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Stress in poultry can lead to changes in body metabolism and immunity, which can
increase susceptibility to infectious diseases. However, knowledge regarding chicken
responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic
glucocorticoid similar to that secreted by animals under stress conditions, and has been
widely used to induce stress in chickens. Herein, we established a stress model in 7-day-
old chickens injected with Dex to elucidate the effects of stress on IBV replication in the
kidneys. The metabolic changes, immune status and growth of the chickens under stress
conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight
gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio
were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based
metabolomics method was used to examine differentially enriched metabolites in the
kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment
were identified, most of which were lipids and lipid-like molecules. The principal metabolic
alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine
and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected
the host’s tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In
addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in
chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6
production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the
replication of IBV. However, whether the increase in viral load in kidney tissue is associated
with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future
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experiments. In conclusion, chick growth and immune function were significantly inhibited
by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by
Dex. This study provides valuable insights into the molecular regulatory mechanisms in
poultry stress, and should support further research on the intrinsic link between cholesterol
metabolism and IBV replication under stress conditions.
Keywords: dexamethasone, stress, non-targeted metabolomic, coronavirus, IBV
INTRODUCTION

Animal stress is a complex, multidimensional and universal
phenomenon that is difficult to evaluate and has important
biological significance (Buwalda et al., 2012). Poultry stress is a
global problem that causes large economic losses and threatens
poultry health and welfare (Yang et al., 2014; Zaboli et al., 2019).
Multiple stressors are present during the growth of chickens,
including immune stress, oxidative stress, transport stress and
cold or heat stress (Sun et al., 2018; Guo et al., 2020; Goel et al.,
2021). Compared with mammals, chickens have a higher body
temperature and are extremely sensitive to temperature changes
during the breeding process (Lara and Rostagno, 2013; Collier and
Gebremedhin, 2015), particularly in cold regions (Blahová et al.,
2007). Cold or heat stress is the most common environmental
stressor in chickens, and may cause pathophysiological stress
(Castellani and Young, 2016; Lin et al., 2006; Wang et al., 2018;
Hu and Cheng, 2021). For example, cold or heat stress not only
affects tissue inflammatory factor levels (Zhao et al., 2013; Zhang
et al., 2014) but also causes severe damage to the liver, heart and
intestinal tissues in chickens (Zhang et al., 2011; Wei et al., 2018).
Moreover, stress has been found to significantly increase
susceptibility to necrotic enteritis and enhance bacterial
translocation in a subclinical experimental model (Tsiouris et al.,
2015; Borsoi et al., 2015; Zhou et al., 2021). Evidence has indicated
that cold stress decreases immune function in animals, and
temperature downshifts can make animals susceptible to viral
infection. For example, outbreaks of H1N1 (Steel et al., 2010), RSV
(Donaldson, 2006; Noyola and Mandeville, 2008; Tang, 2009;
Zhang et al., 2013), PEDV (Kong et al., 2020), NDV (Pfitzer
et al., 2000) and RV (Foxman et al., 2015) usually occur in cold
winter seasons. Previous studies on stress in poultry have focused
on changes in cerebellar development (Austdal et al., 2016), energy
intake (Benson et al., 1993; Garriga et al., 2006; Raghebian et al.,
2016; Hu et al., 2021), growth (Nawab et al., 2018; Chen et al.,
2021; Kumar et al., 2021), inflammatory responses (Wein
et al., 2017; Lan et al., 2020; Liu et al., 2021), oxidative responses
(Gao et al., 2010; Jiao et al., 2018; Pan et al., 2019) and
immunosuppression (Guo et al., 2020; Guo et al., 2021; Su et al.,
2021). However, the detailed molecular mechanisms linking stress
and viral replication remain unclear.

Studies have indicated that the hypothalamic-pituitary-adrenal
(HPA) axis is an important system for integrating and regulating
stress responses in vivo and in vitro (McEwen, 2000; Iyasere et al.,
2017; Beckford et al., 2020). In general, various stressors can cause
changes in certain HPA axes that are required for stress adaptation
(Scheff et al., 2012). Activation of the HPA axis and sympathetic
logy | www.frontiersin.org 2
nervous system when chickens are exposed to stress induces the
rapid secretion of glucocorticoids (GCs) from the adrenal glands
(Chrousos and Gold, 1992; Aguilera, 1994; Lin et al., 2006;
Chrousos, 2009; Borsoi et al., 2015; Scanes, 2016). GCs are a
class of steroid hormones that respond rapidly to environmental
and physiological stimuli (Carsia et al., 1988; Revollo and
Cidlowski, 2009; Alba et al., 2019; Häffelin et al., 2020).
Excessive GCs are a sign of stress (Chrousos and Gold, 1992;
Webster Marketon and Glaser, 2008; Quinteiro-Filho et al., 2017).
Through the release of GCs, the HPA axis mobilizes energy
reserves, thus ensuring that the organism has sufficient resources
to respond to actual bodily harm or to prepare for anticipated
harm and alleviate the adverse effects (Herman et al., 2016; Zheng
et al., 2021). Additionally, GCs, the final product of the HPA axis,
are cholesterol-derived molecules that exert pleiotropic and
nongenomic effects through the glucocorticoid receptor (GR)
(Chrousos and Kino, 2007). GCs also plays an important role in
maintaining resting and stress-associated homeostasis and affects
the body’s physiological adaptive response to stressors (Nicolaides
et al., 2015). The secretion of GC is a typical stress endocrine
response (Sapolsky et al., 2000; Flinchum and Gwen, 2015) that is
particularly important in poultry stress biology (Scanes, 2016). In
poultry, two of the most common physiological parameters of
stress are circulating concentrations of the adreno-cortical
hormone corticosterone (CORT) and the heterophil:lymphocyte
ratio (H:L) (Kalliecharan and Hall, 1974; Scanes, 2016). CORT is
the main poultry glucocorticoid that regulates energy reserves to
meet metabolic demands. Poultry stress causes elevated plasma
CORT, stimulates glucocorticoid receptors, and may promote
glycemia, lipolysis and proteolysis (Deviche et al., 2017).
Therefore, proper control of the stress response is critical for the
body, because inappropriate or prolonged activation of the HPA
axis is energy-draining and has been implicated in many
physiological disease states (Myers et al., 2012). Dex is a
synthetic glucocorticoid similar to that secreted by animals
under stress conditions (Lin et al., 2004; Gao et al., 2008), which
has been used in many studies as a glucocorticoid mimic (Chang
et al., 2015). In particular, Dex is widely used in the establishment
of chicken stress models (Eid et al., 2006; Gao et al., 2010; El-
Senousey et al., 2018; Pan et al., 2019; Zhou et al., 2019; Zhai et al.,
2020; Osho and Adeola, 2020; Su et al., 2021). Therefore, Dex is a
satisfactory stress-inducing drug that provides an effective way to
study the relationship between stress and viral replication.

