
pharmaceuticals

Brief Report

Targeting SARS-CoV-2 Variants with Nucleic Acid Therapeutic
Nanoparticle Conjugates

Hanah F. Huber 1,†, Majid Jaberi-Douraki 2,† , Sarah DeVader 1, Cesar Aparicio-Lopez 1, Juliet Nava-Chavez 1,
Xuan Xu 2 , Nuwan Indika Millagaha Gedara 2 , Natasha N. Gaudreault 3 and Robert K. Delong 1,*

����������
�������

Citation: Huber, H.F.;

Jaberi-Douraki, M.; DeVader, S.;

Aparicio-Lopez, C.; Nava-Chavez, J.;

Xu, X.; Millagaha Gedara, N.I.;

Gaudreault, N.N.; Delong, R.K.

Targeting SARS-CoV-2 Variants with

Nucleic Acid Therapeutic

Nanoparticle Conjugates.

Pharmaceuticals 2021, 14, 1012.

https:// doi.org/10.3390/ph14101012

Academic Editor:

Hamidreza Montazeri Aliabadi

Received: 19 August 2021

Accepted: 23 September 2021

Published: 1 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Nanotechnology Innovation Center, Department of Anatomy and Physiology, College of Veterinary Medicine,
Kansas State University, Manhattan, KS 66506, USA; hhuber@vet.k-state.edu (H.F.H.);
sdevader05@ksu.edu (S.D.); cesar03@ksu.edu (C.A.-L.); julietn@ksu.edu (J.N.-C.)

2 1DATA Consortium and Department of Mathematics, Kansas State University Olathe, Olathe, KS 66061, USA;
jaberi@ksu.edu (M.J.-D.); xuanxu@ksu.edu (X.X.); mgnindika@ksu.edu (N.I.M.G.)

3 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,
Manhattan, KS 66506, USA; nng5757@vet.k-state.edu

* Correspondence: robertdelong@vet.k-state.edu
† Huber and Jaberi-Douraki should be considered joint first authors.

Abstract: The emergence of SARS-CoV-2 variants is cause for concern, because these may become
resistant to current vaccines and antiviral drugs in development. Current drugs target viral proteins,
resulting in a critical need for RNA-targeted nanomedicines. To address this, a comparative analysis
of SARS-CoV-2 variants was performed. Several highly conserved sites were identified, of which the
most noteworthy is a partial homopurine palindrome site with >99% conservation within the coding
region. This sequence was compared among recently emerged, highly infectious SARS-CoV-2 variants.
Conservation of the site was maintained among these emerging variants, further contributing to its
potential as a regulatory target site for SARS-CoV-2. RNAfold was used to predict the structures
of the highly conserved sites, with some resulting structures being common among coronaviridae.
An RNA-level regulatory map of the conserved regions of SARS-CoV-2 was produced based on
the predicted structures, with each representing potential target sites for antisense oligonucleotides,
triplex-forming oligomers, and aptamers. Additionally, homopurine/homopyrimidine sequences
within the viral genome were identified. These sequences also demonstrate appropriate target
sites for antisense oligonucleotides and triplex-forming oligonucleotides. An experimental strategy
to investigate these is summarized along with potential nanoparticle types for delivery, and the
advantages and disadvantages of each are discussed.

