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Abstract: This paper introduces an integrated IoT architecture to handle the problem of cyber attacks
based on a developed deep neural network (DNN) with a rectified linear unit in order to provide
reliable and secure online monitoring for automated guided vehicles (AGVs). The developed IoT
architecture based on a DNN introduces a new approach for the online monitoring of AGVs against
cyber attacks with a cheap and easy implementation instead of the traditional cyber attack detection
schemes in the literature. The proposed DNN is trained based on experimental AGV data that
represent the real state of the AGV and different types of cyber attacks including a random attack,
ramp attack, pulse attack, and sinusoidal attack that is injected by the attacker into the internet
network. The proposed DNN is compared with different deep learning and machine learning
algorithms such as a one dimension convolutional neural network (1D-CNN), a supported vector
machine model (SVM), random forest, extreme gradient boosting (XGBoost), and a decision tree
for greater validation. Furthermore, the proposed IoT architecture based on a DNN can provide an
effective detection for the AGV status with an excellent accuracy of 96.77% that is significantly greater
than the accuracy based on the traditional schemes. The AGV status based on the proposed IoT
architecture with a DNN is visualized by an advanced IoT platform named CONTACT Elements for
IoT. Different test scenarios with a practical setup of an AGV with IoT are carried out to emphasize the
performance of the suggested IoT architecture based on a DNN. The results approve the usefulness
of the proposed IoT to provide effective cybersecurity for data visualization and tracking of the AGV
status that enhances decision-making and improves industrial productivity.

Keywords: automated guided vehicle; deep learning; Industry 4.0; IoT; online monitoring; cybersecurity

1. Introduction

In recent industry applications following the Industry 4.0 revolution, the control of
automated guided vehicles (AGVs) has triggered the utilization of remote online mon-
itoring platforms, which are important for improving the industrial environment and
increasing the speed of production processing. Typically, AGVs are employed to transport
specified materials or products in several places (e.g., port terminals, automated plants,
and airports) [1-5]. The system security of such AGVs represents the biggest challenge
against online monitoring [6,7]. The main target of online monitoring is to respond rapidly
to urgent problems of the operating states of the physical assets and manufacturing pro-
cesses. Normally, when a propensity toward a machinery fault or failure is detected, highly
experienced machine operators are capable of performing appropriate actions to prevent
the outage situation of the production system.
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Recently, many research works have been devoted to introducing reliable Internet of
Things (IoT) infrastructures to monitor and track AGVs [8,9]. In [10], intelligent manufac-
turing and an IoT cloud platform were conducted by Wan et al. for advanced material
handling to improve the automation capabilities with a low cost. Context-aware cloud
robotics (CACRs) were used to enhance the decision-making mechanisms for the material
handling processes regarding energy efficiency and cost saving. In this architecture, all
robots could share the data through the cloud directly or indirectly. The cloud scheduler
enabled an effective and easy strategy for the manipulation platforms and robotics to share
and interact with the information. This scheduler was devoted to analyzing the location of
all the robots according to the minimum element of stack vectors to perform the material
handling requirements. The applied CACRs performed an analysis of the collected data
from all devices in detail according to the industrial environmental conditions. The big
data-based analytics and the collected information demonstrated a knowledge library
between the cloud robots for learning purposes and a failure diagnosis. However, this
IoT architecture did not take into account the issue of cyber attacks. In [11], a developed
smart system was introduced for optimizing the scheduling of AGVs and monitoring the
conditions by Yao et al. In this system, a smart combination between the data analysis and
digital twin models was performed to provide smart optimized scheduling for real-time
AGV management operations in complex manufacturing environments. The measured
signal was conducted with an appropriate action based on a smart algorithm. However,
the developed system did not take into account the issues of a failure diagnosis, time
delays, data loss, and cyber attacks. The cyber attacks that occurred during the remote
monitoring of the smart system increased the unmatched disturbances for the physical
controlled system [12,13]. Anomalies and intrusion detection in industrial control systems
(ICS) were studied based on different strategies. A variety of comprehensive surveys are
devoted to the classification of strategies and methodologies on this issue [14]. The popular
approach to intrusion detection in ICS is primarily based on modeling and a simulation of
the machine [15,16]. Realistic problems with this method are the requirement of a specific
know-how of the designs and configurations of the device as well as the complicated phys-
ical behavior of the systems. In keeping with Mitchell et al. [17], ICS anomaly detection
methods consist of information- and behavior-based methods.

