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The development and progression of gastric cancer (GC) is greatly influenced by gastric microbiota and their metabolites. Here, we
characterized the gastric microbiome and metabolome profiles of 37 GC tumor tissues and matched non-tumor tissues using 16s
rRNA gene sequencing and ultrahigh performance liquid chromatography tandem mass spectrometry, respectively. Microbial
diversity and richness were higher in GC tumor tissues than in non-tumor tissues. The abundance of Helicobacter was increased in
non-tumor tissues, while the abundance of Lactobacillus, Streptococcus, Bacteroides, Prevotella, and 6 additional genera was
increased in the tumor tissues. The untargeted metabolome analysis revealed 150 discriminative metabolites, among which the
relative abundance of the amino acids, carbohydrates and carbohydrate conjugates, glycerophospholipids, and nucleosides was
higher in tumor tissues compared to non-tumor tissues. The targeted metabolome analysis further demonstrated that the
combination of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate could serve as a robust biomarker for distinction
between GC tumors and non-tumor tissues. Correlation analysis revealed that Helicobacter and Lactobacillus were negatively and
positively correlated with the majority of differential metabolites in the classes of amino acids, carbohydrates, nucleosides,
nucleotides, and glycerophospholipids, respectively, suggesting that Helicobacter and Lactobacillus might play a role in degradation
and synthesis of the majority of differential metabolites in these classes, respectively. Acinetobacter, Comamonas, Faecalibacterium,
Sphingomonas, and Streptococcus were also significantly correlated with many differential amino acids, carbohydrates, nucleosides,
nucleotides, and glycerophospholipids. In conclusion, the differences in metabolome profiles between GC tumor and matched non-
tumor tissues may be partly due to the collective activities of Helicobacter, Lactobacillus, and other bacteria, which eventually affects
GC carcinogenesis and progression.
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INTRODUCTION
Gastric cancer (GC) is a prominent malignant tumor worldwide,
particularly in Asia [1]. According to the latest cancer statistics in
China, GC was responsible for over 679,100 new cases and 498,000
deaths in 2015, making it the second most frequently diagnosed
cancer as well as the second leading cause of deaths related with
cancer [2]. Infection with Helicobacter pylori is widely regarded as a
high-risk factor for the development of GC as the majority of GC
cases can be related to H. pylori [3]. Other risk factors include
smoking, gender, and the consumption of smoked and high-salt
foods [4].
Due to the acidic environment of the human stomach, it was

previously believed that the stomach was not suitable for the
growth of other microorganisms and was exclusively colonized by
H. pylori. However, advances in sequencing technology have proven
that the stomach is inhabited by a robust microbiota [5]. Previous
studies have found that the microbial diversity in patients with
intestinal metaplasia and GC were significantly decreased com-
pared to in patients with superficial gastritis [6, 7]. Moreover, other

studies showed that GC was associated with increased microbial
diversity and richness [8, 9]. A study using high-throughput
sequencing techniques on a cohort of 276 Chinese patients with
GC found that bacterial diversity and richness were lower in
peritumoral and tumoral tissues than in non-tumor tissues, and that
the composition of gastric microbiota was significantly altered in
the different stomach microhabitats [10].
The development of tumors is affected not only by microbiota

but also by their metabolites [11]. Kaji et al. used capillary
electrophoresis time-of-flight mass spectrometry to quantify 93
metabolites in cancer and adjacent non-cancerous tissues from
140 patients with GC, revealing that β-alanine was both a
significant predictor of peritoneal recurrence and a prognostic
factor for GC [12]. Additionally, other studies have investigated the
metabolite differences between non-tumor and cancerous tissues
from patients with GC [13–15]. However, the number of
metabolites quantified in these studies were very small, resulting
in a lack of information on a large number of metabolites. Thus,
further studies analyzing more metabolites are urgently needed.
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Human metabolites are a mixture of products from human
genome and bacterial genome, which may be more affected by
human genome, but bacterial genome also plays a role in the
biosynthesis and degradation of human metabolites. Erawijantari
et al. evaluated the influence of gastrectomy as a GC treatment on
fecal microbiome and metabolome profiles [16]. Nevertheless, the
contributions of microbes to metabolite production and degrada-
tion in GC tissues remains unclear.
In this study, we performed 16s rRNA gene sequencing on

tumor tissues and matched non-tumor tissues from 37 patients
with GC to characterize the gastric microbiota. We also performed
untargeted metabolome analysis of the 37 paired GC tissue
samples using ultrahigh performance liquid chromatography
tandem mass spectrometry (UHPLC-MS/MS) to characterize the
gastric metabolome profiles, and combined this analysis with the
GC tissue microbiome profiles.

