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Semi‑automated tracking 
of pain in critical care patients 
using artificial intelligence: 
a retrospective observational study
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Monitoring the pain intensity in critically ill patients is crucial because intense pain can cause adverse 
events, including poor survival rates; however, continuous pain evaluation is difficult. Vital signs 
have traditionally been considered ineffective in pain assessment; nevertheless, the use of machine 
learning may automate pain assessment using vital signs. This retrospective observational study 
was performed at a university hospital in Sendai, Japan. Objective pain assessments were performed 
in eligible patients using the Critical-Care Pain Observation Tool (CPOT). Three machine-learning 
methods—random forest (RF), support vector machine (SVM), and logistic regression (LR)—were 
employed to predict pain using parameters, such as vital signs, age group, and sedation levels. 
Prediction accuracy was calculated as the harmonic mean of sensitivity, specificity, and area under 
the receiver operating characteristic curve (AUROC). Furthermore, 117,190 CPOT assessments 
were performed in 11,507 eligible patients (median age: 65 years; 58.0% males). We found that pain 
prediction was possible with all three machine-learning methods. RF demonstrated the highest 
AUROC for the test data (RF: 0.853, SVM: 0.823, and LR: 0.787). With this method, pain can be 
objectively, continuously, and semi-automatically evaluated in critically ill patients.

Patients in intensive care units (ICUs) experience a high incidence of pain, which requires detailed assessments1–3. 
It has been reported that 33% of intubated patients experience pain at rest4, while an additional 56% experience 
pain during the procedure5. The primary source of pain in surgical patients is the surgical site, whereas that in 
medical patients includes the back and extremities; notably, the incidence was reported to be no different between 
surgical and medical patients1. Stress caused by pain generally has a detrimental effect on ICU patients. Increased 
catecholamine levels cause arteriole vasoconstriction and decrease tissue oxygen tension, thus, resulting in tis-
sue perfusion failure6. Other reactions caused by pain include increased catabolism, such as lipolysis to provide 
protein substrates, and muscle loss7. Increased catabolism associated with tissue hypoxia delays wound healing 
and increases the risk of infections. Pain suppresses the activity of natural killer cells8,9 and lowers the number 
of cytotoxic T-cells and phagocytic neutrophils10. Furthermore, acute pain is a major risk factor for subsequent 
chronic neuropathic pain.

In the ICU, objective methods of pain assessment, such as the Critical-Care Pain Observation Tool (CPOT)11 
and Behavioral Pain Scale12 are recommended when patients cannot communicate due to sedatives, intubation, 
or tracheostomy13,14. Regular use of pain assessment scales has been reported to improve the clinical outcomes in 
ICU patients15–17; however, these methods are cumbersome and do not facilitate continuous monitoring of pain. 
Therefore, a method for continuous and easy assessment of patients that can enable healthcare professionals to 
perform interventions sooner is highly necessary.

Vital signs are considered indicators of pain; however, changes in vital signs have been reported to be nonreli-
able indicators of the extent of pain9,12,18–20. Notably, the studies that concluded the latter employed time-series 
data of vital signs at specific points rather than using continuous data because of computational complexity. Such 
data may not fully reflect the information available from vital signs because they cannot account for continuous 
changes in the pain.
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In contrast, artificial intelligence (AI)-based predictive tools are increasingly resulting in automation of 
diagnostics through comprehensive monitoring of patient health, which is traditionally done by physicians 
and nurses, based on real-time and continuous recordings, processing, monitoring, and intelligent diagnosis21. 
Notably, AI-based tools have the potential to provide continuous and automated pain assessments that can 
eliminate the effects of uncertainty caused by discrete decision-making, such as that based on pain assessment 
scales22–25. However, only a few studies have actively employed continuous data, such as vital signs, in pain 
analysis. Adjei et al. predicted pain by quantifying pain sensitivity by analyzing the electrocardiogram (ECG) 
waveforms of 17 patients who underwent varicose vein surgery; however, the small number of patients and the 
use of questionnaires in pain assessment made it difficult to apply this method in unconscious patients26. There 
have also been attempts to detect pain through machine-learning analysis of electroencephalogram (EEG) and 
images27–30; however, they are difficult to interpret and cannot be used for continuous assessment. To the best 
of our knowledge, no studies have performed objective, continuous, and semi-automatic evaluation of pain in 
ICU patients. Therefore, this study aimed to investigate if AI analysis of vital signs could be used to automate 
the assessment of pain.