Herein, we established a chicken stress model by using Dex
and found that Dex-induced chicken stress increased the IBV
viral load in the kidneys. Untargeted metabolomics was used to
detect differentially enriched metabolites in chicken kidney tissue
July 2022 | Volume 12 | Article 945865
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to evaluate the correlations between IBV replication and
metabolic changes induced by Dex. Serum cholesterol levels
significantly increased in chickens under stress. Many
metabolic pathways and metabolites may be associated with
the replication and pathogenicity of IBV. This finding provides
insight into the intrinsic link between host metabolism and IBV
replication under stress conditions.
MATERIALS AND METHODS

Cell Culture and Virus
DF-1 (ATCC, CRL-12203), Vero and H1299 cell lines were
obtained from the American Type Culture Collection (ATCC)
(Wang et al., 2019; Wang et al., 2021). The IBV QX and
Beaudette strains (ATCC VR-22) were kept at the Shanghai
Veterinary Research Institute, Chinese Academy of Agricultural
Sciences, Shanghai (Wang et al., 2021; Gao et al., 2021). The IBV
Beaudette strain used in this study was adapted to DF-1, H1299
and Vero cells, and was a gift from Prof. Dingxiang Liu’s
laboratory (South China Agricultural University) (Wang et al.,
2019; Gao et al., 2021). The culture of DF-1, Vero and H1299 cell
lines was performed according to previously described methods
in our laboratory (Wang et al., 2019; Liu et al., 2019; Gong et al.,
2021), In brief, DF-1 and Vero cells were grown in Dulbecco’s
modified Eagle’s medium with 10% fetal calf serum. H1299 cells
were maintained in Roswell Park Memorial Institute 1640
medium supplemented with 10% (v/v) fetal calf serum. The
above cells were cultured at 37 °C under 5% CO2.

Antibodies, Reagents and Chickens
Anti-IBV N antibody was obtained by immunization of a rabbit
with IBV N antigen in our laboratory as previously described
(Wang et al., 2021). CD4-FITC, CD8-PE and CD3-SPRD
monoclonal antibodies were purchased from Southern Biotech
(USA). The 25-hydroxycholesterol (HY-113134) and cholesterol
(HY-N0322) were purchased from MedChemExpress.
Dexamethasone sodium phosphate injection was purchased
from Jiangxi Bolai Pharmacy Co., Ltd. Plasma total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C) and low-
density lipoprotein cholesterol (LDL-C) concentrations were
assessed with an automatic biochemical analyzer (Rayto,
chemray240). A lymphocyte separation kit (P8740) was
purchased from Beijing Soleibao Technology Co., Ltd. ELISA
kits for IFN-g (ZC-51624), IL-1b (ZC-51658), TNF-a (ZC-
51975), IL-6 (ZC-51663) and IFN-b (ZC-51619) were
purchased from Shanghai Zhuo Cai Technology Co., Ltd. All
specific pathogen free (SPF) embryonated eggs were purchased
from Beijing Boehringer Ingelheim Vital Biotechnology Co., Ltd.
(Beijing, China) and incubated as previously described (van de
Ven et al., 2011; Maatjens et al., 2014; Mesquita et al., 2021), In
summary, SPF embryonated eggs were incubated for 17 d in a
multi-stage incubator (science incubator TM, Shandong, China)
at a constant machine temperature of 37.6°C and relative
humidity of 53%. Eggs were placed with the air cell up and
turned hourly at an angle of 90°. From E17 to E21.5, the eggs
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
were not turned, the air temperature remained constant at 35.0°
C, and the air speed was lower than 0.2m/s, which is considered
still air.

Western Blot Analysis
DF-1 cells, Vero cells and H1299 cells were harvested at the
indicated infection time points and lysed with 2× SDS loading
buffer in the presence of 100 mM dithiothreitol, then denatured
at 100°C for 10 min. The obtained protein samples were
separated with SDS-PAGE to detect intracellular IBV protein
levels according to a previously described method (Wang
et al., 2021).

Animal Experiments
A total of 260 healthy White Leghorns of similar weight were
randomly and averagely divided into five groups: mock (N=52),
Dex (N=52), IBV (N=52), IBV-P-Dex (pretreatment with Dex
before infection, N=52) and IBV-A-Dex (treatment with Dex
after infection, N=52). The feeding and care of chickens was
performed in accordance with the Institutional Animal Care and
Use Committee guidelines. The approval number was SHVRI-
chicken-2022021802. According to previous studies (Zhou et al.,
2019; Guo et al., 2020; Su et al., 2021), a chicken stress model was
established through subcutaneous injection of Dex (2.0 mg/kg,
once/day), and PBS was used as a negative control. Seven-day-
old SPF chickens were challenged via an eye dropper with 200 ml
of 105 EID50 of IBV-QX or PBS as the negative control. Chickens
were observed daily, and their clinical symptoms and mortality
were recorded. At 7 dpi (14 days old), the chickens’ responses to
IBV infec t ion under s t ress induced by Dex were
comprehensively assessed through measurement of viral load,
histopathology, metabolomics, serum cholesterol concentration,
peripheral blood lymphocyte ratio, survival rate and growth
performance (Supplementary Materials Figure S1 shows the
experimental design).