Information-based detection techniques search for recognized attack behaviors similar
to malware signature techniques in information technology (IT) intrusion detection. Even
with low false rates, these processes require the retention of an up-to-date dictionary of at-
tack signatures and are ineffective against zero-day attacks. In assessments, behavior-based
strategies search for anomalies in the runtime conduct. These strategies are more common-
place in ICS intrusion detection because ICS systems are automated and provide greater
regularity and predictability than standard IT structures. Therefore, the determination of
cyber attack signals based on machine learning or deep learning and the diminishing the
effect of these signals by a robust model predictive control would be a key contributor to a
smart manufacturing system. In [18], a new infrastructure was introduced based on artifi-
cial intelligence to validate and check the reading of smart meters to inspect if the reading
was a real reading or fake. The fake reading was due to cyber attacks and ineffectual me-
ters. Environmental factors such as temperature, humidity, and noise signals affected the
performance of the meters. Moreover, the introduced infrastructure investigated the data
loss that occurred through the communication channels and an unstable internet network.
A classical machine learning algorithm named decision tree was devoted to handling the
regression and classification of the reading of the meters. The reading visualization was
performed by a developed industrial platform named CONTACT Elements for IoT. From
an Industry 4.0 perspective, the security of online systems is considered to be a challenging
task in the context of condition monitoring [19,20]. Appropriate action on the operating
states of physical assets and manufacturing processes is needed for the suppression of
cyber attacks.
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This paper proposes an IoT architecture for the reliable and secure online visualization
and tracking of an AGV status based on a deep neural network (DNN). The automatic
identification of cyber attacks is the first step in designing a smart system for fake data
suppression. The further development of real-time cyber attack monitoring needs to include
a fake data suppression strategy to be a smart system in which the monitoring system
could read the AGV microcontroller information, collect and analyze the sensor data, and
send a control command to the automatic control interface. The superior accuracy rate
of the proposed DNN is illustrated in comparison with other deep learning and machine
learning algorithms in the literature. Using an innovative IoT platform called CONTACT
Elements for IoT, the AGV state is visualized depending on the suggested IoT architecture.
The proposed IoT architecture based on the DNN effectively identifies and simulates
the normal state of the AGV. In exchange, the planned IoT architecture detects the out of
service condition and essentially tracks and displays it on the dashboard of the IoT platform
and creates an alert to notify the customer of the failure of the AGV. Most interestingly,
the proposed IoT architecture built on the DNN easily detects network instability due to
cyber attacks. To validate the feasibility of the suggested IoT platform based on the DNN,
various test scenarios with a realistic configuration of AGVs and the IoT are conducted.
The proposed IoT imagines and monitors the status of the AGVs, allowing for better
decision-making and increased efficiency in the workplace.

2. Proposed IoT Architecture

The new features of internet networks and cloud computing introduce a fast and
dynamic infrastructure to improve the performance of the system especially in critical and
large-scale systems that utilize feedback control and the IoT [21]. The fast-acting nature of
cloud computing due to its high speed and salient features leads to its use in industrial
control applications. Cloud computing can overcome many problems related to physical
systems [22]. Recently, IoT services including hardware and software have been made
available by many information technology and industrial companies. Furthermore, the
provided IoT platforms include data analytics solutions for various types of industrial
systems [23]. The IoT platforms can collect and receive local sensor measurements in order
to provide different processes such as storage purposes, visualization, and data analysis.
The signals are transmitted between the AGV sensors and the controller by using serial
communication protocols such as Modbus; the collected data are then transferred to the
IoT platform via various network protocols such as HTTP and MQTT. Today, various
IoT platforms are utilized for data analysis and visualization processes within distributed
computing systems and cloud services. Real-time monitoring is influenced by the data
collection method. Therefore, an offline data analysis is preferred for a high latency manner.

The data pre-processing includes different procedures such as data cleaning, data
integration, data reduction, and data transformation. Time delay assessments, data loss
estimations, and labeling procedures can also be involved in the data pre-processing stage.
Following data pre-processing, the preparation and design of the data analysis model
represent the main challenges to provide accurate results due to the different environ-
mental characteristics for every factory. In this paper, the suggested IoT infrastructure
is implemented based on distributed devices to provide a parallel computing process to
decrease Wi-Fi and time delay issues. A database server is utilized to receive the collected
data from all machines because the sensors have different communication protocols. The
deep learning algorithm is then utilized through the gateway to classify the transferred
data between the machines and the IoT platform in order to provide a reliable system.

The integration of the IoT into Industry 4.0 can increase the data transfer between
wide and different smart devices and controllers for various applications such as domestic
and industrial usage [24,25]. Indeed, the improvement of the IoT via smart microcontrollers
has been implemented via prominent network telecommunications, e.g., Bluetooth and
GSM, for remotely inspecting and monitoring microcontrollers. With the progress in
Industry 4.0 and the IoT as well as 4G and 5G networks, AGV systems have utilized these
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technologies to provide a good analysis and monitoring of different datasets between users
and smart systems. Thus, different architectures and platforms are utilized for specific
applications based on various technologies within the Industry 4.0 trend. The diversity of
IoT technologies can increase the data security risks in communication networks between
connected devices. This is a hot issue in the application of IoT technology in the global
industrial sector.