Keywords: SARS-CoV-2; nanoparticle; TFO; variant; homopurine; palindrome

1. Introduction

The COVID-19 pandemic has caused a global public health crisis. Although current
vaccines can be greater than 90% effective at preventing severe disease, there is still grave
concern over the emergence of variants which may circumvent currently available vaccines
and antiviral drugs still in the research and development phases. Recently, antisense,
aptamer, and RNA-based drugs have been clinically approved, with promising preclinical
data on the safety of antisense oligonucleotide (ASO) conjugates [1,2]. Successful attempts
in targeting SARS-CoV-2 with nucleic acid therapies delivered by a nanoparticle have
been documented, the most notable of which are the Pfizer and Moderna mRNA vaccines.
Most studies attempting to target the virus with nanomaterials or nanotechnology have
employed lipid or small protein nanoparticles as the delivery vehicles or were attempting
to increase the cellular uptake of nanoparticles [3–7]. Comparatively, very little work has
been conducted on exploring the effect of synthetic inorganic nanoparticles in targeting
SARS-CoV-2 through the delivery of nucleic acids. Studies which did explore the effects of
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inorganic nanoparticles typically used nanoparticles composed of gold and mesoporous
silica nanoparticles, with very few groups looking at more biologically compatible nanopar-
ticles [5,6,8]. In an attempt to address this, physiologically based nanoparticle metal com-
positions have recently been developed. These physiometacomposite (PMC) nanoparticles
can form conjugates to ASOs which are biocompatible and active for delivery into cells [9].
In order for these conjugates to be effectively utilized, a target site in the viral genome must
first be identified. In this work, an RNA genome-wide analysis was conducted to identify
potential regulatory sites within the SARS-CoV-2 genome which could serve as target sites
for ASO or other types of nucleic acid drugs. The structure of these potential regulatory or
target sites was predicted and compared in SARS-CoV-2 variants of concern, followed by a
discussion over how to target and deliver ASO or TFO (triplex-forming oligonucleotide)
conjugates to these sites with various nanoparticle candidates.

2. Results

A genome-wide RNA profiling and differential analysis (GWRPD) of sequence varia-
tions in 1557 different variants of SARS-CoV-2 was performed. This analysis resulted in
the identification of five sites with 98–99% conservation among all analyzed variants, as
indicated by the red segments in the outer ring of the GWRPD map (Figure 1A).

Parallel bioinformatic predictions identified a priori potential G-C/A-T contents in the
percentage bases for SARS-CoV-2 (Figure 1A (D–G)). The independent evaluation of sparse-
spike fragments and highly conserved regions using both progressive and Thompson-
Higgins-Gibson (THG) approaches reflects the high probability that these regions are
well-maintained to characterize the specific RNA regulatory structures, help study their
biomolecular interactions, delivery, and impact on RNA stability and activity (Figure 1A,
zoomed inset panel).

Based on the above GWRPD analysis, a potential regulatory map of RNA-level molec-
ular control of the SARS-CoV-2 virus was generated (Figure 1B). Four highly conserved
regions, the predicted structures they form, and the location of each within the genomes
of the 1557 variants included in the comparative analysis are indicated by the red and
green segments and fonts in Figure 1B. Of primary interest is the homopurine/palindrome
sequence indicated by the purple segment and font, located near the beginning of the
genome within the coding region. Such homopurine/homopyrimidine palindromic sites
often serve regulatory roles and may also hold roles in RNA-level control of the function
and activity of the virus.

Interestingly, although some of the GWRPD-identified conserved sites could be antici-
pated based on earlier coronavirus studies, the most highly conserved site (99.9%) was the
homopurine/palindrome site, which was previously unidentified [10]. With a sequence
of 5′-GAAGAAGAGCAAGAAGAAGA-3′, this site is not a true palindrome due to the
presence of an intervening cytosine in the middle of the sequence. This interruption makes
the sequence a partial homopurine palindrome. Although other partial homopurine and
homopyrimidine sites can be found throughout the genome of SARS-CoV-2, none demon-
strate the same level of conservation as the one identified by the GWPRD analysis (Table S1,
Supplementary Materials). An intervening cytosine in an otherwise perfect homopurine se-
quence has been successfully targeted with a TFO containing the base analog 8-oxoadenine
(8-oxo-A) in the context of a methylphosphonate oligodeoxyribonucleoside, albeit to ds-
DNA [11]. Use of methylphosphonate chemistry in the backbone of the TFO means it is
less prone to non-specific protein binding and nuclease digestion [12,13]. Additionally,
Kierzek et al. were recently successful in targeting a similar homopurine/homopyrimidine
stem–loop in Influenza A virus with TFO [14,15]. The target site, as well as the other four
98–99% conserved sites identified by the GWRPD analysis which can be targeted by TFO
or ASO, are summarized in Table 1.
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Figure 1. (A): GWRPD map of SARS-CoV-2. Track A: multiple (ORFs) indicating different NSARS-
CoV-2 ORF1ab polyproteins, 5′ UTR and 3′ UTR. Red stripes in these regions represent the five
most conserved oligomer sequences. Track B: reinforcement learning approach with a comparison
between the sparse-spike fragments of variant locations and highly conserved. Track C: red noise
curve representing a similar approach for 311 SARS-related coronavirus isolates from 2003 to early
2019, includings mostly human hosts and several other species. Tracks D–G: Four tracks of red, blue,
green, and orange histograms show the average distributions of A, C, G, and T nucleotides in all
1557 SARS-CoV-2 records. Track H: Heatmap of 12 sample sequences from 1557 sequences, mapped
to the reference genome showing their conserved aligned regions and variations in some regions.
Zoomed inset panel shows part of the complete alignment of 1557 with triplex target sequence
and structure. (B): Mechanisms of RNA-level control predicted for SARS-CoV-2 based on RNA
sequence conservation.

