11,729 North American flowering plant species
by combining occurrence data from the community-science website iNaturalist and GPT-4 with
Vision (GPT-4V) (pipeline summarized in Figure S1). This database includes 1,674,908
color-labeled observations, each of which is annotated as being in flower when observed and is
associated with a time, location and research-grade species identification. This final dataset was
filtered from a total of 1,763,821 occurrences of flowering plants from iNaturalist, including
13,378 species, that were associated with a phenology label “flowering” as of October 11, 2023.
GPT-4V was able to label the color of 88% of the species with only 1,637 species labeled as
“NAN” or “UNKNOWN” flower color. With these species labels we were able to map flower
color to 95% of the flowering plant occurrences from iNaturalist. The cost of using GPT-4V for
this task was under 100 USD.

The size of our dataset is substantially larger than the TRY Plant Trait flower color
dataset, which contains flower color for only 2527 species (2035 species overlapping with our
dataset) in our study area. Our dataset is also a more accurate assessment of color as evaluated by
human validation metrics. Specifically, out of a validation dataset of 250 species with a mix of
flower colors, the three authors agreed with each other on 90% of the color labels (mean = 225,
standard deviation = 3.60). The authors agreed with the GPT-4V color labels on 87% of species
(mean = 217, standard deviation = 3) and agreed with the TRY color labels on only 81.6% of the
species (mean = 204, standard deviation = 5.57). Furthermore, the authors visually inspected all
295 species labeled with red flowers from GPT-4V and were able to validate 85.4% of them
representing over 95% of the red-labeled occurrences from iNaturalist (38,840 out of 40,742
observations). The mismatch between the percentage of species correctly labeled and the
percentage of corresponding observations correctly labeled suggests that less-abundant species
were more likely to be mislabeled.

The GPT-4V-labeled dataset had over 1 million more observations and over 10,000 more
species than the TRY-labeled dataset, and more accurate color labels. Our query of iNaturalist
also retrieved 163,693 observations for hummingbirds and 408,406 observations of bumblebees
in North America for downstream analysis. These occurrences are similarly associated with time
and location data.

Patterns of flowering plants across North America.
Our enormous dataset of flowering plants reveals general patterns in phenology across

North America (Figure 1A). Nearly 50% of both the species observed and total occurrences in
the dataset belong to either the white or yellow color categories (Figure 1B). Red flowers only
make up approximately 2.5% of the species and occurrences. Combining all colors, the average
flowering time is consistent across all latitudes; however, the variance around the mean
decreases dramatically with increasing latitude. Lower latitudes tend to have a bimodal flowering
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pattern with a burst of blooming earlier in the year and a second burst late in the year, while
flowering at higher latitudes is confined to a shorter season.
As day of the year progresses from winter into spring, the number of flower observations
increases, particularly in northern latitudes (Video S1). This general pattern of increasing
occurrence data is also true for the two pollinators, bumblebees and hummingbirds. Observations
of hummingbirds are strikingly absent from the eastern United States in the first weeks of the
year and increase northward over time after the first three months of the year.

Red- and orange-flowering plants bloom later than other colors.
Flowering time of red- and orange-flowering plants lag behind other colors in the eastern

half of the U.S. When dividing flower observations by color, red- and-orange flowering plants
are conspicuously absent from the observation dataset in early spring, which corresponds to a
period of time when hummingbirds are also not observed in this area. For example, in week 11 of
the year, when hummingbirds have not yet migrated through the eastern U.S., red- and
orange-flowering observations are scarce. In contrast, by week 21 when hummingbird
observations are abundant, red and orange flowers are present and near their overall frequency in
the dataset (Figure 1C).

The difference in flowering time can be visualized by tracking the northern edge (latitude
of the northernmost 80th percentile of flowering times) of flowering for plants of each flower
color (Figure 2A). In the eastern U.S. (longitude -96 to -59), red- and orange- flowering plants
start flowering 20-50 days after all other colors (including white, blue, purple/pink, and yellow).
The lag begins about 20 days into the year, when flowers start blooming in the southeastern U.S.,
and red- and orange-flowering plants catch up to the other colors around day 120. There is more
springtime congruence among colors in the central and western U.S., although red flowers are
still limited in the extent of their northern distribution relative to other colors.