RESULTS
Altered gastric microbiota in GC tumor tissues compared with
matched non-tumor tissues
As shown in Table S1, the 16s rRNA gene sequencing produced a
median of 80,110 clean reads for 37 paired tumor and non-tumor
tissues (Cohort 1, Table 1). To measure differences in microbial
diversity between the groups, alpha diversity was analyzed. The
observed OTUs, which reflects the species richness, was sig-
nificantly higher in tumor tissues than in non-tumor tissue (464.00

vs. 231.00; P < 0.001; Fig. 1A). The Shannon index, which measures
species richness and evenness, was also significantly higher in
tumor tissues than in non-tumor tissue (5.20 vs. 2.98; P < 0.001;
Fig. 1B). To compare the composition of the microbial community
between the non-tumor and tumor tissues, we analyzed beta
diversity. The weighted UniFrac principal coordinate analysis
(PCoA) showed that significant clustering was detected between
groups (PERMANOVA, R2= 0.211, P= 0.001, Fig. 1C). As shown in
the Venn diagram, 2222 and 3961 OTUs were detected in the non-
tumor and tumor tissues, respectively, with 1832 OTUs concurrent
in the two groups (Fig. 1D). To identify specific microbial
communities associated with GC, we analyzed the composition
of the gastric microbiota in non-tumor and tumor tissues using
LEfSe analysis. A total of 64 discriminative taxa at all taxonomic
levels from phylum to genus were identified (LDA > 3.5, Q < 0.05).
At the phylum level, the abundance of Proteobacteria was
increased in the non-tumor tissues, whereas the abundance of
Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, and Spiro-
chetes was enriched in the tumor tissues (Fig. 1E). At the genus
level, the abundance of Helicobacter was elevated in the non-
tumor tissues, whereas the abundance of Lactobacillus, Strepto-
coccus, Acinetobacter, Prevotella, Sphingomonas, Bacteroides, Fuso-
bacterium, Comamonas, Empedobacter, and Faecalibacterium was
increased in the tumor tissues (Fig. 1E).

Differences in the metabolome profiles between GC tumor
and non-tumor tissues
Since the diversity and composition of the gastric microbiota
were different between the non-tumor and tumor tissues from
GC patients, we hypothesized that changes in the metabolomic
pathways may be partially influenced by gastric microbiota in GC
patients. Thus, untargeted metabolome analysis of the tissue
samples (37 paired GC tissue samples) was performed using
UHPLC-MS/MS, and 1198 metabolites were quantified in the
positive and negative modes. The PLS-DA score plot showed that
the tumor and non-tumor tissues were separated into two
distinct clusters (R2Y= 0.89 and Q2Y= 0.78) (Fig. 2A). The test for
the PLS-DA model showed that the R2 value was larger than the
Q2 value, and that the Q2 regression line had a negative intercept
(R2= [0.0, 0.56], Q2= [0.0, −0.44]), indicating that the PLS-DA
model for this study was valid (Fig. 2B). We observed 150
metabolites with significantly differential relative abundance
between the non-tumor and tumor tissues (variable importance
in projection (VIP) > 1 and Q value < 0.05 and FC ≥ 2 or FC ≤ 0.5)
(Table S2), which included 21 amino acids, 12 carbohydrates and
carbohydrate conjugates, 24 fatty acyls, 29 glycerophospholipids,
5 indoles and derivatives, 7 nucleosides, 4 nucleotides, 5 steroids
and derivatives, 3 benzenoids, and 2 glycerolipids (Fig. 3). The
relative abundance of these metabolites in the classes of amino
acids, carbohydrates and carbohydrate conjugates, glyceropho-
spholipids, and nucleosides was higher in the tumor tissues than
in the non-tumor tissues (Fig. 3). As for the metabolites of the
fatty acyl class, the relative abundance of fatty acid esters of
hydroxy fatty acids and prostaglandins was decreased in the
tumor tissues compared to the non-tumor tissues. The majority
of the remaining metabolites in this class exhibited increased
relative abundance in the tumor tissues compared with the non-
tumor tissues.

Identification of metabolite biomarkers for discriminating
tumor from non-tumor tissues
To identify metabolite biomarkers for discriminating between
tumor and non-tumor tissues, we selected the top 15 metabo-
lites according to VIP values (Fig. 4A). Among the 15 metabolites,
the relative abundance of 8 metabolites was higher in the tumor
tissues than in the non-tumor tissues (Fig. 4B). Next, we
preformed the receiver operating curve (ROC) analysis to
evaluate the diagnostic accuracy of the 8 metabolites

Table 1. Clinicopathological characteristics of patients with GC in
this study.

Characteristics Cohort 1 Cohort 2

Total number 37 20

Gender (no.)

Female 11 6

Male 26 14

Age (years, mean ± SD) 66.30 ± 10.44 62.20 ± 13.74

Weight (kg, mean ± SD) 60.72 ± 11.82 56.10 ± 9.23

Height (cm, mean ± SD) 165.05 ± 8.46 161.40 ± 8.13

BMI (mean ± SD) 22.13 ± 3.04 21.49 ± 2.77

Complications (no.)