In this work, the benefit of using IoT-based deep learning for the AGV was to provide
reliable online monitoring, which can support decision-making in various features such as
prediction, real-time visualization, remote controlling, and cyber-physical security. Figure 1
shows the CONTACT Elements for the proposed IoT that were utilized for users to interact
with the IoT platform. Thus, the implementation of IoT technology was expected to provide
an ease of operation, simplify supervision, enable rapid problem-solving, and increase
work efficiency and effectiveness in large-scale manufacturing. In this paper, an additional
unit was coupled between the sensors and the IoT platform to analyze the transferred data
based on the proposed DNN against cyber attacks, as shown in Figure 1.

Machine manufacturer and

customers
4 N
: (e L8
= Data analysis =]
2 unit based on @ =]
o
s the proposed o o
2 DNN against E —( |) Mothrmg
- cyber attacks = *  Reporting
= @, g | A
P4
Data acquisition Send telemetry data and Data storage and .
Events from device events to cloud evaluation Users, business processes

v

Automatic processing and control
< Start processes

Action execution Message router Control commands Remote control

>
<

Figure 1. Schematic diagram of the infrastructure of IoT processing for the AGV.

3. Deep Learning Overview

Deep learning is the one type of machine learning that tries to mimic the functionality
of the neurons in the human brain. Deep learning utilizes multi-layered artificial neural
networks and uses a large amount of data to automatically extract the relevant features and
learn the pattern within the dataset [26]. It has shown a good performance with extremely
high accuracy in many applications including speech recognition, disease detection, speed
translation, and object detection. As deep learning models normally use multiple hidden
layers and a large amount of data, they require high end machines that have powerful
computing capabilities.

Thanks to the development of technology, many cloud computing services as well
as developed high performance CPUs and GPUs can perform such a large amount of
multiplication operations. Recently, deep neural networks (DNNs), an artificial neural
network, have become a popular network architecture. They are widely utilized to deal
with classification and recognition problems. Figure 2 illustrates a structure of a DNN.
Generally, the DNN comprises an input layer, an output layer, and multiple hidden
layers. The input layer is defined by X = [x, xy, ...x,;]| and the output layer is repre-
sented by Y = [y1, y1, ...Yxn]. The number of neurons of the /th hidden layer is m and
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h = [hll, hl2, . hfﬂ} , in which each artificial neuron connects to the other that is associated

with a weight and a threshold. The mapping connection of neuron i in the Ith layer is
described in Equation (1):

H = £ (wlh 7t + b)) M)

where f! is the activation function of the neuron hgil, w! represents the vector of the
weights for the connection between the neurons of layer (I — 1) and the /th layer, and bf
describes the bias parameter of neuron i in the /th layer. Typical activation functions are
the sigmoid function, the hyperbolic tangent function, or the rectified linear unit. In this
architecture design, the rectified linear unit (ReLU) was used as an activation function to
represent a smooth approximation, as shown in Figure 2 [27].

£(x) = In[1 + exp(x)]. @

The input data goes through the network and it is assigned to an estimated label at
the output neuron using the softmax function, which is formulated as follows:

exp (hs,]-)
= = 3)
I exp (i)

where & is the output of the last hidden layer and n represents the number of neurons
at the output layer. In the training process, each iteration goes through the dataset and
compares the output with the cost function. The cost function can then be reduced by
adjusting the weights between the neurons using a gradient descent [28]. Figure 3 shows
the full strategy of the AGV visualization through the IoT dashboard. Firstly, the ROS
processed the data from LiDAR to allow the robot to automatically track a scheduled
trajectory. The Raspberry Pi published the feedback signals such as the location, heading
direction, and motor speed signals. The single-board computer Raspberry Pi ran on a free
operating system (OS) known as the Linux-kernel operating system. Python, which has
advanced as an open-source programming language, was used as the coding language to
send instructions to the Raspberry Pi. A Python program was developed that allowed the
Raspberry Pi to collect the data in real-time.
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Figure 2. Deep neural network architecture.
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Figure 3. The full strategy for AGV visualization through the IoT dashboard.