Results
In 11,527 eligible patients, CPOT assessment was performed 117,190 times and 3,925 patients (3.3%) were 
determined to experience pain with a score of ≥ 3. Although the level of sedation (Richmond Agitation-Sedation 
Scale; RASS) was assessed almost simultaneously, 42.8% of the patients were determined to be calm (0 points), 
8.3% aggressive (≥ 1 point), and 48.9% sedated (≤ − 1 point). Furthermore, 21.7% of the ratings indicated delirium 
(see Supplementary Table S1 online). As mentioned in the Methods section, we used three machine-learning 
methods (RF, SVM, and LR) to predict the presence of pain at the time of CPOT evaluation using parameters, 
such as vital signs, age group, and sedation level. The hyperparameter that derived the highest accuracy in each 
model was selected via a grid search (SVM: C = 10, gamma = 10, kernel = rbf. RF: max_depth = 14, estimates = 17, 
criterion = gini, LR: C = 1.0, tol = 0.0001). The results demonstrated that RF provided the highest area under 
the receiver operating characteristic curve (AUROC) (AUROC for test data: RF: 0.853; SVM: 0.823; LR: 0.787; 
Fig. 1). A review of the feature importance of the RF model showed that RASS exhibits a higher contribution rate 
as compared to the other predictors (Supplementary Table S3). Table 1 lists the results obtained by varying the 
sensitivity and specificity while using the RF model, which demonstrates the highest prediction accuracy. These 
results are based on the oversampling performed in the proposed method. By contrast, the results obtained using 
raw data without oversampling are presented in Fig. S2 and Table S4 (Supplementary Information).

Discussion
In this study, we examined if machine learning can be used for continuous and automatic pain assessment and 
to obtain results similar to those of traditional CPOT assessments performed by nurses using only vital signs 
and other data. We found that the pain experienced by ICU patients can be assessed objectively, continuously, 
and semi-automatically using machine learning with an accuracy of up to AUROC 0.853. In our experiments, 
RF demonstrated the best prediction performance. Our study is novel because we demonstrated the usefulness 
of vital signs that are measured continuously and constantly in the ICU and were previously considered ineffec-
tive in the evaluation of pain.

Severely ill adult patients experience moderate-to-severe pain at rest and during procedures of standard 
care1,31; intense pain can have adverse effects, such as immunosuppression and cardiac and respiratory failure32. 
Currently, an objective index, such as CPOT, is used when an ICU patient cannot express pain; however, con-
tinuous evaluation is difficult because of the patient’s condition. Particularly, during the night or when the staff 
is busy, pain evaluation and care tend to be delayed. A consistent approach is important for pain assessment and 
management33, especially regarding the use of opioids, the main analgesics in ICUs, which require careful dose 
adjustments to balance the benefits and potential risks34–38. To achieve this goal, continuous evaluation of pain 
is crucial; however, pain evaluation using the conventional methods only corresponds to a specific time point. 
The results of this study suggest that RASS, an index of sedation, is the only parameter among all the variables 
that need to be evaluated each time and that pain evaluation can be semi-automated using vital signs.

Recent research using machine learning and AI has corroborated the usefulness of analyzing data that are 
recorded continuously over time, such as vital signs, to gain better insights. In line with the present study, a 
previous machine-learning model analyzed the electronic medical record texts of 2695 patients with breast can-
cer undergoing chemotherapy and automatically extracted pain and other information with AUROC of 0.8239. 
Furthermore, a median accuracy of 70% was achieved when a deep-learning model—based on a combination 
of convolutional and recurrent neural networks—that automatically tracks both levels of consciousness and 
delirium using frontal EEG signals was employed, which allowed the latter model to predict the differences in 
RASS levels to within 1 point40. In a previous study, we continuously analyzed blood pressure values in patients 
with septic shock and found that both the extent of decrease in blood pressure and the duration of blood pressure 
affect the prognosis41. The use of text and EEGs in medical records may improve the accuracy of pain prediction; 
however, they cannot always be measured.

In conclusion, pain can be objectively, continuously, and semi-automatically predicted using machine learn-
ing. Of the methods tested, the prediction accuracy was the highest with the RF model. Regarding the limitations 
of our research and future challenges, it is necessary to improve the prediction accuracy in diverse situations. In 
this study, we were also able to predict pain with a high degree of accuracy, although not 100%. Clinical limita-
tions in this regard include time differences in pain assessment and recording, and heterogeneity that occurred 
as a result of the assessments being performed by humans. To address these issues, we plan to develop a bed-
side device using the prediction algorithm proposed in this study. Subsequently, it is necessary to improve the 
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prediction accuracy in other environments to verify the results. The use of an automated and continuous pain 
assessment algorithm may allow for continuous pain assessment in all situations. It has the potential to not only 
immediately help relieve the pain in patients who cannot communicate but also increase their life expectancy. 
Therefore, more studies are warranted in a wider variety of scenarios for further evidence.