Hypertension 8 0

Diabetes mellitus 2 0

Tumor localization (no.)

Proximal stomach 15 4

Antrum 14 8

Body/fundus 8 8

Tumor differentiation (no.)

Moderately differentiated 2 5

Moderately–poorly differentiated 13 6

Poorly differentiated 22 7

Unknown 0 2

Lauren typing (no.)

Intestinal type 13 10

Diffuse type 11 5

Mixed type 13 5

Tumor stage (no.)

I 4 1

II 12 3

III 21 16
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in discriminating between tumor and non-tumor tissues.
Metabolites with an area under the curve (AUC) < 0.95 were
eliminated. Finally, we obtained two candidate biomarkers,
1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate.
Their corresponding AUCs were 0.957 (95% CI: 0.917–0.997) and
0.951 (95% CI: 0.901–1.000), respectively (Fig. 4C). The AUC for
the combination of the two metabolites was 0.976 (95% CI:
0.940–1.000) (Fig. 4C). These results suggest that the combina-
tion of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-
phosphate may serve as a potential biomarker for discrimination
between GC tumors and non-tumor tissues.

Validation of metabolite biomarkers for discriminating tumor
from non-tumor tissues
To validate the combination of 1-methylnicotinamide and N-acetyl-
D-glucosamine-6-phosphate as the biomarkers for discrimination
between GC tumors and non-tumor tissues, we recruited 20
additional patients with GC (Cohort 2) for targeted metabolomics
(Table 1). As shown in Fig. 5A, B, the concentrations of
1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate
were both significantly higher in GC tumor tissues than in non-
tumor tissues (P< 0.001). The AUCs for 1-methylnicotinamide and N-
acetyl-D-glucosamine-6-phosphate were 0.908 (95% CI: 0.794–1.000)

Fig. 1 Altered gastric microbiota in 37 gastric cancer (GC) tissues compared with matched non-tumor tissues. A, B The observed OTUs and
Shannon indices were used to evaluate the microbial diversity of the paired tumor and non-tumor tissues. The Wilcoxon matched-pairs signed
rank test was performed. C Principal coordinate analysis (PCoA) of the weighted UniFrac distance demonstrated that the non-tumor and
tumor tissues showed two distinct clusters. D The Venn diagram illustrates the overlapped OTUs between the paired GC tumor tissues and
non-tumor tissues. E Differential taxa at the phylum and genus levels identified by linear discriminant analysis (LDA) effect size (LEfSe) analysis
(LDA > 3.5, Q < 0.05).

Fig. 2 The metabolome profiles of gastric cancer tissues were different from those of matched non-tumor tissues. A PLS-DA showed that
tumor tissues and non-tumor tissues were separated into two distinct clusters. B The test for PLS-DA model showed that the PLS-DA model for
this study was valid. PLS-DA, partial least-squares discriminant analysis. QC, quality control. The QC samples were obtained by mixing the
equal amounts of metabolites extracted from all samples, which were used for evaluation of the stability of the instrument.
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and 0.835 (95% CI: 0.704–0.966), respectively (Fig. 5C, D). The AUC for
the combination of the two metabolites was 0.945 (95% CI:
0.870–1.000) (Fig. 5E). These results show that the combination of
1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate may
serve as a robust biomarker for distinction between GC tumors and
non-tumor tissues.

KEGG enrichment analysis of differential metabolites
To determine the main metabolic pathways and signal pathways
correlated with the differential metabolites in the non-tumor and
tumor tissues, KEGG enrichment analysis was performed. Figure
6A showed 150 discriminative metabolites scattered through
multiple pathways, including tryptophan metabolism, amino acid
biosynthesis, fatty acid biosynthesis, bile secretion, and galactose

metabolism, etc. Furthermore, glutathione, cysteine and methio-
nine metabolism, amino sugar and nucleotide sugar metabolism,
and thyroid hormone synthesis pathways were significantly
enriched. The pathways of glutathione, cysteine, and methionine
metabolism (5 differential metabolites), biosynthesis of amino
acids (7 differential metabolites), and bile secretion (6 differential
metabolites) contained more differential metabolites than the
other pathways.

