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INTRODUCTION

Thoracic aortic aneurysm (TAA) is defined 
as a permanent dilation of  the thoracic 
aorta that is associated with a propensity 
for rupture and dissection. The general 
term of  TAA covers the manifestation of  
aortic dilation that occurs in a wide range of  
syndromic and non-syndromic conditions. 
Within these conditions, aortic pathologies 
manifest in distinct regions of  the thoracic 
aorta. 

Smooth muscle cells (SMCs) are the only cell 
type resident in the normal aortic media and 
are crucial in maintaining aortic wall integrity. 
The functional properties of  SMCs, such as 
contractility and proliferation, are different 
in each aortic region and may contribute to 
the pathophysiology of  TAA. SMCs in the 
thoracic aorta are heterogeneous in their 
embryologic origin.[1] It has been inferred 
that the different embryonic origins may 
have functional difference, although this 
has not been defined in the context of  TAA 
development. This editorial summarizes 
recent publications that implicate embryonic 
origins of  SMCs that are responsible for the 
regional characteristics of  TAAs.

REGION-SPECIFIC 
FEATURES OF TAAS

The thoracic aorta is composed of  four 
distinct regions: aortic root, ascending 
aorta, aortic arch, and descending portion.[2]  
Of  note, 60% of  TAAs impact the aortic 

root and/or the ascending aorta in human.[3]  
For example, TAAs in Marfan syndrome 
and Ehlers-Danlos syndrome occur most 
often in the aortic root.[4-6] TAAs in Loeys-
Dietz syndrome and Turner syndrome 
preferentially form in both the aortic 
root and the ascending aorta.[7-10] Aortic 
aneurysms in patients with bicuspid aortic 
valve are most commonly reported in the 
ascending aorta.[11] This regional specificity 
extends to inflammatory TAA as well; 
syphilis and Takayasu arteritis mainly affect 
the ascending aorta.[12,13] Thus, the wide 
range of  aortic root and ascending aortic 
aneurysm pathologies suggests that these 
two regions are more susceptible to aortic 
pathologies.

This distinct regional distribution is also 
observed in multiple TAA mouse models. 
Fibrillin 1 haploinsufficient (fibrillin 
1C1041G/+) mice and hypomorphic (fibrillin 
1mgR/mgR) mice are commonly used Marfan 
syndrome mouse models. Both models 
exhibit aortic root and ascending aortic 
dilation.[14-19] Mice with postnatal deletion of  
TGF-β receptor 1 or 2 in SMCs that mimic 
Loeys-Dietz syndrome develop aneurysms 
spanning from the aortic root to the 
descending aorta.[7, 20-23] In a non-syndromic 
TAA mouse model, chronic infusion 
with angiotensin II (AngII) leads to the 
formation of  TAAs that are restricted to the 
ascending aortic region.[24, 25] Mechanisms 
driving this regional specificity of  TAAs in 
human and mouse have not been defined. 
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SMC FUNCTIONS IN TAAS

SMC functions, including contractility and proliferation, 
play a pivotal role in aortic homeostasis and vary in 
different aortic regions. However, the potential impact 
of  these functions on the regional specificity of  TAAs 
has not been defined. AngII promotes aortic contraction 
but only in the infrarenal region of  the mouse aorta.[26] 
In addition, chronic infusion of  AngII induces medial 
hyperplasia of  the ascending aorta but hypertrophy in 
the other aortic regions.[27] Furthermore, SMCs in the 
ascending aorta are more susceptible to TGF-β1-induced 
cell proliferation compared to SMCs in the abdominal 
aorta.[28] These functional differences may be associated 
with the pathophysiology of  TAAs. 