Table 1. Highly conserved sites of the SARS-CoV-2 genome, as identified by GWRPD analysis.

Conserved Site
(Base #)

% Conserved
(Out of 1571 Variants)

Target Sequence
(5′–3′)

Predicted
Structure

Coding Region
(3179–3198) 99.90% GAAGAAGAGC 1

AAGAAGAAGAAGA
Homopurine, Palindrome

Stem–loop

3′-UTR
(29,721–29,761) 99% UUCACCGAGGCCACGCGGAGUACGAU

CGAGUGUACAGUGA Hairpin

Coding Region
(13,468–13,496) 99% CGGUGUAAGUGCAGCCCGUCUUACACCG Stem–loop

Coding Region
(29,619–29,644) 98% GGCCCACACTGGCTTTCCATTC Pseudoknot

5′-Leader
(231–265) >97% UCAUCAGCACAUCUAGGUUUCGUCCGGG

UGUGACCGAAAGGUAA Hairpin

1 The underlined base is the intervening cytosine which disrupts the otherwise homopurine sequence of the target site.
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The predicted structures produced by RNAfold are shown in Figure 2. Folding the first
7500 nucleotides of the SARS-CoV-2 genome produced a stem–loop structure, as indicated
in the results of the comparative analysis (Figure 1B). This structure was used as a reference
to compare predicted structures using different regions or shorter segments of the genome
in the program. Additionally, the isolated stem–loop sequence was folded by RNAfold
to verify the integrity of the structure, as this isolated sequence could be used in further
in vitro studies regarding this site. Regardless of the amount of the genome folded and
which regions were included, RNAfold consistently predicted a stem–loop structure for
the highly conserved target site (Figure 2).
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Figure 2. Comparison of homopurine/palindrome structure using different regions of the genome in RNAfold WebServer.
(A) Predicted structure when folding nucleotides 1–7500, the maximum length allowed by RNAfold. (B) Predicted structure
when folding from the end of the 5′ UTR and including the maximum number of nucleotides allowed by the program.
(C) Predicted structure when folding nucleotides 1–4000, a short stretch beyond the end of the palindromic region. (D)
Predicted structure when folding from the beginning of the genome to the last nucleotide of the palindromic sequence. (E)
Predicted structure of the isolated palindromic sequence.

2.1. Role of RNA Structures in the Function of Coronavirus

Coronaviruses are highly structured and a significant number of secondary and
tertiary RNA structures have been identified, not only in the untranslated regions (UTRs),
but throughout the coding regions of the genome [16–18]. At least eight major stem–loop
structures have been identified in the 5′-UTR of coronaviruses, of which at least three are
highly conserved among coronaviruses and play roles in replication, sgRNA synthesis
and translation [19–23]. The ribosomal frame-shifting element (FSE), consisting of an RNA
pseudoknot structure at the junction of ORF1a/b, is essential for coronavirus replication
and is one of the best characterized of these structures [24,25]. Structures have also been
identified in the 3′-UTR, of which some have been found functionally relevant in at least
some betacoronaviruses [23,26–29].