4. Results and Discussion

Automated guided vehicles predicate on one or various computer-controlled wheels
that work without the necessity for an onboard user or driver. AGVs have predefined
tracks or regions within the plant that they can navigate. Navigation is performed in
different ways; for example, laser guidance, optical strips, or surface-mounted magnets.
Figure 4 shows a few examples of AGVs that are utilized for experiments in the Industry 4.0
Implementation Center, Center for Cyber-Physical System Innovation, National Taiwan
University of Science and Technology. Above AGVs or any other devices in the Industry 4.0
Implementation Center are smart devices and they are connected with IoT platforms. Any
device of this cyber-physical system can be exposed to cyber attacks. Cyber attackers can
harness this susceptibility and occupy dominance of a single device, a section of a system, or
the complete system and inspire substantial harm; for example, service perturbation, data
loss, and device damage. A smart attacker can access the transmitted signals between the
AGYV and the IoT platform easily by manipulating these measured or received signals via
internet networks. As a result, the system performance may degrade and force the system
to operate at non-economical operating conditions due to non-optimal control signals or
even lead to instability. There are different types of cyber attacks against numerical signals
such as scaling attacks, ramp attacks, pulse attacks, and random attacks [29,30]. A scaling
attack changes the true measurement signals to higher or lower values based on a scaling
factor and a ramp attack changes the true measurement signals by the addition of a ramp
factor. A pulse attack modifies the true measurement signals by adding spaced short pulses
and a random attack increases or decreases the true measurement signals in a random
manner. It is necessary to apply a suitable technique to recognize these types of attacks to
overcome the problems due to them [31]. In this paper, the proposed DNN was trained
and tested with experimental data from the AGV that represented the real status, as shown
in Figure 5. The proposed DNN was also trained and tested with other types of attack
data such as a random attack, ramp attack, pulse attack, and sinusoidal attack to account
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for the worst cases of attacks that represent the fake status, as shown in Figures 6 and 7.
The proposed DNN was devoted to recognizing the transferred data of the AGV. The
data of the AGV consisted of two classes named “Real Tracking” and “Fake Tracking”.
Real tracking appeared when the transferred data was real and the internet network was
stable. Fake tracking appeared when there was a cyber attack on the internet network that
sent fake data. Further test scenarios were performed to confirm the effectiveness of the
proposed IoT architecture based on the DNN. The steps of the proposed IoT architecture
based on the DNN were concluded in Algorithm 1, which had the pseudo-code of the

suggested strategy.

V (m/s), AV (m/s?)

L L L L I

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Samples

Samples

(a) (b)

Figure 5. Speed input datasets of the AGV and the corresponding real value classifications. (a) Real data of longitudinal

speed and (b) real data of rotational speed.
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Figure 6. Longitudinal speed input datasets of the AGV and the corresponding fake value classifica-
tions. (a) Random fake data; (b) ramp fake data; (c) pulse fake data; and (d) sinusoidal fake data.
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Figure 7. Rotational speed input datasets of the AGV and the corresponding fake value classifications.
(a) Random fake data; (b) ramp fake data; (c) pulse fake data; and (d) sinusoidal fake data.
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4.1. Dataset

In order to recognize cyber attacks to enhance the reliability and security of the online
visualization and tracking of the AGV status, experiments were conducted to collect the
AGYV information. An autonomous cleaning robot received the spiral path navigation and
it began to track the trajectory until it reached the final destination. At the same time,
the Raspberry Pi published the robot positions and robot conditions. The collected data
included the velocity and the rotation speed, which were collected from a real AGV and
labeled as 0. The fake data that equated to the cyber attack was created by randomly
distributed functions within the range of the AGV signals and labeled as 1. Both the
real data and fake data were combined to form one dataset. The collected dataset had
3563 samples, which were split into 2850 samples for the training process and 713 samples
for testing. All datasets were normalized before feeding into the defined network. In this
case, the min-max approach was applied for the normalization, as shown in Equation (4):

A min(x) )

max(x) — min(x)’

The DNN model was designed to consist of four hidden layers. The details of the
model parameters in each layer are shown in Table 1. Figures 4-6 show the speed input
datasets of the AGV and the corresponding real or fake value classifications as well as the
longitudinal and rotational speed (V, W) and the change of longitudinal and rotational
speed (AV, AW).

Algorithm 1. The steps of the proposed IoT architecture based on the DNN

: Read the speed signals from AGV microcontroller.

: Connect to the MQTT broker.

: Input data to the DNN model.

: Recognize the AGV status by the DNN.

: If the result of DNN = = 0.

: Publish that the AGV status is ‘Real Tracking” and the network status is ‘Stable Network’.
: Else if the result of the DNN = = 1.

: Publish that the AGV status is ‘Fake Tracking” and the network status is ‘Unstable Network’.
: If the velocity > 0.

10: Publish that the service status of the AGV is ‘In Service’.

11: Else.

12: Publish that the service status of the AGV is ‘Out of Service’.

13: End.

O O I Ul i WON =

Table 1. DNN model parameters of each layer.