The association between discriminative genera and
metabolites in different pathways
The Spearman’s correlation analysis was used to assess the
association between 11 discriminative genera and 25 differential
metabolites in the main enriched pathways, which showed that

Fig. 3 The heat map shows the differential metabolites between the paired gastric cancer tissues and non-tumor tissues. The heat map
shows the scaled relative abundance (Lg) of 109 differential metabolites (VIP > 1 and Q value < 0.05 and fold change (FC) ≥ 2 or FC ≤ 0.5). The
discriminative metabolites from top to bottom are amino acids, carbohydrates and carbohydrate conjugates, indoles and derivatives,
nucleosides, nucleotides, steroids and derivatives, fatty acyls, glycerolipids, and glycerophospholipids. The differential metabolites were
classified using the Human Metabolome Database. Q value, corrected P value.
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the differential metabolites were not only correlated with the
genus Helicobacter but also with other genera (Fig. 6B).
Helicobacter was enriched in non-tumor tissues and exhibited a
significantly negative correlation with the differential metabolites
in pathways of amino sugar and nucleotide sugar metabolism;
glutathione, cysteine, and methionine metabolism; and biosynth-
esis of fatty acids. This indicates that Helicobacter plays a role in
the degradation of these metabolites. All differential metabolites
in the pathway of amino sugar and nucleotide sugar metabolism
were significantly positively associated with Lactobacillus, Strepto-
coccus, Prevotella, Acinetobacter, Comamonas, Empedobacter, and
Faecalibacterium. Lactobacillus and Streptococcus both exhibited
significantly positive correlation with four out of five differential
metabolites in the pathway of glutathione, cysteine, and
methionine metabolism. All the differential metabolites in the
biosynthesis pathway of fatty acids were significantly positively
correlated with Faecalibacterium. Three out of four differential
metabolites in this pathway exhibited significantly positive
correlation with Lactobacillus and Bacteroides. These results
suggested that Lactobacillus, Streptococcus, Prevotella, Acinetobac-
ter, Comamonas, Empedobacter, Faecalibacterium, and Bacteroides
contribute greatly to the synthesis of the differential metabolites
in the respective pathways. Lactobacillus significantly correlated
with all the differential metabolites in the bile secretion pathway,
the biosynthesis pathway of amino acids, and the tryptophan
metabolism pathway. Helicobacter also showed a significant
correlation with several discriminative metabolites in these
pathways.

The relationship between discriminative genera and
metabolites in different classes
The analysis of association between differential genera and
metabolites in different classes was performed. As shown in Fig.
7A, Helicobacter significantly correlated with 16 fatty acyls, while

Lactobacillus was significantly associated with 21 fatty acyls,
suggesting that the metabolites in this class were strongly
influenced by Helicobacter and Lactobacillus. Helicobacter was
negatively correlated with the majority of differential metabolites
in the classes of amino acids, carbohydrates, nucleosides,
nucleotides, and glycerophospholipids; however, Lactobacillus
was positively associated with the majority of the differential
metabolites in these classes (Fig. 7B–D). These results indicated
that Helicobacter and Lactobacillus might contribute to degrada-
tion and synthesis of metabolites in these classes, respectively.
Bacteroides exhibited significant association with 18 fatty acyls and
19 glycerophospholipids, while Faecalibacterium showed signifi-
cant correlation with 21 fatty acyls and 22 glycerophospholipids
(Fig. 7A, B). These results suggested that Bacteroides and
Faecalibacterium might play an important role in synthesis or
degradation of fatty acyls and glycerophospholipids. Comamonas
showed a significantly positive association with 14 amino acids,
indicating a robust contribution of Comamonas to synthesis of
amino acids (Fig. 7C). Acinetobacter, Comamonas, Faecalibacterium,
Sphingomonas, and Streptococcus were significantly positively
associated with 7, 7, 7, 5, and 6 carbohydrates, respectively, which
suggested that Acinetobacter, Comamonas, Faecalibacterium,
Sphingomonas, and Streptococcus might participate in synthesis
of carbohydrates (Fig. 7D). The correlation analysis also showed
that Comamonas and Streptococcus might play a role in the
synthesis of nucleosides and nucleotides (Fig. 7D).

Microbiota and metabolites associated with clinical features
Cohort 1 for microbiome and untargeted metabolome analysis
enrolled 16 early-stage (stage I–II) and 21 late-stage (stage III) GC
patients (Table 1). The heat map showed that the majority of
carbohydrates were gradually increased from non-tumor tissues to
early-stage and late-stage tumor tissues (Fig. 8). Particularly, the
concentration of N-acetyl-D-glucosamine-6-phosphate was

Fig. 4 Identification of metabolite biomarkers for discriminating gastric tumor tissues from non-tumor tissues. A The top 15 metabolites
according to VIP values are displayed. VIP, variable importance in projection. B Among the 15 metabolites, the relative abundance of 8
metabolites was higher, but the relative abundance of the rest of the metabolites was lower in the tumor tissues than the non-tumor tissues.
Q value, corrected P value. C ROC analysis for 1-methylnicotinamide, N-acetyl-D-glucosamine-6-phosphate, and the combination of the two
metabolites. ROC, receiver operating curve.