Histopathology
The trachea, heart, lung, liver, kidney and spleen tissues were
isolated and soaked in 10% neutral formalin at room
temperature for more than 48 h, then subjected to routine
processing. H&E staining was performed, and the slices of
organs for each chicken were observed under an
optical microscope.

Sample Preparation and Extraction
Samples were thawed on ice, and 50 mg tissue fragments were
taken from each sample and mixed with 500 ml ice-cold
methanol/water (70%, v/v). After homogenization at 30 Hz for
2 min, the mixture was vibrated for 5 min and incubated on ice
for 15 min. After centrifugation at 12,000 rpm at 4°C for 10 min,
400 ml supernatant was transferred into another centrifuge tube;
subsequently, 500 ml of ethyl acetate/methanol (V, 1:3) was
added into the original centrifuge tube. The mixture was
oscillated for 5 min, incubated on ice for 15 min and
centrifuged at 12,000 rpm at 4°C for 10 min, and 400 ml of
supernatant was collected. The two supernatants were combined
and concentrated. Then 100 µl of 70%methanol water was added
July 2022 | Volume 12 | Article 945865

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Dai et al. Coronavirus IBV Infection Under Stress
to the dried product, and ultrasonic treatment was performed for
3 min. Finally, samples were centrifuged at 12,000 rpm at 4°C for
3 min, and 60 µl of supernatant was aspirated for LC-MS/
MS analysis.

Metabolomics Analysis
Untargeted metabolomics profiling was performed using a UPLC-
Q-TOF/MS (AB SCIEX, MA, USA). The chromatographic
seperation system was equipped with a Waters ACQUITY
UPLC HSS T3 column (1.8 um, 2.1 mm *100 mm, Waters Co.).
UPLC conditions were as follow: column temperature, 40°C; flow
rate, 0.40 mL/min; injection valume, 1ul. The mobile phase
consisted 0.1% formic acid inwater (phase A), and 0.1% formic
acid in acetonitrile (phase B). The linear gradient programm was
as follows: 95% to 10% phase A over 11 min, and holding 10% for
1 min, and 10% to 95% in 0.1 min, and holding 95% phase A for
1.9 min. The mass spectrometer was operated in positive/negative
polarity mode with the following settings: Nitrogen was used as
the drying gas, nebulizer gas and sheath gas, and the flow was
maintained at 8 L/min, while sheath flow was at 11 L/min. The
drying gas and sheath gas temperature was maintained at 325°C.
The ESI+ and ESI- voltages were set at 2500 V and 1500 V
respectively. Mass range was set at m/z 50-1700 and the resolution
was 30,000 (FWHM). The mass spectrometer was calibrated daily
in the mass range m/z 100-1700 before starting the sample analysis
by using Agilent tune mix (Part no G1969-85000). The mass
accuracy values were good in full scan range (mass error < 5 ppm).

Quantitative Real-Time PCR Analysis
Total RNA from kidneys was used for quantitative real-time PCR
(qPCR) analysis to confirm the propagation of the IBV in chicks,
and the mock group was used as a negative control. The primer
pairs used in the PCR assay for the IBV-N gene were IBV Fw-5′-
CAG AAG AAG GGC TCT CGC ATT AC-3′ and IBV Re-5′-
AGG TTG AGC ATT GCC GTA ACA C-3′. Positive and
negative strands of IBV genomic RNA were detected according
to our previous report (Liao et al., 2011). The qPCR specific
primers for ch-DHCR24 and ch-CH25H were designed with
reference to previous literature (Liu et al., 2019). RNA was
extracted with an RNeasy Mini Kit (QIAGEN, ID: 74104,
Germany) according to the manufacturer’s protocols.
Validation of RNA-seq data by qPCR was performed as
previously described (Liu et al., 2018).

Statistical Analysis
The original data file obtained by LC-MS analysis was first
converted into mzML format in Proteo Wizard software. Peak
extraction, alignment and retention time correction were
performed with the XCMS program. The “Support Vector
Regression (SVR)” method was used to correct the peak area
(Vapnik et al., 2008; Al-Zoubi et al., 2011; Sánchez-Illana et al.,
2018). The peaks were filtered with a deletion rate > 50% in each
group of samples. Metabolic identification information was then
obtained by searching the laboratory’s self-built database
(Wuhan Metware Biotechnology Co., Ltd.) and integrating the
public database and metDNA. Finally, statistical analysis was
performed in the R program (Supplementary Materials
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Table S1). Statistical analysis included univariate analysis and
multivariate analysis, and univariate statistical analysis included
Student’s t-test and variance multiple analysis. Multivariate
statistical analysis included principal component analysis
(PCA), partial least squares discriminant analysis (PLS-DA)
and orthogonal partial least squares discriminant analysis
(OPLS-DA). The identification of differentially enriched
metabolites and metabolic pathways was as previously
described (Liu et al., 2019).
RESULTS