Layer (Type) Output Shape Number of Parameters
Input layer (1, 4) -
Hidden layer_1 (None, 32) 160
Hidden layer_2 (None, 64) 2112
Hidden layer_3 (None, 128) 8320
Hidden layer_4 (None, 32) 4128
Output layer (None, 2) 66

Total parameters: 14,786
Trainable parameters: 14,786
Non-trainable parameters: 0

4.2. Performance Assessment

The DNN model was built based on the prepared training dataset and testing dataset
to predict the status of the AGV in which the number of epochs was set to 150. A batch
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size of 32 was used as the default setting and 4 hidden layers were implemented with the
defined parameters described in Table 1. Moreover, early stopping criteria and dropout
techniques were included in the training model to suppress the overfitting problem and to
improve the performance of the proposed DNN model. The other hyperparameters were
set to default values for a fair comparison with other machine learning models. Figure 8
illustrates the performance of the proposed deep neural network for the cyber attack
detection of the AGV. It shows that both the training and testing processes could quickly
reach higher than 95% accuracies after 20 epochs. Finally, the DNN model resulted in
excellent accuracy with approximately 97.25% for the training and 96.77% for the testing
after 110 epochs. Figure 8b illustrates the training loss and testing loss, in which both values
continuously decreased. The testing loss value was marginally higher than the training
loss value at the stable point. It indicated a good fit of the model without overfitting.

0.95 1
0.90 1
>
(&)
]
-
o 0.851
&)
<
0.80
0.751 —— Train
Test
0 20 40 60 80 100
Epochs
(a)
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a
2 03
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0.1 \/M
0 20 40 60 80 100
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(b)

Figure 8. The performance of the proposed deep neural network. (a) Model accuracy and
(b) model loss.
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Furthermore, the performance of the developed DNN was evaluated by comparing it
with other machine learning models such as the decision tree model, SVM model, random
forest model, XGBoost model, and 1D-CNN model. The same training dataset and testing
datasets were used for all models and we utilized the default hyperparameters when train-
ing each model for a fair comparison. The diagnosis confusion matrix and the diagnosis
accuracy of each algorithm for the testing are illustrated in Figures 9 and 10, respectively.
They show that the proposed DNN algorithm outperformed the other models; particularly,
the fake tracking of the AGV could be detected with an accuracy of 91.72% and the accuracy
of the real tracking reached 98.92%. This was because the DNN model was more efficient
at learning complex features contained within the fake data. The classification accuracy
results from the different models are listed in Table 2. The experimental results indicated
that the proposed DNN model provided the best performance followed by the supported
vector machine model (SVM) with an accuracy of 94%. The random forest, one dimension
convolutional neural network (1D-CNN), extreme gradient boosting (XGBoost), and de-
cision tree models had the worst results with classification accuracies of approximately
93.73%, 92%, 91.87, and 90%, respectively. Note that the performances of the machine
learning models were assessed by:

TP+ TN

- 5
accuracy = Tp Y FP+ TN + EN ©®)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

0 16.56 0 15.92
— O]
@ <1
i K
v
g £
= =
1 18 1 8.09
N . ~ N} N
Predictedlabel Predictedlabel
(a)
o 20.38 0 19.75
% O]
; 2
Y P
e =
& &
1 0.36 1 108
N N N} ~
Predictedlabel Predictedlabel
(o) (d)
0 9.55 0 8.28
T 3
i £
Y "
o -]
= &
1 6.12 1 1.08
o ~ [ ~
Predictedlabel Predictedlabel

(e) ()

Figure 9. Diagnosis confusion matrix “Real data label = 0, Fake data label = 1”. (a) Decision tree

model; (b) SVM model; (c) random forest model; (d) XGBoost model; (e) 1D-CNN model; and
(f) proposed DNN model.
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Figure 10. Classification percentage accuracy from different models.

Figure 11 summarizes the proposed strategy based on the DNN for providing cyberse-
curity and the online monitoring of the AGV. It is shown from this figure that the proposed
DNN could analyze the data of the AGV and check if these data were real or fake, then
publish the status of the AGV on the real-time IoT dashboard. The next subsections present
various scenarios that validated the proposed IoT architecture.
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Figure 11. The flowchart of the proposed strategy based on the DNN for providing cybersecurity
and online monitoring of the AGV.
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Table 2. The classification accuracy from various algorithms.

Methods

Decision Tree SVM Random Forest XGBoost 1D-CNN Proposed DNN

Detection Accuracy (%)

92.43 90 95.23 94.81 93.13 96.77

4.3. Scenario 1: Real Tracking for AGVs

This test case was created to confirm the performance of the suggested DNN to
indicate the real status of the AGV. Figure 12 shows the attitude of the AGV and the network
condition on the dashboard of the proposed IoT platform. This figure demonstrates that
the proposed DNN could recognize the real status of the AGV effectively. The suggested
IoT platform could present the attitude of the AGV and the network condition in a more
clarified presentation. Furthermore, the operating condition indicator was green, which
confirmed that there was no fault and that the AGV in service and the internet network
were reliable.
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Figure 12. The AGV and network status in the case of a real data transfer and stable internet.