D. Dai et al.

5

Cell Death and Disease         (2021) 12:1104 



gradually elevated from non-tumor tissues to early-stage and late-
stage tumor tissues with significant difference (Q < 0.05, Fig. S1). A
stepwise increase in the abundance of Acinetobacter, Comamonas,
and Sphingomonas from non-tumor tissues to early-stage and late-
stage tumor tissues was observed (Fig. S2D–F). Nevertheless, the
differences were not significant (Q > 0.05). However, this trend was
not observed for Helicobacter, Lactobacillus, and Streptococcus (Fig.
S2A–C). As Figs. S3 and S4 show, no correlation was found between
complications and microbiota, and between complications and
metabolites.

DISCUSSION
In this study, the diversity and richness of gastric microbiota was
found to be higher in tumor tissues than in non-tumor tissues,
which is consistent with the result of a previous study [17].
However, Liu et al. observed decreased diversity and richness in
peritumoral and tumoral tissues in comparison to non-tumor
tissues from 276 GC patients [10]. There is no consensus on the
relationship between microbial diversity and the mucosal tissues
of stomach. The relative abundance of Helicobacter was reduced in
GC tumor tissues compared to non-tumor tissues, which is
consistent with results of two previous studies [10, 17]. The
decrease of Helicobacter may be due to the loss of specialized
glandular tissues and decreased acid secretion [10].
The abundance of Lactobacillus ranked second in the GC tumor

tissues after the abundance of Helicobacter in this study, which
differs from previous findings [10, 17]. However, several studies
have found that the proportion of Lactobacillus was higher in GC
patients compared to that found in healthy controls [8, 9, 18]. Liu
et al. also found that Lactobacillus was higher in GC tumor tissues
compared to that in non-tumor tissues [10]. Sonveaux et al.
reported that Lactobacillus may produce metabolites that could be
used as an energy source for tumor growth and angiogenesis [19].
Previous studies have also shown that the abundance of
Streptococcus was increased in GC tumor tissues compared to
non-tumor tissues [10, 17]. The abundance of Streptococcus was

found to be elevated in tumor tissues from patients with lung
cancer in comparison to non-tumor tissues [20]. Streptococcus
displayed a correlation with upregulation of the ERK and PI3K
signaling pathways in patients with lung cancer, and in vitro
exposure of airway epithelial cells to Streptococcus led to
upregulation of these same signaling pathways [21]. We found
that Bacteroides exhibited higher abundance in the tumor tissues
than in the non-tumor tissues. A restricted gastric microbiota
containing only Lactobacillus, Bacteroides, and Clostridium pro-
moted GC development at a similar rate to the complex
microbiota in insulin-gastrin transgenic mice [22].
Our microbiome study shares some similarities with the two

previous studies, but is also a little different from the two studies
[10, 17]. The study by Shao et al. utilized gastric cardia tissues for
microbiome analysis [17], while the study by Liu et al. used
proximal stomach, body/fundus, and antrum tissues for research
[10]. Our study also used proximal stomach, body/fundus, and
antrum tissues. The difference between our study and the study
by Liu et al. is that the samples of the study by Liu et al. were
mainly from body/fundus, and antrum, while the samples of our
study were primarily from proximal stomach, and antrum.
Therefore, the differences between the three studies may result
from samples with different tumor localization.
Our metabolome analysis of GC tumor tissues and the matched

non-tumor tissues revealed 150 differential metabolites, including
amino acids, carbohydrates and carbohydrate conjugates, fatty
acyls, glycerophospholipids, nucleosides, and nucleotides. Con-
sistent with previous studies [12, 13], the majority of the
discriminative metabolites in the amino acid class displayed
higher relative abundance in the tumor tissues than in the non-
tumor tissues. Because tumor cells utilize amino acids to generate
energy and synthesize proteins and nucleosides, increased
concentrations of amino acids are essential for tumor cell
proliferation. We also observed enhanced relative abundance of
carbohydrates and carbohydrate conjugates in the tumor tissues
in comparison to the non-tumor tissues. Elevated glucose uptake
is a metabolic feature of tumor cells [23], and carbohydrates and