Although most remain uncharacterized, the highly conserved nature of these RNA
structures among coronaviruses suggests that they may have functional relevance, perhaps
through ensuring genomic stability or long-range RNA–RNA interactions or RNA–protein
interactions important for viral replication [16–18,26]. Genomic structure modeling studies
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indicate that the SARS-CoV-2 genome forms more short-range stable secondary structures
than long-distance interactions compared to other RNA viruses, which may be important
for viral genome stability and replication fidelity [17,18,26].

The region of interest identified here, referred to as the target site, is located in the
5′-end coding region of ORF1a/b and the nsp3 gene. ORF1a and ORF1b share the same 5′

start codon, but the FSE partially disrupts recognition of the stop codon, resulting in the
replicase polyproteins, pp1a and pp1ab [25]. ORF1a and ORF1b encode immediate early
and early proteins that include innate immune antagonists and those involved in viral
transcription and replication. Together, ORF1a and ORF1b produce non-structural proteins,
such as nsp1-16. Nsp3 is a papain-like protease responsible for N-terminal cleavage of
the replicase polyprotein, is involved in the assembly of viral replication complexes, and
inhibits type I interferon induction, among other functions [30–32]. Thus, targeting this
highly conserved structure sequence described here could have important implications
related to viral replication and/or inhibition of the host’s innate immune response.

2.2. Target Site in Variants of Concern

The specific variants, target site sequence, and the loci at which they begin are shown
in Table 2. The target site sequence was 100% conserved among the variants compared,
which was to be expected based on the results of the more in-depth GWRPD analysis from
the beginning of this paper. It is worth noting that this sequence was located at the exact
same locus compared to the Wuhan reference sequence in half of the variants examined.
Those that were not an exact match were located a maximum of 135 nucleotides earlier in
the genome, although this was not a large enough difference to place the target site outside
of the coding region of the virus.

Table 2. Conservation of the target site among SARS-CoV-2 variants of concern.

Country and Variant
(Base #)

Target Sequence 1

(5′–3′) Sequence Length GenBank Accession
Number

Wuhan Reference
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt NC_045512.2

Brazil P.1
(3171–3190) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ264787.1

Brazil P.1
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ169910.1

Brazil P.1
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ169911.1

UK B.1.1.7
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt OU029086.1

UK B.1.1.7
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt OU029131.1

UK B.1.1.7
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt OU029144.1

Ghana B.1.351
(3179–3198) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MW598408.1

South Africa B.1.351
(3142–3161) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ376663.1

Djibouti B.1.351
(3125–3144) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ520096.1

India B.1.617.2
(3153–3172) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ558086.1

India B.1.617.2
(3129–3148) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ340535.1

India B.1.617.2
(3154–3173) GAAGAAGAGCAAGAAGAAGAAGA 20 nt MZ558154.1

1 The intervening cytosine within the partial homopurine sequence was again underlined for each isolate.
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Furthermore, the isolated target sequence within the previously mentioned variants
of concern from Brazil, the United Kingdom, South Africa, and India were folded using
RNAfold. The second variants from each region in Table 2 were folded, and the predicted
structures were compared (Figure 3). Each of these predicted structures were identical to
the Wuhan reference sequence, again supporting the regulatory significance of maintaining
this site. The only notable difference was that the South African and Indian variants had
stem–loop structures beginning 37 and 50 nucleotides earlier than the reference sequence,
respectively. However, this small difference of location is not significant because the
structure is still located within the coding region of the viral genome and forms a stem–
loop structure identical to the Wuhan reference sequence, indicating that it can still be
targeted with the proposed TFO delivery system.
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South Africa (D), and India (E). The structures are identical with no differences in the sequence, overall stem–loop structure,
and location of bulges within the straight regions of the structure.