In human TAA tissues, the expression of  a marker of  SMCs, 
α-smooth muscle actin, is decreased.[21,22] Interestingly, this 
expression shows a gradient that decreases from the luminal 
to the adventitial aspects of  the media. Simultaneously, 
proteoglycan deposition, a marker of  extracellular matrix 
remodeling, occurs predominantly in the adventitial aspect 
of  the media. In addition, aortic dissection, a disease 
characterized by the creation of  a false channel within the 
aortic media, preferentially occurs in the outer third of  
the aortic media.[29] Aneurysmal tissue from TAA mouse 

models also exhibits a gradient of  medial pathologies that is 
consistent with human TAA features. For example, Marfan 
syndrome mouse models (fibrillin 1C1041G/+ and fibrillin 
1mgR/mgR), Loeys-Dietz syndrome mouse models (TGF-β 
receptor 1 or 2 deletion in SMCs), and the AngII-induced 
TAA mouse models exhibit prominent medial pathologies 
such as medial thickening and elastin fragmentation 
that preferentially forms in the outer medial aspect  
(Figure 1).[19-25, 30] Thus, medial pathologies show a gradient 
toward the outer medial aspect in human and mouse TAAs. 

EMBRYONIC ORIGINS OF SMCS IN 
THE THORACIC AORTA

Using mice with lineage tracing constructs, recent 
publications have delineated the heterogeneous embryologic 
origins of  SMCs within the thoracic aorta. SMCs in the 
thoracic aorta are derived from three different embryonic 
origins: the cardiac neural crest (CNC), the second heart 
field (SHF), and the somites (Figure 2A).[1, 31-33] The CNC 
originates from the ectoderm, and CNC-derived SMCs 
are expressed from the aortic root to the end of  the aortic  
arch.[32-34] The SHF is derived from the pharyngeal arches 
of  the mesoderm, and SHF-derived cells are expressed 
from the aortic root to the branch of  the innominate  
artery.[33, 35, 36] The CNC and SHF interact with each other 

Figure 1: Representative ascending aortic images of (A) wild type and fibrillin1 C1041G/+ mice,[19] (B) SMC-specific TGF-β receptor 1 deleted mice,[23] (C) SMC-specific 
TGF-β receptor 2 deleted mice,[22] and (D) angiotensin II-infused mice.[25] 
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and are essential for the development of  the ascending 
aorta.[37] The descending aorta is derived from the somites, 
which are formed from the paraxial mesoderm.[38-40] 

Although SMCs of  the aortic arch and descending aorta are 
derived from a single origin, the ascending aorta contains 
overlapping SMCs from both CNC and SHF origins. An 
SMC lineage tracing study has discovered that CNC- and 
SHF-derived SMCs in the ascending aorta show a spatially 
distinct distribution (Figure 2B).[33] CNC-derived SMCs 
reside in the inner medial aspect of  the anterior portion 
and in the transmedia of  the posterior portion of  the 
ascending aorta. Conversely, SHF-derived SMCs locate in 
the outer medial layers of  both the anterior and posterior 
portions. Thus, the outer medial SMCs of  the ascending 
aorta form a sleeve populated by SHF-derived SMCs, which 
is coincident with medial pathologies. 

The regional specificity and medial gradient of  aortic 
pathology in TAAs correspond to the distribution of  
embryologic origin of  SMCs. In addition, the functional 
properties of  SMCs are different in different aortic 
regions. Thus, SMCs of  different embryonic origins may 
have different functions that affect the pathophysiology 
of  TAAs. While the proximal thoracic aorta of  chicken 
and mouse is populated with SMCs of  these embryonic 
origins, it is unknown whether this specific pattern of  CNC 
and SHF origins is present in humans. Further studies 
that define CNC and SHF origins in postnatal tissue to 
determine whether human tissue is populated with SMCs 
of  these origins are needed. 

CONCLUSION

TAA formation exhibits regional specificity, which is also 
characterized by pathologic changes in the outer medial 
layers of  the aorta. The distinct embryonic origins of  SMCs 
in the thoracic aorta may explain these specific pathologic 
features. This is one facet of  the many unknown features 
in the mechanisms of  TAAs.
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