Fig. 5 Validation of metabolite biomarkers for distinguishing between gastric tumor and non-tumor tissues. A The concentrations of
1-methylnicotinamide was compared between tumor tissues and matched non-tumor tissues from 20 patients with gastric cancer (GC).
B Comparison of the concentration of N-acetyl-D-glucosamine-6-phosphate between 20 paired GC tumor and non-tumor tissues. C–E ROC
analysis for 1-methylnicotinamide (C), N-acetyl-D-glucosamine-6-phosphate (D), and the combination of the two metabolites (E). ROC, receiver
operating curve.
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carbohydrate conjugates may be used as a source of glucose by
tumor cells. Thus, increased carbohydrates and carbohydrate
conjugates may be vital in providing enough glucose to satisfy the
energy requirements for tumor cell growth. Increased levels of
nucleosides were found in the GC tumor tissues in this study,
which is consistent with a previous study [12]. Kaji et al. reported
that the concentrations of nucleosides were increased in GC
patients with peritoneal recurrence compared with those without
peritoneal recurrence. It is possible that enhanced levels of
nucleosides, especially adenosine, may contribute to a shorter
survival in GC patients. Adenosine is a key metabolic and immune-
checkpoint regulator that participates in tumor escape from the
host immune system [24]. Many therapies targeting adenosine
metabolism are in progress. One study found that six glyceropho-
spholipids positively associated with the risk of prostate cancer
[25]. Interestingly, we observed 25 glycerophospholipids with
increased levels in the GC tumor tissues, which may play
important roles in GC development.
KEGG enrichment analysis showed that the pathway of

glutathione, cysteine, and methionine metabolism contained 5
metabolites (glutathione, S-adenosylhomocysteine, S-adenosyl-
methionine, L-cystathionine, and S-methyl-5′-thioadenosine) with
significantly increased relative abundance in the GC tumors. Kaji
et al. reported that glutathione exhibited a higher level in GC tumor
tissues than in the non-tumor tissues [12]. The level of glutathione
was also found to be increased in tumor tissues from patients with
chromophobe renal cell carcinoma in comparison to non-tumor
tissues [26]. Glutathione and cysteine are very important antiox-
idants, and S-adenosylhomocysteine, S-adenosylmethionine, L-
cystathionine, and S-methyl-5′-thioadenosine can serve as precur-
sors of glutathione and cysteine. Therefore, the increased levels of
metabolites in this pathway could provide GC tumor tissues with
robust antioxidation ability. Helicobacter negatively associated with
the discriminative metabolites in this pathway, whereas Lactoba-
cillus and Streptococcus displayed a positive correlation with these
metabolites, suggesting that Helicobacter, Lactobacillus, and Strep-
tococcus were collectively responsible for the increased relative
abundance of the differential metabolites in this pathway. Our data
also showed that the levels of the discriminative metabolites in the
pathway of fatty acid biosynthesis were upregulated by the
collective activity of Helicobacter, Faecalibacterium, Lactobacillus,
and Bacteroides. Consistently, we found that Helicobacter,

Lactobacillus, Faecalibacterium, and Bacteroidesmight be collectively
responsible for altered relative abundance of metabolites in the
classes of fatty acyls and glycerophospholipids. The elevated
relative abundance of the differential metabolites in the pathway
of amino sugar and nucleotide sugar metabolism could be due to
the collective influence of Helicobacter, Lactobacillus, Streptococcus,
Prevotella, Acinetobacter, Comamonas, Empedobacter, and Faecali-
bacterium, which was in consistence with the observation that
Helicobacter, Lactobacillus, Acinetobacter, Comamonas, Faecalibacter-
ium, Sphingomonas, and Streptococcus might be collectively
responsible for the synthesis of carbohydrates. Helicobacter and
Lactobacillus were negatively and positively associated with the
majority of differential metabolites in the classes of amino acids,
carbohydrates, nucleosides, nucleotides, and glycerophospholipids,
respectively, indicating that Helicobacter and Lactobacillus might
contribute to degradation and synthesis of the majority of
differential metabolites in these classes, respectively. These results
indicated that the metabolome profiles of the GC tumor tissues
were strongly influenced by Helicobacter, Lactobacillus, and other
microorganisms, which might promote GC development.
Our study had several limitations. First, the sample size is very

small, resulting in the lack of significant correlation between
clinical features and microbiome, and between clinical features
and metabolome. Second, we did not perform longitudinal studies
since we could not obtain serial tissue samples from the recruited
patients. Third, we utilized PLS-DA, which is highly susceptible to
overfitting [27], to characterize the differential metabolites
between GC tumor and non-tumor tissues. Thus, the proper
model validation was required and we demonstrated that the
model was not overfitted. Fourth, the diet could heavily influence
both the gastric microbiota and metabolites, but we could not
obtain the diet information of patients to analyze the effect of diet
on gastric microbiome and metabolome.
In summary, for the first time, we profiled the microbiome and

metabolome of tumor tissues and matched non-tumor tissues
from GC patients. The diversity and composition of the gastric
microbiota were significantly different between the tumor and
non-tumor tissues. Helicobacter was enriched in the non-tumor
tissues, while Lactobacillus, Streptococcus, Acinetobacter, Prevotella,
and six additional genera were enriched in the tumor tissues. The
metabolome profiles in the GC tumor tissues were significantly
different from those in the matched non-tumor tissues, which may

Fig. 6 Pathway analysis for metabolites and integrated analysis of microbiota and metabolites. A The functions of these metabolites and
metabolic pathways were studied using the KEGG database, and enriched pathways were displayed by a bubble plot. B The association
between 11 discriminative genera and 25 differential metabolites in the main enriched pathways were analyzed using the Spearman’s
correlation method. Red, positive correlations; blue, negative correlations. *P value < 0.05; **P value < 0.01.
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be partly due to the collective activities of Helicobacter,
Lactobacillus, and other bacteria. The differences in gastric
microbiome and metabolome profiles eventually affect GC
carcinogenesis and progression. The functions of these microbiota
and metabolites are worthy of further research as they may reveal
or strengthen a GC therapy.