3. Discussion

In an effort to determine the relative importance of the stem-loop structure, specifically
the partial homopurine palindrome site, in regulating the activity of SARS-CoV-2, this site
was targeted by TFO. As mentioned previously, Kierzek et al. targeted a similar stem-loop
in Influenza A virus with TFO, which resulted in an antiviral effect demonstrated by cell
culture assays [14,15]. Regarding SARS-CoV-2, the predicted structure of the target site
provided by RNAfold had about 13 nucleotides involved in the stem of the structure. The 3′

end had one to four free bases, depending on the length of the sequence being folded, and
the 5′ end did not contain free bases. With longer regions run through the folding program,
the non-palindrome sequence contained a GC-bulge and the palindrome sequence was
linear (no bulges). However, when folding shorter regions such as the isolated target
sequence, the predicted structure changed. The non-palindrome sequence became a G-
bulge and the palindrome sequence developed two A-bulges. These bulges may serve to
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increase the space in which the TFO can enter this region of the viral genome and bind to
the palindrome sequence via U-A-U and C-G-C base triplets (Figure 4). Stabilization of
the triplex formation can be achieved through the use of 5-methylcytosine (5Me-C) and
deoxyuridine (dU) in TFO to target the G-C and A-U base-pairs, respectively, as previously
reported [33].
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sequence containing the homopurine site (red nucleotides) will be targeted by a synthetic TFO (blue
line), which will bind to the target site through complementary base pairing.

3.1. Target Site Characterization

The target site can be characterized using techniques commonly used to determine
RNA structure, including nuclease mapping, circular dichroism (CD) spectroscopy, and UV
thermal melting of the isolated sequence. Nucleases capable of cleaving bases not involved
in a double-stranded segment of the RNA sequence, such as those involved in the bulges
and loop, can be used to digest the stem–loop structure. The produced segments can then be
separated and identified through the use of gel electrophoresis. This will produce a unique
band pattern in the gel which can be used to identify the presence of specific structures
within the target site. The structures identified by the digest can then be compared with
the original RNAfold-predicted structure. The band pattern obtained from this experiment
will then serve as a control for future experiments involving the target site. The other
proposed characterization methods to determine the structure of the isolated target site
in vitro involve obtaining the UV melting curve and CD spectrum through the use of a
SpectraMax i3x Multi-Mode Plate Reader and CD spectrometer, respectively. The shape
of the produced melting curve can provide information on the stability of the structure,
G-C content, reversibility of the melting process, and presence of the secondary structure
within the sample [34]. Additionally, the melting point of the isolated sequence will serve
as a control for further experiments exploring the interaction of the target site with other
molecules. The CD spectrum of the isolated target sequence will provide information
on the secondary structure under different temperature and salt conditions. This will
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be useful in determining what structure the target sequence will most likely form under
physiological conditions. The spectrum of the isolated sequence in the absence of other
molecules can then be used as a reference to identify changes in structure after exposure to
or interaction with other molecules

3.2. Confirmation of Triplex Formation

Upon characterization of the target site, the proposed triplex-forming region of the
target site was targeted using a nanoparticle-delivered TFO. To determine whether the
TFO was able to bind to the target site as predicted and to provide insight to optimal
conditions which promote triplex formation, CD spectra, thermal melting points, and gel
electrophoresis gel shift assay were performed and compared to data collected from target
site characterization and any pre-existing literature. Each of these techniques are commonly
used in RNA interaction studies.