Figure 1.   Prediction accuracy. (a–c) Accuracy of each machine-learning method. The blue line represents 
the accuracy in the training set, and the red line represents the accuracy in the test set. (d) Comparison of the 
verification data of the three machine-learning methods. The x-axis and y-axis represent the negative sensitivity 
and specificity in the ROC curve, respectively. The test accuracy depends on the extent to which the machine-
learning model can correctly determine whether the CPOT score was < 2 or > 3. Accuracy is represented by 
AUROC; area of 1 represents the perfect test and that of 0.5 represents an inconclusive test.

Table 1.   Sensitivity, specificity, and threshold values at different operating points for RF-based pain tracking; 
the AUROC value of the prediction model equaled 0.853.

Condition Sensitivity Specificity Threshold

Sensitivity at predefined value

0.6 0.942 0.736

0.7 0.809 0.752

0.8 0.691 0.742

0.9 0.576 0.703

Specificity at predefined value

0.868 0.6 0.718

0.791 0.7 0.742

0.736 0.8 0.768

0.637 0.9 0.746

Optimal point 0.736 0.807 0.770
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Methods
Dataset.  This retrospective observational study was performed in the ICU of Tohoku University Hospital, 
Sendai, Japan. Ethical approval was obtained from the Ethics Committee of the Tohoku University Graduate 
School of Medicine (reference number 2018–1–650). The requirement for informed consent was waived due 
to the retrospective design by the Ethics Committee of Tohoku University Graduate School of Medicine. All 
methods were performed in accordance with the relevant guidelines and regulations as per the Declaration 
of Helsinki. The patients’ data will be deleted as soon as the current paper is published. The study was reg-
istered in a database in advance (ID: R000047019 UMIN000041179, URL: https​://www.umin.ac.jp/ctr/index​
.htm). Patients who met the following inclusion criteria were enrolled at ICU admission between October 2016 
and October 2019: (1) age ≥ 20 years; (2) CPOT, RASS, and confusion assessment method for the intensive care 
unit (CAM-ICU) were evaluated at least five times per patient; and (3) ECG and arterial pressure were moni-
tored for ≥ 30 min before employing CAM-ICU. Data of the following patients whose vital signs differed signifi-
cantly from those of the general adult population were excluded: (1) pregnant patients; (2) cardiopulmonary 
bypass recipients; and (3) those with organ transplants (i.e. organ recipients), ventricular assist devices, extra-
corporeal membrane oxygenation, intra-aortic balloon pumps, or do-not-resuscitate orders. The final dataset 
included 11,527 patients. The commonest analgesic and sedative were fentanyl and dexmedetomidine. All data 
were retrieved from the institution’s electronic medical record system (PrimeGaia, Nihon Kohden Corporation, 
Tokyo, Japan). No patient-identifying information was recorded.

CPOT, RASS, and CAM‑ICU.  To assess the pain levels of all eligible patients, we used CPOT11 as the tar-
get to train the model. CPOT assessment was performed by ICU nurses every 8 h and when obvious pain was 
observed. CPOT includes nine levels (0–8). RASS42 was used to assess the sedation level. Delirium was assessed 
using CAM-ICU43. Furthermore, RASS and CAM-ICU assessments were performed concurrently with CPOT 
assessment. CPOT, RASS, and CAM-ICU evaluations were performed by multiple nurses to ensure agreement 
between them. If there was a difference in opinion, the intensivist made the final decision and approved the 
evaluations.

Analgesic management protocol.  All patients were managed using a pain management protocol of the 
hospital (see Supplementary Fig. S1 online).

Vital signs.  Heart rate, pulse oximetry, arterial oxygen saturation, and arterial blood pressure were recorded 
every minute. Arterial pressure was continuously monitored in either the left or right radial artery. Respira-
tory rate was measured using electrocardiographic impedance. The noise corresponding to each variable was 
removed according to the method described in Supplementary Table S2.

Machine learning.  We used three machine-learning methods with different characteristics (Table  2) 
according to the report by Saberioon et al.44.

Prediction model.  Patient pain at the time of CPOT evaluation was predicted using machine learning and 
vital signs up to that time. The predictors were systolic and diastolic arterial blood pressure, pulse rate, and res-
piratory rate (one record/min) as vital signs as well as the patient’s sex, age group (20–44, 45–64, and 65 years), 
and RASS score in the last 3 h. Figure 2 illustrates the procedure used to create the training data. CAM-ICU was 
used for the exploratory analysis but not for the construction of the final model.