PATIENTS AND METHODS
Patients
Thirty-seven patients diagnosed with primary GC and undergoing
gastrectomy between January 2018 and August 2019, at the First Affiliated
Hospital, School of Medicine, Zhejiang University, were enrolled for
microbiome and untargeted metabolome analysis. Twenty additional GC
patients undergoing gastrectomy between June and August 2021, at The
First Affiliated Hospital of Nanchang University, were recruited for targeted
metabolome analysis to validate the putative metabolite biomarkers,
1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate. All
patients received general anesthesia before operation. Most of the
patients underwent radical resection of GC, whereas a small number of
patients underwent partial gastrectomy. The non-tumor tissue used as the
control sample was the gastric mucosal tissue 5 cm away from the
matched tumor tissue. Their general clinical data including age, gender,
body mass index (BMI), and histories of hypertension and diabetes were
recorded (Table 1). All GC patients were diagnosed by postoperative
pathological examinations. The clinical pathological features of GC, such as
tumor stage, tumor differentiation and Lauren type of tumor were
recorded. The clinical staging was determined according to the 8th edition
American Joint Committee on Cancer (AJCC) cancer staging manual of GC
TNM Staging. The detailed exclusion criteria were described in supple-
mentary methods and Fig. S5. The study was approved by the Ethics

Committee of the First Affiliated Hospital, School of Medicine, Zhejiang
University (2020-IIT-572), and the Medical Research Ethics Committee of
the First Affiliated Hospital of Nanchang University (2021-9-001) as per the
Declaration of Helsinki. Informed written consent was obtained from all
patients before recruitment.

DNA extraction, construction of amplicon library, and
sequencing
The genomic DNA of GC tumor and non-tumor tissues was extracted using
cetyltrimethylammonium bromide/sodium dodecyl sulfate method. DNA
concentration and purity were obtained by Nanodrop 2000 Spectro-
photometer (Thermo Scientific) and 1% agarose gel electrophoresis. DNA
was diluted to 1 ng/μL using sterile water. V3-V4 region of 16s rRNA gene
was amplified. The primers containing the barcode are 341F
(CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT). All PCR
reactions were performed in 30 μL volume, including 15 μL of Q5® High-
Fidelity 2X Master Mix (New England Biolabs, # M0492L), 0.2 μM of forward
and reverse primers, and about 10 ng of template DNA or sterile water
(negative control). PCR conditions: initial denaturation at 98 °C for 1 min,
followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 50°C for
30 s, and extension at 72 °C for 30 s, final extension at 72 °C for 5 min. PCR
products were analyzed using 2% agarose gel electrophoresis. According
to the manufacturer’s recommendation, the Ion Plus Fragment Library Kit
48 rxns (Thermo Scientific, # 4471252) was used to generate the
sequencing library. The library quality was evaluated by the Qubit@ 2.0
Fluorometer (Thermo Scientific). At last, the library was sequenced on the
Ion S5TM XL platform to generate 400–600 bp single-end reads.

Sequencing data analysis
Filter the raw reads following the Cutadapt quality control process to
obtain the high-quality clean reads [28]. Chimera sequences were detected

Fig. 7 The analysis of correlation between differential genera and metabolites in different classes. A–D The analysis of correlation
between 11 differential genera and discriminative metabolites in the classes of fatty acyls (n= 24) (A), differential glycerophospholipids (n=
29) (B), amino acids (n= 21) (C), carbohydrates (n= 12), nucleosides (n= 7), and nucleotides (n= 4) (D). Red, positive correlations; blue,
negative correlations. *P value < 0.05; **P value < 0.01.
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and removed using the UCHIME algorithm software [29]. Sequences with
more than 97% similarity were allocated to one operational taxonomic unit
(OTU) using Uparse software [30]. The taxonomic information was
annotated by Silva database based on Mothur algorithm. OTU abundance
information was normalized to the sample with the least sequences. Alpha
diversity was analyzed using QIIME (Version 1.7.0) to investigate species
diversity [31]. QIIME software (Version 1.7.0) was used to calculate the beta
diversity based on the weighted Unifrac distance to evaluate differences in
microbial community composition. Non-metric multidimensional scaling
(NMDS) and principal coordinate analysis (PCoA) were performed.
Nonparametric Kruskal-Wallis rank-sum test and the Wilcoxon matched-
pairs signed rank test were used to perform linear discriminant analysis
(LDA) effect size (LEfSe) analysis to detect discriminative taxa with
significant difference between GC tumor and non-tumor tissues.