CD spectra and thermal melting points were obtained through the use of a CD spec-
trometer and SpectraMax i3x Multi-Mode Plate Reader, respectively. CD spectra of the
target site and TFO as well as of the target site and TFO-nanoparticle conjugate were
collected under the same conditions used to characterize the structure formed by the target
site alone. Significant changes in either the location or intensity of the peaks of the CD
spectra of the target site in the presence of TFO from that of the target site in the absence
of TFO confirmed interaction between the two, a concept previously demonstrated by
Kierzek et al. [15]. From there, CD spectra were collected under different temperature
conditions. Any triplex base pairs (complementary bonds between nucleotides within
the triplex and target site) should dissociate in a temperature-dependent manner. This
dissociation is detected by the CD spectrometer, and changes in spectra can indicate at
what temperatures the TFO (if bound) dissociates from the target site and the target site
dissociates into ssRNA. Just as changes in CD spectra can indicate changes in sample
structure, changes in the thermal melting point of the target structure after exposure to the
TFO can be used to indicate triplex formation. Thermal melting point data also provide
information on the stability of the triplex once formed, which was anticipated to be more
stable than the predicted stem–loop and thus have a higher melting point.

Gel electrophoresis can be used to determine optimal ratios which promote TFO
binding, and thus, triplex formation. The target structure in the absence of TFO was
used as a control to establish the standard band location within the gel. The band pattern
of samples containing both the target structure and TFO at varying concentrations can
be used to determine whether the TFO was able to interact with and bind to the target
structure (indicated by a band shift closer to the wells) or not (no band shift from control).
Additionally, the information provided by the gel can be used to determine the binding
affinity of the TFO to the target site [15]. Nuclease digestion followed by gel electrophoresis
can also be used to confirm triplex formation. Nucleases which cleave at single-stranded
sites within the RNA (such as the bulges and loop of the target site structure) have fewer
sites at which they can be active within the TFO-bound target site. The resulting digested
triplex was anticipated to have fewer nucleotides removed than the stem–loop of the target
site, producing a band with a smaller Rf in the gel compared to the band from nuclease
digestion of the target site in the absence of TFO.

3.3. Nanoparticle-Mediated Delivery

As previously mentioned, nucleic acids can be targeted using ASO and TFO methods.
However, due to their instability, free nucleic acid therapeutics are not available in the
absence of a nanoparticle stabilizer or carrier. Another method to target nucleic acids
involves the use of aptamers. Aptamers can bind proteins and nucleic acid sequences with
high selectivity and strong interactions. This technology can be applied in diagnostics, drug
delivery systems, and therapeutics. Depending on the protein targeted by the aptamer,
these molecules can have a wide range of applications. Aptamers can increase the selectivity
of an antiviral particle or possess antiviral activity itself. The aptamer IBRV-A4 was able
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to prevent infection of bovine herpesvirus 1 in cell culture trials by preventing cellular
uptake of the virus [35]. However, this technology can be hindered by biological and
physical barriers that can degrade or damage the genetic material, such as high renal
clearance, susceptibility to serum nucleases, uptake by phagocytes, and induced immune
responses [36,37]. Nanoparticles (NPs) can help surmount many, if not all, of these barriers.

Lipid-based and polymer-based nanoparticles are often used as vehicles to deliver
aptamers because they can transport large payloads of charged molecules (e.g., aptamers)
through the cell membrane using cell-penetrating peptides [38–40]. NPs can ensure a long
and constant release of an aptamer to maintain a desired concentration at the target site
and guarantee aptamer-protein interactions. Previously, an siRNA target formulation of
an ultra-conserved sequence of the hepatitis C virus was tested to determine binding and
regulation capabilities of this molecule. Through the use of nanosomes, the siRNA of
the study had a 100% delivery efficiency in cell culture and demonstrated the ability to
regulate the ribosome entry site for translation [39]. There are FDA-approved materials,
such as PLGA, which possess better physiological stability and encapsulation efficiency.
Although these materials have not yet been tested against a virus, they have been proven
to increase the stability of aptamers. Other NP candidates for aptamer stabilization and
delivery are inorganic NPs. Inorganic NPs are commonly used as imaging probes due
to their fluorescence capabilities, but they also are used to stabilize aptamers and for
the delivery of genetic material. Gold-aptamer probes have been shown to possess high
selectivity and sensitivity [41]. Early on, gold nanoparticle siRNA conjugates showed
delivery into the brain with preclinical efficacy against glioblastoma [42]. More recently,
manganese zinc sulfide (MnZnS) nanoparticles have demonstrated antiviral activity in the
unconjugated form, and anticancer activity against drug-resistant cancer when complexed
with an ASO [8]. Targeting of inorganic nanoparticles can also be improved by adding an
aptamer to the nanoparticle’s surface.