We quantified the extent of the flowering delay for red-flowered species across North
American by modeling flowering time of red- and white- flowering observations. We used
MaxEnt distribution modeling software to infer the probability of occurrence of flowering by
either white or red flowered plants for every pixel across North America for every day of the
year. We defined the first day of flowering as the first day of the year where the model inferred
the probability of occupancy for a flower color over a 0.5 threshold. The difference between red
and white flowering times is extensive (as indicated by heatmap shading in Figure 2B and by
Video S2). On average, white flowers are present 25.5 days (median=31.0, std=18.0) before red
flowers broadly across the eastern U.S. In Mexico, it appears that red flowers lead white flowers;
however, there was very limited data associated with the high-elevation regions where this
pattern was prominent, and white flower presence in some areas never passed the probability
threshold that we used to determine occupancy (these cells take the darkest color).

The pattern of delayed flowering in red and orange flowers is robust to overall abundance
of each flower color observed. To ensure patterns of flower time observations are not confounded
with patterns of overall abundance we also compare red and white flowering abundance

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.25.614826doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.614826
http://creativecommons.org/licenses/by-nc/4.0/


normalized to total abundance for each region of the study area (Figure 2C). As expected, the
flowering season in the northern latitudes is shorter than in the southern latitudes, as reflected in
the narrowness of the histograms for the northern latitudes. In the eastern U.S., white flowers
start blooming earlier than red flowers (the occurrence histograms for white flowers extend
farther to the lower values on the left compared to red flowers), particularly at middle latitudes
(29N to 49N). This pattern is less clear in other regions, in which peak flowering for red flowers
overlaps with or slightly precedes white flower peaks in the western and central longitude
regions.

Pollinators associated with flower color phenology differences.
Red flowering time tracked the occurrences of hummingbirds but not bumblebees.

Hummingbirds are known red-flower specialist pollinators, while bumblebees are considered to
be broadly generalist pollinators. We found a striking overlap between the distributions of red
flowers and hummingbirds (Figure 3A), as well as between white flowers and bumblebees. The
latitude range for white flowers and for bumblebees advances northward earlier in the spring
(beginning around days 20-40) than for red flowers and hummingbirds, both of which advance
steeply later in the spring (beginning around days 60-80).

We confirmed these observations by quantifying the degree to which pollinators can
predict the presence of each flower color. We ran species distribution models in MaxEnt to find
the distribution of each pollinator, hummingbirds vs. bumblebees, for each day of the year (in
15-day sliding windows). We then used these modeled distributions, along with environmental
variables, to fit species distribution models for red flowers and white flowers. We found that for
most of the year, and most importantly for the expansion northward in the springtime, bumblebee
distribution is the most important predictor variable for white flower occurrence (Figure 3B). In
contrast, for most of the year, hummingbird distribution is the most important predictor variable
for red flower occurrence (Figure 3B).

Discussion
We have created a novel pipeline using GPT-4V, a flexible artificial intelligence tool,

alongside community science data to compare the flowering phenologies of different colors of
flowering plants. We demonstrate that red- and orange-flowering plants in eastern North America
bloom later than those of other colors and coincide closely with the seasonal arrival of
hummingbirds, which preferentially visit red and orange flowers. Our results suggest that relative
phenology can, in some circumstances, be included as a pollination syndrome trait, expanding
our understanding of plant-pollinator interactions.

We compiled a large dataset of over 1 million iNaturalist observations from more than
10,000 North American flowering plant species. Each observation included a species
identification, geographic coordinates, flowering status, and assigned flower color. Our use of
GPT-4V for categorizing flower colors was highly successful, achieving accuracy comparable to
inter-author consistency and outperforming a well-known plant trait database.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.25.614826doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.25.614826
http://creativecommons.org/licenses/by-nc/4.0/


While our approach offers significant advantages, we acknowledge the limitations
inherent in using community science data. Longstanding methods for precisely measuring floral
color – e.g., pigment extraction, spectral reflectance analysis, and standardized photography –
are essential for research requiring fine-grained accuracy but limit the scale at which floral color
data can be analyzed.25,26 By using community science data together with computer vision, we
traded some precision for quantity, enabling us to construct a dataset quickly and at minimal
cost, while still maintaining high accuracy at the level of coarse color categories. To our
knowledge, this is the most comprehensive flower color dataset ever assembled for a geographic
region of this size. We also recognize known biases associated with iNaturalist data, such as
observations being concentrated in urban areas and showier flowers tending to be
disproportionately represented.27 However, since we are primarily examining broad, latitudinal
flowering patterns within each color group, we do not expect these biases to significantly impact
our results. Future research might incorporate herbarium specimens, which exhibit less
taxonomic and geographic bias than iNaturalist data.28