Tissue sample preparation for untargeted metabolome
analysis
Tissues (100mg) were grounded with liquid nitrogen and the homogenate
was resuspended with prechilled 80% methanol and 0.1% formic acid (FA)

by well vortexing. Then the samples were incubated on ice for 5 min and
were centrifuged at 15,000 rpm for 5min (4 °C). The supernatant was
diluted to a final concentration containing 53% methanol by LC-MS grade
water. The samples were subsequently transferred to a fresh Eppendorf
tube and then centrifuged at 15,000g for 10 min (4 °C). Finally, the
supernatant was injected into the UHPLC-MS/MS system.

UHPLC-MS/MS condition for untargeted metabolome analysis
UHPLC-MS/MS analysis was performed using a Vanquish UHPLC system
coupled with an Orbitrap Q Exactive series mass spectrometer (Thermo
Fisher). Samples were injected into a Hyperil Gold column at a flow rate of
0.2 mL/min. The eluents for the positive polarity mode were eluent A (0.1%
FA in water) and eluent B (methanol).The eluents for the negative polarity
mode were eluent A (5 mM ammonium acetate, pH 9.0) and eluent B
(methanol).The solvent gradient was set as follows: 2% B, 1.5 min; 2-100%
B, 12.0 min; 100% B, 14.0 min; 100-2% B, 14.1 min; 2% B, 17min. The Q
Exactive mass spectrometer worked under positive and negative polarity
mode, the spray voltage was 3.2 kV, and the capillary temperature was
320 °C.

Fig. 8 The heat map shows the association between metabolites and tumor stage. The differences in metabolites among non-tumor
tissues (n= 37), early-stage (stage I–II, n= 16) and late-stage gastric tumor tissues (stage III, n= 21) were displayed. The heat map shows the
scaled relative abundance (Lg) of 109 metabolites.
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The conditions for targeted metabolome
The mixed standard solution of N-acetyl-D-glucosamine-6-phosphate
disodium salt (J&K Scientific) with a concentration of 5 mg/mL and
1-methylnicotinamide chloride (Sigma Aldrich) with a concentration of
2 mg/mL was prepared. The creatinine-d3 (Shanghai ZZBio) was used as
the internal standard.
Tissues (50mg) were grounded with liquid nitrogen and the homo-

genate was resuspended with 150 μL of prechilled 80% methanol
including creatinine-d3 (200 ng/mL) by well vortexing. Then the samples
were incubated on ice for 5 min and were centrifuged at 12,000 rpm for
10min (4 °C). The supernatant was injected into the HPLC-MS/MS system.
HPLC-MS/MS analysis was performed using an ExionLCTM AD HPLC

system coupled with a QTRAP® 6500 plus mass spectrometer (AB Sciex).
Samples were injected into an ACQUITY UPLC HSS T3 column at a flow rate
of 0.3 mL/min. The eluents for HPLC were eluent A (0.1% FA in water,
10mM ammonium acetate) and eluent B (methanol). The solvent gradient
was set as follows: 2% B, 1.0 min; 2-100% B, 1.5 min; 100% B, 2.0 min; 100-
2% B, 2.1 min; 2% B, 3.0 min. A QTRAP® 6500 plus mass spectrometer
equipped with electrospray ionization source was operated in positive/
negative ion mode with a spray voltage of 4500 V, and ion source
temperature of 550 °C. The pressure of curtain gas, ion source gas 1 and 2
were 35, 60, and 60 psi, respectively.
The standard solution was diluted in gradient, and the standard

solutions with different concentrations were detected by HPLC-MS. The
standard curve was plotted with the concentration of the standard as the
abscissa and the ratio of the peak area of the standard to that of the
internal standard as the ordinate.

Statistical analysis
The statistical analyses were performed using GraphPad Prism (Version 8.0;
GraphPad Software) software. Statistical significance was defined as a two-
sided P value of <0.05. The Wilcoxon matched-pairs signed rank test was
used to calculate the difference in observed species, Shannon index, the
abundance of taxa, and the concentration of metabolites between groups.
P values were corrected using Benjamini-Hochberg method, and the
corrected P values were denoted as Q values. Microbiome–metabolome
correlation analysis was performed using Spearman’s correlation method
and displayed using R software (Version 3.6.1).

DATA AVAILABILITY
Raw sequence data of 16s rRNA microbiome have been deposited in the China
National Microbiological Data Center (Project accession number NMDC10017675 and
microbiome accession numbers NMDC40001044 to NMDC40001117). The corre-
sponding author has access to all data in the study.
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