4.4. Scenario 2: Out of Service State

This scenario was performed to visualize the AGV status when it was out of service
due to faults, charging, or maintenance. The out of service state was recognized when
the velocity and the angular speed of the AGV were equal to zero. Figure 13 presents the
AGV status when it was out of service. It is clear from this figure that the velocity and the
angular speed of the AGV were equal to zero and the network was stable. The operating
condition indicator varied to a yellow color to remind the operator that the AGV was out
of service. This scenario confirmed that the suggested IoT architecture could record when
the AGV was in an out of service state, which enhanced the decision-making.
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Figure 13. The AGV and network status in the case of an out of service state and a stable internet.

4.5. Scenario 3: Cyber Attack and Fake Tracking

The cyber attack demonstrated the biggest issue against the enforcement of an IoT
infrastructure. This scenario was performed to assert the distinction of the suggested
IoT architecture based on the DNN to detect a cyber attack within the internet network.
Figure 14 shows the AGV and the network status when there was a cyber attack. It is
obvious from this figure that the transferred data regarding the velocity and the angular
speed of the AGV were fake, which meant that the network was unstable. The operating
condition indicator varied to a red color to remind the operator that the network was
unstable. This scenario confirmed that the proposed IoT architecture based on the DNN
could recognize a cyber attack on the internet network effectively and visualize the status
in a clearer dashboard.

4.6. Discussion
The following points summarize the main discussions of the previous test scenarios:

e The normal state of the AGV was recognized and visualized effectively by the pro-
posed IoT architecture based on the DNN, as presented in scenario 1. Furthermore, the
network status was presented in the IoT dashboard beside the AGV speed to confirm
the real tracking of the AGV.

e  The out of service state of the AGV due to any fault, maintenance, and charging were
presented in scenario 2. The out of service state was detected when the AGV speed
was equal to zero. The proposed IoT architecture recorded and presented this state
effectively on the IoT dashboard. Furthermore, the CONTACT Elements for the IoT
performed an alarm by changing the light color of the operating condition indicator
to a yellow color to indicate to the operator about the outage of the AGV from the
service to support the decision-making.
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e  The instability of the network due to a cyber attack was detected successfully by the
proposed IoT architecture based on the DNN, as clarified in scenario 3. This abnormal
state was presented in a clearer way on the dashboard of the IoT platform. The light
color of the operating condition indicator changed to a red color as an alarm to indicate
to the operator that there was a cyber attack on the internet network.
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Figure 14. The AGV and network status in the case of a cyber attack and an unstable internet.

5. Conclusions

This paper introduced a developed IoT architecture based on a DNN to visualize the
status of an AGV. The study was performed to provide low cost cyber attack detection
for real-time AGV monitoring. The development of online cyber attack suppression and
intelligent IoT systems for AGVs is a key contributor to improving productivity in modern
manufacturing. The performance of the proposed DNN was compared with other learning
algorithms from the literature. The AGV status was visualized on a developed IoT platform
called CONTACT Elements for IoT based on the suggested IoT architecture. The proposed
IoT architecture based on the DNN effectively identified and simulated the normal state of
the AGV. In contrast, the proposed IoT architecture detected the out of service condition
and essentially tracked and monitored it on the dashboard of the IoT network whilst also
creating an alert to notify the customer of the AGV outage. Most significantly, the suggested
IoT architecture built on the DNN easily detected network instability caused by cyber
attacks. Various test scenarios were performed to assert the superiority of the suggested IoT
architecture based on the DNN to recognize the cyber attack and visualize the AGV status.
The results emphasized the effectiveness of the proposed IoT architecture based on the
DNN to provide secure monitoring for the AGV status, which enhances decision-making
and can be applied to different applications. Furthermore, the provided information from
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the proposed IoT architecture based on the DNN regarding the cyber attack could help to
design a robust controller against the problem of cyber attacks in future works.