Dex Induces Weight Loss in Chickens and
Promotes IBV Replication In Vivo
To evaluate the effects of Dex treatment and IBV infection on
chicken growth, we weighed chickens at 1, 7 and 14 days of age.
As shown in the Supplementary Materials Table S2, the body
weights of the Dex and IBV groups were significantly lower than
that of the control at 14 days of age. Thus, both Dex treatment
and IBV infection inhibited chicken weight gain. To confirm
whether Dex affected IBV replication in vivo, we assessed the
effect of Dex on IBV replication, on the basis of chicken mortality
and IBV viral load in kidney tissue (Figures 1A, B). The IBV
viral loads in the IBV-P-Dex group and the IBV-A-Dex group
were higher than that in the IBV group. Dex promoted the
replication of IBV in chicken kidneys but did not cause a
significant difference in mortality. In addition, we used
pathological slides to assess whether Dex affected IBV
pathogenicity. The trachea, lung, kidney, heart, liver and spleen
tissues were subjected to histopathological observation with
hematoxylin and eosin staining. All chickens infected with
IBV-QX strains showed different degrees of pathological
changes in the trachea, lung, kidneys and spleen, but not the
heart and liver tissues (Figure 1C). No clear pathological changes
were found in the control and Dex groups. Histological
examination revealed substantial damage to the tracheal
mucosal cortex: the mucosal cells were necrotic and shedding,
and a small amount of inflammatory cells had infiltrated. Many
mass hemorrhages were observed in the bronchial cavities and
pulmonary chambers of the lungs, filling the cavities. Clear renal
interstitial hyperemia was observed, and the renal tubular
epithelial cells were swollen and degenerated. The splenic sinus
was dilated and congested or bleeding in the red pulp area of the
spleen, and a small amount of heterophilic granulocyte
infiltration was observed. These results indicated that the IBV-
QX strain successfully infected chickens and showed strong
tropism for kidney and tracheal tissue, in agreement with
findings from previous studies (Bouwman et al., 2019; Laconi
et al., 2020).

Dex Induces Immunosuppression
Chicken stress can lead to immunosuppression and metabolic
alterations, which can consequently increase susceptibility to
infectious diseases (Wang et al., 2020; Kikusato et al., 2021).
Therefore, we detected the percentage of CD3+ T cell subsets and
July 2022 | Volume 12 | Article 945865
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cytokines in the peripheral blood to determine the immune
status of the chickens. As shown in Figures 2A, B, the
percentage of CD3+ T cell subsets in the Dex group was
significantly lower than that in the control. ELISA indicated
that the levels of the serum cytokines TNF-a, IL-1b, IFN-g, IFN-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
b and IL-6 in chickens were significantly higher at 7 dpi after
infection with IBV than in the control (Figures 2C–G). In
addition, with Dex intervention, the cytokine levels in the IBV-
P-Dex and IBV-A-Dex groups were lower than those in the
IBV group (Figures 2C–G). These results revealed that Dex
A

B

C

FIGURE 1 | Dex promotes IBV replication in vivo. (A) Assessment of IBV viral load in chicken kidney tissues by qPCR. (B). Survival curve showing the survival
percentage in each group within the 7dpi observation period. (C). Histology staining of the trachea, lungs, kidneys, heart, liver and spleen in chickens from the five
groups at 7 dpi (HE, 400×). The blue arrows and circles indicate areas of tissue lesions.
A

B

D E F GC

FIGURE 2 | Dex induces immunosuppression. (A). Lymphocytes were isolated with a lymphocyte separation kit (P8740). CD4-FITC, CD8-PE and CD3-SPRD
monoclonal antibodies were added and reacted at room temperature in the dark for 30 minutes. Resuspended cells were detected with a flow cytometer (Bio-Rad,
ZE5, USA). (B). The percentage of peripheral blood lymphocytes, analyzed with Cell Quest software. Plasma TNF-a (C), IL-1b (D), IFN-g (E), IFN-b (F) and IL-6
(G) levels were assessed with an ELISA kit and standard curve (Supplementary Materials Figure S2).
July 2022 | Volume 12 | Article 945865
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causes immunosuppression in chickens; however, whether
immunosuppression is the main reason for the promotion of
IBV replication remains unclear.
Multivariate Analysis of Chicken
Kidney Metabolites
To investigate the metabolic pathway changes associated with
Dex treatment and IBV infection, we used an LC-MS/MS-based
metabolomics method to examine differentially enriched
metabolites in the chicken kidneys. Metabolite identification
information was obtained by searching laboratory-built
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
databases, and integrating public libraries and met-DNA
methods. To comprehensively collect reliable information on
the mock and other groups (mock vs Dex, mock vs IBV, mock vs
IBV-A-Dex, and mock vs IBV-P-Dex), we used the principle
component analysis (PCA) to compare the metabolite
composition (Figures 3A–D). OPLS-DA models were used to
determine whether Dex affected metabolic patterns, and a
permutation test was further applied to validate the accuracy
and predictive ability of the OPLS-DA model (Figures 3A–D).
The results of PCA and OPLS-DA analysis showed a clear
separation between the content of the control and other
groups, thus indicating that significant changes in the
A

B

D

C

FIGURE 3 | Multivariate analysis of chicken kidney metabolites. Metabolic profile of the mock and Dex group (A), IBV group (B), IBV-A-Dex group (C) and IBV-P-
Dex group (D), visualized by PCA, OPLS-DA analysis and a permutation test. Ellipses represent 95% confidence intervals. (A–D) were derived from POS and
Supplementary Materials Figure S3 was derived from NEG.
July 2022 | Volume 12 | Article 945865
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concentrations of metabolites in the kidneys were induced by
Dex and IBV infect ion, which could be used for
subsequent studies.