Previous studies have explored machine learning approaches for extracting color and
other information from plant image data, including from community science datasets.29–33

However, these methods have been limited by the need for extensive model training and manual
identification of the flowers within images, which restricts their scalability. In contrast, large
multimodal models (LMMs) like GPT-4V offer the advantage of generality due to their
pre-training on diverse datasets, eliminating the need for specialized training and manual
annotation. This generality enabled us to perform extensive sampling, enhancing the statistical
power of our analysis. Nevertheless, the LMM approach may not be universally applicable.
Targeted studies focusing on flower color in a more constrained set of taxa or using photos with
consistent composition and exposure might achieve finer-grained characterization. In such cases,
dedicated models specifically trained for these purposes could better capture subtle differences in
floral color, with biases that are easier to characterize and account for.

By capitalizing on our novel methodology, our study reveals biological patterns that
deepen our understanding of pollination syndromes. We focused on comparing red- and
white-flowering plants because their colors are easily distinguished, and they typically attract
different pollinators. By demonstrating that flowering time in red-flowering plants lags behind
that of white-flowering plants in the eastern U.S., our analysis underscores the influence of
pollinator availability on flowering phenology. While the phenology of white flowers
corresponded well with that of other colors in our analysis of North American plants, other
patterns in the data remain to be explored – for instance, the apparent early appearance of
maroon/brown flowers in the eastern U.S. relative to other colors.

These findings suggest that the convergent evolution toward hummingbird pollination
extends beyond the traditional physical floral traits (red, tubular flowers with exserted stamens)
associated with the hummingbird pollination syndrome. Specifically, we observe that in the
eastern U.S., flowers expected to be hummingbird-pollinated bloom later in the spring than those
of any other color, indicating that flowering phenology itself might be a facet of the
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hummingbird pollination mode, particularly in locations where hummingbird presence is
seasonally constrained. With climate change causing hummingbirds to arrive earlier at northern
latitudes, flowering phenology may come under strong directional selection to maintain
synchrony with pollinator availability.24,34 Although our analysis focuses on a single example of
phenology-related constraints, future analyses could extend this approach by examining other
seasonally constrained pollinators, exploring different geographic regions, or investigating
additional physical traits associated pollination syndromes (e.g., floral shape instead of floral
color). Such research is essential for refining our understanding of the conditions under which
flowering phenology functions as a pollination syndrome trait.

Future work at the intersection of phenology and community science data could further
scale up our data extraction approach to include more observations and/or additional traits. In
creating our dataset, we used a representative photo from each species to assign color to the
entire species, which excludes within-species variation. Reducing the task from labeling each
observation to labeling each species saved money, keeping the API use cost under 100 USD, and
was also necessitated by the rate limits of the GPT-4V preview model. As computer vision
models become more affordable and allow higher-throughput analysis, future approaches might
instead query each individual observation. This would account for possible color polymorphism
and enable us to assign flower color to a species based on a summary across many observations.
It would also eliminate the dependence on manually annotated “flowering” phenology through
iNaturalist, as we could directly determine whether the plant in each observation is flowering via
computer vision.

We anticipate that our iNaturalist-to-GPT-4V pipeline can be generalized to study other
aspects of floral phenotypes observable in community science data, such as investigating
replicated patterns of within-species floral variation. Additionally, we envision studying color in
a more fine-grained manner by treating color assignments as continuous variables in, for
example, RGB space. While extracting these values meaningfully from community science
photographs is challenging due to the lack of standardized color calibration across images,
advancements in automated photo calibration tools and computer vision models may soon
overcome these hurdles. Harnessing these emerging technologies alongside massive community
science datasets like iNaturalist could unlock unprecedented insights into plant phenotypic
diversity, transforming our understanding of global patterns of plant variation.