Table 2.   Brief schema of the machine learning methods applied in this study. The table presents a comparative 
representation of the three machine learning methods.

Support vector machine Random forest Logistic regression

Explanation
A method of constructing a two-class pattern clas-
sifier using a linear input element. This is one of 
the supervised-learning-based pattern recognition 
models

A method of constructing numerous decision trees 
and carrying out a majority vote. It requires a large 
amount of data but can make highly accurate predic-
tions

Calculates the class membership probability for two 
categories by fitting the log odds and explanatory 
variables to a model

Speed

Low
Since the number of calculations is equal to the 
square of the number of data, this method can be 
computationally intensive, and the computational 
speed can be significantly low

Moderate
Depending on the number of data and the number 
of dimensions chosen to build a single tree, it is often 
faster than SVM when the data size is large

High
It utilizes stochastic gradient descent, and once the 
gradient is obtained, it can quickly find the solution 
and can be easily applied to large datasets

Accuracy

High for a simplified problem
Classifies the data by subtracting a separation hyper-
plane, which is suitable for two classifications; how-
ever, for multiple classifications, it creates a separation 
hyper-plane, which renders it difficult to execute and 
less accurate

High when the volume of data is large
When solving simple problems with a small number 
of data, the accuracy is low owing to unavailability of 
data required for the large number of calculations. In 
contrast, when the data size is large, the accuracy is 
high, and overlearning is unlikely to occur

Low
Performs calculations by applying a sigmoidal func-
tion to the output of a multiple regression. If the 
target variable tends to be in a single direction, the 
probability of correct classification is high. However, 
if there is a skewed class bias in the feature space, 
classification may be difficult to perform

Calibration
Difficult
Kernels, regularization penalties, slack variables, etc. 
need to be adjusted. It is also necessary to regularize 
and standardize the training data in advance

Easy
Only the depth and number of decision trees need to 
be adjusted. Further, regularization and standardiza-
tion of the training data are not required

Easy
Only the adjustment of slack variables is necessary. 
Further, regularization and standardization of the 
training data are not required

https://www.umin.ac.jp/ctr/index.htm
https://www.umin.ac.jp/ctr/index.htm
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First, the noise was removed from the data of the vital signs according to the noise requirements in Sup-
plementary Table S2 (preprocessing). Second, the vital signs from one hour before the CPOT evaluation were 
extracted (slicing). Third, the rising and falling fluctuations were calculated and integrated into the section in 
which 90% or more of the vital signs were present. To mitigate the influence of individual differences between 
patients, the integrated value of the amount of fluctuation from 1–2 h after entering the ICU was calculated 
every minute (60 records) and the fluctuations corresponding to each patient were calculated. The records were 
normalized based on the maximum and minimum values of the integrated value of the quantity (leveling), which 
provided a numerical value that indicated the magnitude of the variations in each patient. Finally, the age group, 
sex, and sedation score were assigned to the training data.

Model evaluation.  For predicting pain, CPOT values from 0 to 2 were considered negative and scores of ≥ 3 
were considered positive. Since these data were unbalanced, oversampling was performed on the positive group. 
In terms of the oversampling method, Synthetic Minority Over-sampling Technique (SMOTE), Borderline 
SMOTE, and Adaptive Synthetic Sampling (ADASYN) were verified, and ADASYN, which showed the high-
est accuracy, was adopted. In machine learning, precision was compared between random forest (RF), support 
vector machine (SVM), and logistic regression (LR) models. To evaluate the generalization performance, the 
data were randomly classified between the training and validation data in a ratio of 9:1 and 10 cross-validations 
were performed. A grid search was performed on the training data to select the hyperparameter that derived 
the highest accuracy in each of the models. Furthermore, the harmonic means of the sensitivity, specificity, and 
AUROC were calculated.

Statistical analysis.  Data analysis was performed using JMP v15 (SAS Institute Inc., Cary, NC, USA). Nor-
mally distributed data were reported as mean ± standard deviation and non-normally distributed data as median 
and interquartile range. AUROC was used to compare the accuracy, which was evaluated as low (0.5–0.7), mod-
erate (0.7–0.8), and high (≥ 0.8).

Data availability
The datasets generated during and/or analyzed during the current study are available in the UMIN-ICDR reposi-
tory at http://www.umin.ac.jp/icdr/index​–j.html with permission from the authors.
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