Lipid Synthesis Is Regulated by Dex and
IBV Infection in Chicken Kidneys
The differentially enriched metabolites between the control and
Dex groups were key to explaining the occurrence of stress in
chickens induced by Dex. The combination of fold change (fold
change ≥ 2 and fold change ≤ 0.5), P value (<0.05) and VIP (≥1)
in the OPLS-DA model was used to screen for differentially
enriched metabolites, and a total of 147 differentially enriched
metabolites were obtained in the Dex group. The lists of
differentially enriched metabolites are shown in Supplementary
Materials Table S3 (POS) and Table S4 (NEG), and were
visualized via a volcano plot (Supplementary Materials
Figures S4A, B) and hierarchical clustering (Supplementary
Materials Figures S5A, B). A total of 113 renal metabolites (74
up-regulated, 39 down-regulated) derived from POS significantly
changed after Dex treatment, most of which were involved in
lipid metabolism pathways. Approximately 39.19% (29/74) of the
74 up-regulated metabolites were lipids and lipid-like molecules,
according to the class I identification. According to the class II
identification, fatty acyls (13/74), glycerophospholipids (6/74),
carboxylic acids and derivatives (6/74), organonitrogen
compounds (6/74), and steroids and steroid derivatives (5/76)
were the top five metabolites. Of the 39 down-regulated
metabolites, 43.59% (17/39) were lipids and lipid-like
molecules, of which glycerophospholipids (7/39), glycerolipids
(3/39), prenol lipids (3/39), and steroids and steroid derivatives
(3/39) were the top three metabolites, according to class II
(Supplementary Materials Table S3). In summary, Dex may
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
be involved in the regulation of host lipid metabolism, affecting
the biosynthesis of fatty acyls, glycerolipids, prenol lipids, steroids
and glycerophospholipids. In addition, the KEGG enrichment
analysis results revealed that the differentially enriched
metabolites participated in nine target pathways including
vitamin digestion and absorption; linoleic acid and alpha-
linolenic acid metabolism; thiamine, histidine and arachidonic
acid metabolism; and glycine, serine and threonine metabolism
(Figures 4A, B). These pathways are associated with amino acid
metabolism and fatty acid metabolism, which are involved in
protein and lipid synthesis, respectively.

We used PCA analysis, OPLS-DA model analysis,
permutation tests (Figure 3B and Figure S3B) and KEGG
pathway enrichment analysis (Figures 4C, D) to evaluate the
changes in kidney metabolites in chicks after IBV infection. The
lists of differentially enriched metabolites are shown in
Supplementary Materials Table S5 (POS) and S6 (NEG), and
are visualized via a volcano plot (Supplementary Materials
Figures S4C, D) and hierarchical clustering (Supplementary
Materials Figures S5C, D). The results showed that IBV
infection caused a decrease in the levels of PE-NMe (14:0/20:1
(11Z)), eicosapentaenoyl PAF C-16, PA (20:0/a-15:0), PA (20:0/
a-17:0), PC (18:1(11Z)/18:2(9Z,12Z)) and PA (21:0/14:0), which
are involved in the biosynthesis of biofilms and bile. However,
approximately 48% (24/50) of the 50 up-regulated metabolites
were lipids and lipid-like molecules, according to the class I
identification. An increase was observed in the levels of many
nucleotides and derivatives, glycerophospholipids, and steroids
and steroid derivatives, which are associated with cholesterol
metabolism and nucleotide synthesis. The changes in these
metabolites caused by IBV infection were found to contribute
to viral replication.
A B

DC

FIGURE 4 | Dex treatment and IBV infection alters metabolic profiles in the kidneys of chickens. (A, B). Bubble plots of the metabolic pathway analysis in chickens
after Dex treatment (Mock vs Dex). (A) was derived from POS, and (B) was derived from NEG. (C, D). Bubble plots of the metabolic pathway analysis for chickens
after IBV infection (Mock vs IBV). (C) was derived from POS, and (D) was derived from NEG. Each bubble represents a metabolic pathway. The x-axis represents
the ratio of the number of differentially enriched metabolites in corresponding pathways to the total number of metabolites detected in the pathway. The y-axis
indicates different metabolic pathways in the enrichment analysis, and the color of the point is the p value.
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IBV-Induced Metabolic Responses of
Chicken Kidneys Are Affected by Dex
To confirm whether the IBV-induced metabolic responses of
chicken kidneys were affected by Dex, we compared the
metabolic profiles of the IBV group, IBV-P-Dex group and IBV-
A-Dex group with the mock group. PCA and OPLS-DA analysis
showed a clear separation between the mock and IBV-A-Dex or
IBV-P-Dex groups (Figures 3C, D, Supplementary Materials
Figures S3C, D), thus indicating that Dex induced significant
changes in the concentrations of metabolites in the kidney
responses to IBV infection. The global metabolite changes in
terms of their similarity and uniqueness among the three groups
were further examined through a Venn diagram (Figures 5A, B),
in which 36 metabolites were common to the three groups
(Figure 5A). The observed number of metabolites associated
with IBV infection in the IBV-A-Dex group was approximately
three-fold greater than that in the IBV-P-Dex group, and 24
metabolites were common to both groups (Supplementary
Materials Figure S6A). These results indicated metabolic
differences between Dex treatment before versus after IBV
infection. The lists of differentially enriched metabolites are
shown in Supplementary Materials Tables S7–S10, and the
volcano plots are shown in Figures 5C, D and Supplementary
Materials Figures S6C, D. These significantly differentially
enriched metabolites included fatty acyls, amino acid derivatives,
hormones and hormone related compounds, carboxylic acids and
derivatives, small peptides, and steroids and steroid derivatives,
according to the class II identification. In addition, the KEGG
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
enrichment analysis results are shown in Figures 5E, F and
Supplementary Materials Figures S6E, F. The analysis revealed
that the differentially enriched metabolites were involved in
multiple metabolic pathways, including phenylalanine
metabolism, 2-Oxocarboxylic acid metabolism, biosynthesis of
amino acids, and synthesis and degradation of valine, leucine
and isoleucine. These alterations in host metabolism are likely to
be the underlying factors responsible for differences in the level of
IBV replication in the kidneys.
Correlation Between Cholesterol
Metabolism and IBV Replication
Under Stress
To evaluate the correlation between IBV replication and stress
induced by Dex, we performed RNA-seq and untargeted
metabolomics to obtain gene expression profiles from DF-1 cells
and metabolic profiles from the chicken kidney, respectively. The
RNA-seq data showed that Dex-driven changes in DF-1 cells were
significantly enriched in cholesterol biosynthetic pathways. As
shown in Figure 6A, Dex treatment drove the overexpression of
numerous genes associated with steroid biosynthesis, terpenoid
backbone biosynthesis and fatty acidmetabolism. ThemRNA level
of DHCR24, a key rate-limiting enzyme for cholesterol
biosynthesis, was significantly up-regulated in DF-1 cells after
Dex treatment for 6 h or 24 h (Figures 6B, C). To verify whether
Dex increased cholesterol levels in chickens, we used an automatic
biochemical analyzer to measure plasma TC, HDL-C and LDL-C
A