Materials and Methods
Study area.We limited our study area to the contiguous lower United States, northern Mexico,
and southern Canada with a latitude/longitude-bounded box ranging from -130 to -59 degrees in
longitude, and from 24 to 54 degrees in latitude.

iNaturalist occurrence data.We used the iNaturalist data export tool
(https://www.inaturalist.org/observations/export) to collect data from our study area for all
flowering plants (Angiospermae). We filtered the export to only include observations that were
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labeled as being in flower, had open geoprivacy, had photos, and whose identifications were
marked as research grade. For analysis of hummingbird and bumblebee distributions, we also
exported all observations of each of those groups (family Trochilidae and genus Bombus,
respectively) that had photos, had open geoprivacy, and were research grade.

GPT-4V flower color data. From the outset we intended to produce a large dataset of
observations of flowers matched to their corresponding flower colors. To maximize the size of
our dataset, we employed a new approach for bulk labeling of flower color, using a computer
vision model from generative AI. Our approach was to assign a flower color for each of the
species in the dataset and then to project these species-assigned colors back onto the full dataset
of occurrence data. To do this, we: 1) used the iNaturalist API to match each species to a
representative “default” photo from the iNaturalist website, and 2) used a cutting edge general
computer vision model to assign each image with a categorical label describing the color of the
flower. We interacted with the iNaturalist API in Python through the client “pyinaturalist.” We
queried each species individually using the “get_taxa” function and saved the returned
“default_photo” url alongside each species into a two-column dataframe – this dataframe had
species names in the first column and a link to each representative photo in the second column.

For the computer vision step, we used the OpenAI API, which allows us to
programmatically interact with OpenAI’s suite of generative AI models in Python. We used the
“GPT-4 with Vision” model, which in late 2023 – early 2024 was available in a rate-limited
preview capacity, by designating the model choice as "gpt-4-vision-preview". The GPT models
are designed to be very general, and the vision model can interpret basic features of both text and
photographs. For each query, we passed GPT-4V the url link to the representative species photo
along with the following instructions:
“Please adhere to very specific formatting in your response: three words separated onto three
lines (one word per line). The first line should indicate 'YES' or 'NO' to answer whether there is a
flower present. The second line should be one word from the following list, to best describe the
flower color in the photo: ['BLUE', 'BROWN', 'GREEN', 'ORANGE', 'PINK', 'PURPLE', 'RED',
'MAROON', 'WHITE', 'YELLOW','UNKNOWN','NAN']. The flowers might not match these
categories perfectly. Do the best you can. If in doubt, please be conservative and choose
'unknown'. The third line should indicate your assessment of the subjectivity of the answer -- it
should either be LOW, MEDIUM, or HIGH, where HIGH means that the choice of color
assignment seems highly subjective.”

TRY Plant Trait Database color data. To help benchmark our flower color inferences, we
accessed all non-restricted flower color data through the TRY Plant Trait Database. To do this,
we queried public data for the traits “flower color” (ID=207) and “corolla color” (ID=3866).
Like our GPT-4V-labeled data, the TRY data was associated with species. Because it is a global
dataset, we trimmed down the dataset to only those species present in the iNaturalist dataset from
our study area.
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Validation.We conducted a validation analysis to ensure reliability in categorical color label
assignments, focusing on the 250 species with the highest abundance that had flower color labels
available in both the GPT-4V and TRY datasets. Each of the three authors manually scored
flower color for all 250 species from the following pool of colors: blue, yellow, green, white,
purple / pink / violet, orange, red, maroon / brown, and black. We averaged pairwise
comparisons among the three authors with the GPT-4V and TRY labels. Given that multiple
possible colors are associated with some species in the TRY data, we considered it a match if any
of the TRY colors for a species corresponded with our assigned color. We also manually
validated all species labeled as red.

Analysis
We analyzed our data using a combination of R and Python notebooks. For the purposes of the
analysis, we combined the color labels of pink/purple/violet and brown/maroon.

Comparing northern edges of each flower color. Our primary focus initially was to illustrate
the relationship between time of flowering (converted to an integer “day of year” ranging from 0
to 365) and location, specifically latitude. We broke the dataset into three longitudinal columns,
representing “western” (-130W to -114W), “central” (-114W to -96W), and “eastern” (-96W to
-59W) North America. In each longitudinal subset, we recorded the latitude of the northern edge
of the distribution of each flower color across the ordinal dates of the year, using a sliding
window of 25 days. Specifically, for each color category and for each 25-day window, we
extracted all observations from our dataset with their corresponding latitudes, and recorded the
value 80th percentile using the R builtin quantile function. This gives us the northern latitude
edge of flowering for each flower color for each 25-day period.