Author Contributions: All authors have contributed to the preparation of this manuscript. M.E. and
M.-Q.T. designed the idea strategy and studied the data. M.E. and M.-Q.T. wrote the manuscript and
designed several figures related to deep learning and the IoT. Finally, M.E. and M.-Q.T. reviewed,
edited, and supported different improvements of the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by The Ministry of Science and Technology (MOST) of Taiwan
(grant numbers: MOST 110-2222-E-011-013- and MOST 110-2222-E-011-002-) and the Center for
Cyber-Physical System Innovation from The Featured Areas Research Center Program within the
framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors acknowledge the CONTACT Elements for IoT platform for sup-
porting this work applied in Industry 4.0.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y.; Guo, L.; Gao, B.; Qu, T.; Chen, H. Deterministic Promotion Reinforcement Learning Applied to Longitudinal Velocity
Control for Automated Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 338-348. [CrossRef]

2. Zhang, Z.; Guo, Q.; Chen, J.; Yuan, P. Collision-free route planning for multiple AGVs in an automated warehouse based on
collision classification. IEEE Access 2018, 6, 26022-26035. [CrossRef]

3. Su, S.; Dai, H.; Cheng, S.; Chen, Z. Improved Magnetic Guidance Approach for Automated Guided Vehicles by Error Analysis
and Prior Knowledge. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6843-6852. [CrossRef]

4. Zhu,S,; Gelbal, S.Y.; Aksun-Guvenc, B.; Guvenc, L. Parameter-Space Based Robust Gain-Scheduling Design of Automated Vehicle
Lateral Control. IEEE Trans. Veh. Technol. 2019, 68, 9660-9671. [CrossRef]

5. Goli, A.; Tirkolaee, E.B.; Aydin, N.S. Fuzzy Integrated Cell Formation and Production Scheduling Considering Automated
Guided Vehicles and Human Factors. IEEE Trans. Fuzzy Syst. 2021, 29, 3686-3695. [CrossRef]

6. Opyekanly, E.A,; Smith, A.C.; Thomas, W.P,; Mulroy, G.; Hitesh, D.; Ramsey, M.; Kuhn, D.J.; Mcghinnis, J.D.; Buonavita, S.C.;
Looper, N.A; et al. A Review of Recent Advances in Automated Guided Vehicle Technologies: Integration Challenges and
Research Areas for 5G-Based Smart Manufacturing Applications. IEEE Access 2020, 8, 202312-202353. [CrossRef]

7.  HruSeckd, D.; Lopes, R.B.; Jufickova, E. Challenges in the introduction of AGVS in production lines: Case studies in the
automotive industry. Serb. . Manag. 2019, 14, 233-247. [CrossRef]

8. Al-Turjman, F; Lemayian, J.P. Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities:
An overview. Comput. Electr. Eng. 2020, 87, 106776. [CrossRef]

9. AlZubi, A.A.; Alarifi, A.; Al-Maitah, M.; Alheyasat, O. Multi-sensor information fusion for Internet of Things assisted automated
guided vehicles in smart city. Sustain. Cities Soc. 2021, 64, 102539. [CrossRef]

10. Wan, J; Tang, S.; Hua, Q.; Li, D.; Liu, C,; Lloret, J. Context-Aware Cloud Robotics for Material Handling in Cognitive Industrial
Internet of Things. IEEE Internet Things . 2018, 5, 2272-2281. [CrossRef]

11.  Yao, F; Keller, A.; Ahmad, M.; Ahmad, B.; Harrison, R.; Colombo, A.W. Optimizing the scheduling of autonomous guided vehicle
in a manufacturing process. In Proceedings of the 2018 IEEE 16th International Conference on Industrial Informatics (INDIN),
IEEE, Porto, Portugal, 18-20 July 2018; pp. 264-269.

12.  Bhamare, D.; Zolanvari, M.; Erbad, A,; Jain, R.; Khan, K.; Meskin, N. Cybersecurity for industrial control systems: A survey.
Comput. Secur. 2020, 89, 101677. [CrossRef]

13. Kravchik, M.; Shabtai, A. Detecting cyber attacks in industrial control systems using convolutional neural networks. In
Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy, Toronto, ON, Canada, 15-19 October 2018;
pp- 72-83.

14. Han, S,; Xie, M.; Chen, H.H.; Ling, Y. Intrusion detection in cyber-physical systems: Techniques and challenges. IEEE Syst. . 2014,
8, 1052-1062.

15. Pasqualetti, F.; Dorfler, F.; Bullo, F. Cyber-physical attacks in power networks: Models, fundamental limitations and monitor

design. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE,
Orlando, FL, USA, 12-15 December 2011; pp. 2195-2201.


http://doi.org/10.1109/TVT.2019.2955959
http://doi.org/10.1109/ACCESS.2018.2819199
http://doi.org/10.1109/TITS.2020.2995368
http://doi.org/10.1109/TVT.2019.2937562
http://doi.org/10.1109/TFUZZ.2021.3053838
http://doi.org/10.1109/ACCESS.2020.3035729
http://doi.org/10.5937/sjm14-18064
http://doi.org/10.1016/j.compeleceng.2020.106776
http://doi.org/10.1016/j.scs.2020.102539
http://doi.org/10.1109/JIOT.2017.2728722
http://doi.org/10.1016/j.cose.2019.101677

Sensors 2021, 21, 8467 17 of 17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.