B

D

E

F

C

FIGURE 5 | IBV-induced metabolic responses of chick kidneys are affected by Dex. Metabolite changes were further examined with a Venn diagram (A, B). (A)
was derived from POS, and (B) was derived from NEG. (C, D) are the volcano plots for the mock and IBV-A-Dex group. Each point in the volcanic map
represents a metabolite. Red: upregulation; blue: downregulation; gray: not significant. (C) was derived from POS, and (D) was derived from NEG. (E, F) are the
KEGG pathway enrichment analyses based on differentially enriched metabolites in IBV-A-Dex group relative to the mock. (E) was derived from POS, and (F)
was derived from NEG. Each bubble represents a metabolic pathway. The x-axis represents the ratio of the number of differentially enriched metabolites in
corresponding pathways to the total number of metabolites detected in the pathway. The y-axis indicates different metabolic pathways in the enrichment
analysis, and the color of the point is the p value.
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levels. Dex significantly up-regulated plasmaTC,HDL-C andLDL-
C levels in chickens (Figures 6D–G). The data also indicated that
the chickens infected with IBV at 7 dpi, compared with those in the
mock group, showed significantly lower plasma TC and HDL-C
levels (Figures 6E, F). In addition, the transcript levels of DHCR24
and CH25H, two key rate-limiting enzymes in cholesterol
metabolism, were significantly down-regulated in chickens at 7
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
dpi (Figures 6H, I). Simultaneously, whenDF-1 cells were invaded
by IBV, the mRNA levels of CH25H and CHCR24 also showed
significant differences according to Dex pretreatment
(Figures 6J, K). As shown in Figures 6L–N, pretreatment with
25HCfor 12h significantly inhibited IBV replication, particularly in
DF-1 cells.Moreover, the additionof exogenous cholesterol inDF-1
cells promoted the replication of IBV (Figures 6O, P). Thus, Dex
A B D E

F G

IH

J K

L

M

N

C

O

P

FIGURE 6 | Host cholesterol metabolism is affected by Dex treatment and IBV infection (A) KEGG analyses based on differentially expressed genes in DF-1 cells
pretreated with Dex (10 mg/mL) for 24 h relative to controls. Circles indicate numbers of genes, and colors depict the enrichment. (B, C). qPCR detection of mRNA
levels of DHCR24 in DF-1 cells treated with Dex (10 mg/mL) for 6 or 24 h, and the Dex-untreated group was used as a control. The gene expression was quantified
relative to actin expression with the 2-△△CT method according to our previous research (Liu et al., 2018). (D). An automatic biochemical analyzer was used to
detect the plasma TC level of chickens at 4 dpi (11 days old). Plasma TC (E), HDL-C (F) and LDL-C (G) levels of chickens were detected with the automatic
biochemical analyzer at 7 dpi (14 days of age). Transcript levels of DHCR24 (H) and CH25H (I) in chick kidney tissues were detected by qPCR at 7 dpi as previously
described (Liu et al., 2018). Transcript levels of CH25H (J) and DHCR24 (K) in DF-1 cells were detected at the indicated time points after infection with 1 MOI of IBV.
The cells were pretreated with Dex for 24 h before infection, and the Dex-untreated group was used as a control. L (DF-1), M (Vero) and N (H1299) were pretreated
with 25HC at the indicated concentrations for 12 h, and the cells were then infected with IBV-Beaudette at an MOI of 1. Cells were collected at 12 hpi and subjected
to western blot analysis. Cytotoxicity assays of 25HC in cells were based on previous studies (Zhang et al., 2019; Xie et al., 2019). (O) DF-1 cells were pretreated
with cholesterol (10 mM) for 12 h, and cells were then infected with the IBV-Beaudette strain at an MOI of 1. Cells were collected at 12 hpi and subjected to western
blot analysis; cholesterol-untreated cells were used as a control. (P). The signal of protein bands was determined in Image J software.
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treatment and IBV infection affected host cholesterol metabolism,
and intrinsic link may exist between host cholesterol biosynthesis
pathways and IBV infection.
DISCUSSION

Metabolic changes are the end-result of adaptive and defensive
biochemical reactions that occur during infection (Kuang et al.,
2020). In recent years, metabolomics has been widely used in
chicken research to understand various host responses during
viral infection (Liu et al., 2019; Xu et al., 2019). Examination of
the metabolomes of the kidneys (Xu et al., 2019), bursa of
fabricius (Kuang et al., 2020), lungs (Liu et al., 2019), plasma
(Chen et al., 2021) and chicken cell lines (DF-1 and LMH) (Lin
et al., 2020; Xu et al., 2022) has provided a new method for
evaluating the regulation of metabolic pathways in virus-host
interactions involving viruses such as IBV, NDV, ALV, IBDV
and ILTV (Liu et al., 2019; Xu et al., 2019; Kuang et al., 2020; Lin
et al., 2020; Chen et al., 2021; Xu et al., 2022). IBV is a pathogenic
chicken coronavirus, which is a highly infectious in domestic
chickens of all ages and types, and affects the respiratory, renal
and reproductive systems (Amarasinghe et al., 2017; de Wit and
Cook, 2019). Although considerable attention has been paid to
coronaviruses, the metabolic regulatory mechanisms underlying
chicken responses to IBV infection under stress conditions
remain unclear. In the present study, we established a poultry
stress model in 7-day-old chickens injected with Dex to elucidate
the effects of stress on metabolic changes and IBV replication in
chicken kidneys. We used an LC-MS/MS-based metabolomics
method to examine differentially enriched metabolites in the
kidneys and assessed the effects of Dex on chicken body weight,
T cell subsets, serum cholesterol levels, cytokines and viral load.
This work provides new insights into the interaction between the
IBV and host metabolism under stress.