Quantifying lag in flowering time across the landscape.We used niche modeling in sliding
windows to determine occupancy of flowering plants across the landscape for each flower color
through time. Distribution modeling is often used to infer the broad distribution of where a
species or group of species can or could occur given some observations of the species and
patterns of environmental variables. Instead of inferring occupancy of a species, we inferred
occupancy of a flower of a particular color. Separately for red and for white, we subset the
“flowering” observations in overlapping 15-day windows, sliding one day for each window. For
each data subset, we used MaxEnt species distribution modeling program (version 3.4.4) to
incorporate the observation data along with seven WorldClim 2.0 (10-minute) environmental
variables (annual mean temperature, maximum temperature of warmest month, minimum
temperature of the coldest month, annual precipitation, precipitation of the wettest month,
precipitation of the driest month, and elevation [from the Shuttle Radar Topography Mission,
accessed through WorldClim]) to predict, cell by cell, the probability of occupancy of that
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particular flower color during that particular window. The study area was represented by a
180x426 matrix.

Once we estimated occupancy of flowering, we calculated the extent to which red and
white flowers bloomed at different times. To do this, we identified the first day of flowering for
each color for each pixel as the point at which the MaxEnt-output value of that pixel was greater
than 0.5. With two matrices of “first day of flowering” values for red and white flowers
separately, we then subtracted the white flower matrix from the red flower matrix to get a matrix
for which each pixel represented the number of days by which white flowering time led that for
red flowers. When graphed, this represents the difference in flowering phenology of red and
white flowers across space. We calculated the mean, median, and standard deviation of cells of
this difference matrix in the eastern U.S. to quantify the extent to which white flowers lead red
flowers.

Comparing red vs. white flower abundance.With the datasets of just red and white flower
colors we summarize trends in flowering time by region for each color. We compared the relative
abundance of observations of each color in different parts of North America. To do this, we
preserved our previous three longitudinal columns, and we further subset the data by latitude into
6 rows, creating a 3x6 lat/lon grid over North America. Within each grid cell we created
histograms showing the normalized abundance of each color by ordinal day. This demonstrates
the different flowering distributions of the two colors over space and through time.

Pollinator associations – hummingbirds and bumblebees.We tested the hypothesis that
flowering time of red flowered plants is constrained in the eastern United States because this is
where ruby-throated hummingbirds are seasonal migrants in the eastern United States. We
investigated how well the presence of two different pollinators – hummingbirds, which are
strongly associated with pollinating red flowers, and bumblebees, which are generalist
pollinators that usually avoid red flowers – predicted the phenology of red and white
flowers.9,17,18,35 For our study area, we exported all research-grade iNaturalist observations for
bumblebees (genus Bombus) and hummingbirds (family Trochilidae). We used the pollinator
data for two analyses: comparing the 25% (trailing edge) and 75% (leading edge) latitudes of red
and white flower colors with the pollinators, and for niche modeling where the pollinator
distributions were used as predictors.

For the first analysis, we subset the data to look at the eastern United States, where
hummingbirds are widespread residents only during the late spring and summer. We used a
sliding window each day of the year (starting edge of the window) and we calculated the 25%
percentile latitude and the 75% percentile latitude. We repeated this across red flowers, white
flowers, hummingbirds, and bumblebees, so that for any day of the year we have an estimate of
latitude range. We then compared the distributions of flowering across latitude for these different
flower colors and pollinators.
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For the second analysis, we used MaxEnt for niche modeling. We first inferred
distributions for hummingbirds and bumblebees separately for each day of the year, using 15-day
sliding windows, linear models, and the seven predictor variables used for the flowering analysis
above. Once we had these results, we then turned to red and white flowers and again ran MaxEnt
for each day of the year. For these runs, we used 15-day sliding windows, linear models, and the
previous seven “environmental” predictors, but we also included two more predictor variables
for each run: the hummingbird and bumblebee distributions from the same window of the year.
After these runs finished, we examined variable importance to determine whether environmental
variables, hummingbird distributions, or bumblebees distributions were important in explaining
red vs. white flower distributions for each day of the year.
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