Teixeira, A.; Pérez, D.; Sandberg, H.; Johansson, K.H. Attack models and scenarios for networked control systems. In Proceedings
of the 1st International Conference on High Confidence Networked Systems, Beijing, China, 17-18 April 2012; pp. 55-64.
Mitchell, R.; Chen, LR. A survey of intrusion detection techniques for cyber-physical systems. ACM Comput. Surv. (CSUR) 2014,
46, 1-29. [CrossRef]

Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing,
Monitoring, and Securing Smart Meters. Sensors 2021, 21, 487. [CrossRef]

Bligh-Wall, S. Industry 4.0: Security imperatives for oT—Converging networks, increasing risks. Cyber Secur. Peer-Rev. |. 2017, 1,
61-68.

Preuveneers, D.; Ilie-Zudor, E. The intelligent industry of the future: A survey on emerging trends, research challenges and
opportunities in Industry 4.0. J. Ambient. Intell. Smart Environ. 2017, 9, 287-298. [CrossRef]

Benzaoui, N.; Gonzalez, M.S.; Rivera, M.V.; Estaran, ].M.; Mardoyan, H.; Lautenschlaeger, W.; Gebhard, U.; Dembeck, L.;
Pointurier, Y.; Bigo, S. DDN: Deterministic dynamic networks. In Proceedings of the 2018 European Conference on Optical
Communication (ECOC), IEEE, Rome, Italy, 23-27 September 2018; pp. 1-3.

Redana, S.; Bulakei, O.; Zafeiropoulos, A.; Gavras, A.; Tzanakaki, A.; Albanese, A.; Kousaridas, A.; Weit, A.; Sayadi, B.; Jou, B.T.;
et al. 5G PPP Architecture Working Group: View on 5G Architecture; European Commission: Brussels, Belgium, 2019.

IoT Platform for Digital Business Models. CONTACT Software. Available online: https://www.contact-software.com/en/
(accessed on 1 April 2021).

Tran, M.-Q.; Elsisi, M.; Mahmoud, K.; Liu, M.-K.; Lehtonen, M.; Darwish, M.M.F. Experimental Setup for Online Fault Diagnosis
of Induction Machines via Promising IoT and Machine Learning: Towards Industry 4.0 Empowerment. IEEE Access 2021, 9,
115429-115441. [CrossRef]

Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Deep Learning-Based Industry 4.0 and Internet of Things
towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [CrossRef] [PubMed]

Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85-117. [CrossRef] [PubMed]

Ohn, I.; Kim, Y. Smooth Function Approximation by Deep Neural Networks with General Activation Functions. Entropy 2019,
21, 627. [CrossRef] [PubMed]

Zhang, ]. Gradient descent based optimization algorithms for deep learning models training. arXiv 2019, arXiv:1903.03614.
Prasad, S. Counteractive control against cyber-attack uncertainties on frequency regulation in the power system. IET Cyber-Phys.
Syst. Theory Appl. 2020, 5, 394-408. [CrossRef]

Pasqualetti, F.; Dorfler, E; Bullo, F. Attack detection and identification in cyber-physical systems. IEEE Trans. Autom. Control 2013,
58, 2715-2729. [CrossRef]

Habibi, M.R,; Sahoo, S.; Rivera, S.; Dragicevi¢, T.; Blaabjerg, F. Decentralized coordinated cyber-attack detection and mitigation
strategy in DC microgrids based on artificial neural networks. IEEE ]. Emerg. Sel. Top. Power Electron. 2021, 9, 4629-4638.
[CrossRef]


http://doi.org/10.1145/2542049
http://doi.org/10.3390/s21020487
http://doi.org/10.3233/AIS-170432
https://www.contact-software.com/en/
http://doi.org/10.1109/ACCESS.2021.3105297
http://doi.org/10.3390/s21041038
http://www.ncbi.nlm.nih.gov/pubmed/33546436
http://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://doi.org/10.3390/e21070627
http://www.ncbi.nlm.nih.gov/pubmed/33267341
http://doi.org/10.1049/iet-cps.2019.0097
http://doi.org/10.1109/TAC.2013.2266831
http://doi.org/10.1109/JESTPE.2021.3050851

	Introduction 
	Proposed IoT Architecture 
	Deep Learning Overview 
	Results and Discussion 
	Dataset 
	Performance Assessment 
	Scenario 1: Real Tracking for AGVs 
	Scenario 2: Out of Service State 
	Scenario 3: Cyber Attack and Fake Tracking 
	Discussion 

	Conclusions 
	References