This study further revealed the changes in metabolites and
connected pathways in chickens after IBV infection or treatment
by Dex. Particular attention was paid to whether host metabolism
manipulated by Dex affected the infective response to IBV in
chickens. The results of PCA, OPLS-DA and hierarchical
clustering revealed significant differences in the global metabolite
profiles of controls and chickens infectedwith the IBV-QXstrain or
treated with Dex (Figures 3A, B and Supplementary Figure S5).
Compared with the control, Dex-treatment showed a significantly
differences in amino acids, steroid biosynthesis, fatty acid
metabolism, butanoate metabolism, thiamine metabolism,
histidine metabolism, arachidonic acid metabolism and linoleic
acid metabolism (Figures 4A, B). In summary, the observed
changes in these metabolites increase understanding of the
intracellular reactions through which Dex affects IBV infection by
manipulating host metabolic pathways. Previous studies have
reported that GCs are important regulators of lipid metabolism,
and chronic exposure to GCs promotes lipogenesis (John et al.,
2016; Hu et al., 2018), In addition, cholesterol is a critical GC
regulatory serum component (Yang et al., 2014). GCs impairHDL-
mediated cholesterol efflux beyond increasing HDL cholesterol
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
concentrations (Bouillet et al., 2020). This study supports
previous observations in rats and chickens indicating that Dex
treatment causes lipid accumulation (Cai et al., 2009; Wang et al.,
2010; Cai et al., 2011; Wang et al., 2012), growth inhibition (Pan
et al., 2019), changes in serum lipids (Malkawi et al., 2018) and
hypercholesterolemia (Li et al., 2020), thus suggesting modulation
of lipidmetabolism disorders in chickens (Wang et al., 2010;Wang
et al., 2012; Wang et al., 2012; Lv et al., 2018; Hu et al., 2020).

Our findings are broadly consistent with those of other
comprehensive studies of human coronaviruses. A strong
relationship between cholesterol and coronavirus replication has
been widely documented in the literature (Thorp and Gallagher,
2004; Syed et al., 2010; Heaton and Randall, 2011; Blanc et al., 2013;
Del Campo and Romero-Gómez, 2015; Guo et al., 2017; Meher
et al., 2019; Lange et al., 2019; Cao et al., 2020; Radenkovic et al.,
2020; Balgoma et al., 2020; Luquain-Costaz et al., 2020; Sanders
et al., 2021; Cheng et al., 2021). Our previous study has also shown
that cholesterol has an important role in coronavirus entry,
membrane fusion and pathological syncytia formation; therefore
cholesterol metabolic mechanisms may be promising drug targets
for coronavirus infections (Dai et al., 2022).Herein,we obtained the
gene expression profiles of DF-1 cells exposed to Dex for 24 h, and
the RNA-seq data indicated that many genes associated with
cholesterol biosynthesis were up-regulated by Dex. In view of this
finding, we examined serum cholesterol levels in Dex-treated
chickens and found that Dex treatment significantly upregulated
serum cholesterol concentrations, including TC, HDL-C and LDL-
C (Figures 6D–G). Previous research has shown that viral
infections may cause host cells to alter the expression of
cholesterol metabolizing enzymes and metabolites; similarly,
cholesterol metabolism can also regulate host antiviral responses
(Osuna-Ramos et al., 2018; Xiao et al., 2020). This notion was also
supported by our data demonstrating that IBV infection
significantly downregulated CH25H and DHCR24 transcript
levels in chicks (Figures 6H, I). To support viral entry and
increase virion production, IBV must consume host cholesterol.
Similar results were also confirmed in chickens (Figures 6E, F).
Moreover, the addition of exogenous cholesterol to DF-1 cells
promoted IBV replication, but whether Dex promotion of IBV
replication levels in vivo is associated with cholesterol biosynthesis
remains to be further verified in subsequent experiments. In
addition, most of the renal differentially enriched metabolites
induced by Dex were involved in lipid metabolism pathways—
notably cholesterol metabolism—which are very important for the
replicationof coronavirus IBV.Thepromotionof IBVreplication in
chicken kidney tissue may be associated with the up-regulation of
cholesterol levels induced by Dex. The identification of these
differentially enriched metabolites and metabolic pathways may
lead to the development of drugs to combat coronavirus infections,
thus further underscoring the importance of cholesterol in
coronavirus infection. Therefore, weaponizing host cholesterol
metabolism dysregulation against coronavirus infections may
serve as an effective antiviral strategy (Sturley et al., 2020; Proto
et al., 2021). Understanding the relationship between cholesterol
biosynthesis and coronavirus infection will be an important
direction for future research (Daniloski et al., 2021).
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Dex has been investigated before in animal models and small
clinical trials for infections with different coronaviruses, but the
results have been mixed. Differences in timing and dose underlie
many of the inconsistent and sometimes conflicting results across
studiesofGCtherapy (CainandCidlowski, 2020).GCsareoftenused
in combination with antiviral drugs to counteract painful
inflammation and are known to inhibit the replication of some
viruses (Lancz et al., 1990;Kimet al., 2017),However, this approach is
controversial, because GC treatment has been suggested to increase
the viral yield and susceptibility, thereby increasing lung lesions and
increasing or prolonging shedding of viruses, such as SARS-CoV (Li
et al., 2003), SIVs (Ali et al., 2013), HSV-1 (Erlandsson et al., 2002;
Hara et al., 2009; Du et al., 2012; Pechan et al., 2014), MMTV (Parks
et al., 1974; Indik et al., 2007), retroviruses (Solodushko et al., 2009),
PRRSV-1 (Singleton et al., 2018) and FFV (Lee and Shin, 2018).
Consequently, GC use is often hampered by the onset of adverse
effects or resistance (Petta et al., 2016).

In summary, the metabolome profiles of chickens under stress
induced by Dex and infected with the IBV-QX strain were
analyzed to establish the characteristics by LC-MS/MS. The
identification of these differentially enriched metabolites and
metabolic pathways revealed that Dex treatment targets the
cholesterol biosynthesis pathway in chicks and DF-1 cells. Host
responses to IBV infection are also regulated by Dex. In addition,
chicken growth and immune function are significantly inhibited
by Dex. Although this study has some limitations, such as the use
of a single tissue type and single time point for metabolite
detection, it nonetheless provides a comprehensive analysis of
host metabolic profile changes that occur during stress, and
supplies new information for exploring the molecular regulatory
mechanisms of avian stress. This article provides a
comprehensive and in-depth understanding of poultry stress
and should serve as a basis for further research to clarify the
interaction between the virus and the host under stress.
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Modéer, T., et al. (2002). Herpes Simplex Virus Type 1 Infection and
Glucocorticoid Treatment Regulate Viral Yield, Glucocorticoid Receptor and
NF-kappaB Levels. J. Endocrinol. 175 (1), 165–176. doi: 10.1677/joe.0.1750165

Flinchum,, and Gwen, B. (2015). Sturkie's Avian Physiology (6th edition). Am. J.
Veterinary Res. 76 (4), 291–292.

Foxman, E. F., Storer, J. A., Fitzgerald, M. E., Wasik, B. R., Hou, L., Zhao, H., et al.
(2015). Temperature-Dependent Innate Defense Against the Common Cold
Virus Limits Viral Replication at Warm Temperature in Mouse Airway Cells.
Proc. Natl. Acad. Sci. U.S.A. 112 (3), 827–832. doi: 10.1073/pnas.1411030112

Gao, B., Gong, X., Fang, S., Weng, W., Wang, H., Chu, H., et al. (2021). Inhibition
of Anti-Viral Stress Granule Formation by Coronavirus Endoribonuclease
Nsp15 Ensures Efficient Virus Replication. PloS Pathog. 17 (2), e1008690. doi:
10.1371/journal.ppat.1008690

Gao, J., Lin, H., Song, Z. G., and Jiao, H. C. (2008). Corticosterone Alters Meat
Quality by Changing Pre-and Postslaughter Muscle Metabolism. Poult. Sci. 87
(8), 1609–1617. doi: 10.3382/ps.2007-00007
July 2022 | Volume 12 | Article 945865

https://doi.org/10.1371/journal.pone.0181801
https://doi.org/10.1371/journal.pone.0181801
https://doi.org/10.1111/jne.12438
https://doi.org/10.3390/metabo10090356
https://doi.org/10.1016/j.psj.2020.09.052
https://doi.org/10.1093/jn/123.10.1714
https://doi.org/10.2754/avb200776S8S017
https://doi.org/10.1016/j.immuni.2012.11.004
https://doi.org/10.1080/03079457.2015.1086976
https://doi.org/10.1530/EJE-20-0477
https://doi.org/10.1128/JVI.01363-19
https://doi.org/10.1128/JVI.01363-19
https://doi.org/10.1016/j.yhbeh.2011.12.012
https://doi.org/10.1038/s41577-020-00421-x
https://doi.org/10.3109/10253890.2010.543444
https://doi.org/10.1016/j.cbpc.2009.04.005
https://doi.org/10.1016/j.cbpc.2009.04.005
https://doi.org/10.1152/ajpendo.00255.2020
https://doi.org/10.1152/ajpendo.00255.2020
https://doi.org/10.1210/endo-122-2-673
https://doi.org/10.1016/j.autneu.2016.02.009
https://doi.org/10.3382/ps/pev041
https://doi.org/10.1101/2021.01.27.428543
https://doi.org/10.1016/j.rvsc.2021.07.026
https://doi.org/10.1016/j.jtherbio.2021.103019
https://doi.org/10.1038/nrendo.2009.106
https://doi.org/10.1001/jama.1992.03480090092034
https://doi.org/10.1080/10253890701292119
https://doi.org/10.1146/annurev-animal-022114-110659
https://doi.org/10.1146/annurev-animal-022114-110659
https://doi.org/10.3389/fimmu.2022.791267
https://doi.org/10.3389/fimmu.2022.791267
https://doi.org/10.1016/j.cell.2020.10.030
https://doi.org/10.3748/wjg.v21.i38.10776
https://doi.org/10.1093/icb/icx112
https://doi.org/10.1080/03079457.2019.1617400
https://doi.org/10.1080/03079457.2019.1617400
https://doi.org/10.1086/500208
https://doi.org/10.1073/pnas.1212661109
https://doi.org/10.1073/pnas.1212661109
https://doi.org/10.1080/00071660600753912
https://doi.org/10.3382/ps/pex298
https://doi.org/10.1677/joe.0.1750165
https://doi.org/10.1073/pnas.1411030112
https://doi.org/10.1371/journal.ppat.1008690
https://doi.org/10.3382/ps.2007-00007
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Dai et al. Coronavirus IBV Infection Under Stress
Gao, J., Lin, H., Wang, X. J., Song, Z. G., and Jiao, H. C. (2010). Vitamin E
Supplementation Alleviates the Oxidative Stress Induced by Dexamethasone
Treatment and Improves Meat Quality in Broiler Chickens. Poult. Sci. 89 (2),
318–327. doi: 10.3382/ps.2009-00216

Garriga, C., Hunter, R. R., Amat, C., Planas, J. M., Mitchell, M. A., and Moretó, M.
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