TFOs can be conjugated to the surface or incorporated into the core of NPs and, in
combination with other ligands, can improve the stability and targeting capabilities of
the NP conjugate. Each of the previously discussed nanoparticle delivery methods is
summarized in the context of TFO and stem-loop delivery in the graphical abstract at the
beginning of this paper. As shown in the graphical abstract, delivering either the TFO or
stem–loop structure to a cell infected with SARS-CoV-2 can potentially inhibit further viral
activity, especially in the context of an antiviral nanoparticle such as MnZnS. Synthetic
stem-loop structures can act as decoys for viral and host proteins, limiting those available
to interact with the fully intact viral genome. Alternatively, TFOs can be delivered to virally
infected cells, with the potential to form a triplex with the target site stem–loop in the
SARS-CoV-2 genome and interfere with the genome’s natural folding in vivo.

4. Methods
4.1. GWRPD Analysis

To achieve the data visualization shown in Figure 1 for on-going genetic surveillance
and mutational analysis, the NCBI Virus Sequences for Discovery database was used
to categorize available data related to coronaviruses, including SARS-CoV, which has a
complete genome and high sequence similarity to SARS-CoV-2 and is the best-characterized
coronavirus. The data used in this study have been curated into our databank in 1DATA
(www.1DATA.life)—was last accessed 15 July 2021 –and then aligned in MATLAB (R2020,
Math-Works), MAFFT (Berkeley Software Distribution), and MEGA (Pennsylvania State
University) for multiple sequence alignment and Bayesian inference phylogenetics from a
reinforcement learning approach using a progressive method and the Thompson–Higgins–
Gibson (THG) method [43–45]. The RNA sequence data included 1557 records of isolates
from the oronasopharynx (730), swab (196), lung (22), feces (4), blood (1), urine (1), and
saliva (603). Of those included in the analysis, the majority of records were from human
hosts (over 1550), with some animal hosts represented, including Canis lupus familiaris (1),
Felis catus (1), Mustela lutreola (7), and Panthera tigris jacksoni (1) [46]. The structure of these

www.1DATA.life
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SARS-CoV-2-specific RNA sequences, their interaction and targeting to and by ASO, TFO,
nanoparticle delivery, and sequence conservation has never been studied before.

4.2. RNA Folding

Due to its high conservation among variants, the structure of the partial homopurine
palindrome site was explored using the RNAfold WebServer online program. The program
is capable of folding up to 7500 nucleotides at a time. The target site was located between
nucleotides 3179 and 3198; therefore, the genome was not folded past nucleotide 7765.
Multiple folds were performed, using different lengths and regions of the SARS-CoV-2
genome, with the focus being placed on the region surrounding the target site.

4.3. Target Site for Variants of Concern

To further demonstrate its potential significance, the sequence of the partial homop-
urine palindrome target site was compared in SARS-CoV-2 variants of concern identified
by the Centers for Disease Control and Prevention: the alpha variant (B.1.1.7), which
originated in the United Kingdom; the beta variant (B.1.351), which originated in South
Africa; the delta variant (B.1.617.2), which originated in India; and the gamma variant
(P.1), which originated in Brazil. Each of these variants has been a source of increasing
concern on a national and global scale as they have spread outside their country of origin,
further exacerbating the effects of the pandemic. The Wuhan isolate served as the reference
sequence for this comparison. Isolate sequences for each variant and the Wuhan reference
isolate were obtained through the NCBI SARS-CoV-2 Nucleotide Records provided by
the National Institutes of Health. The searches were performed periodically during the
months of May 2020 through July 2020. Of the isolates included in this paper, collection
dates ranged from December 2019 (GenBank accession number NC_045512.2) to June 2021
(GenBank accession number MZ558086.1).

5. Conclusions

Although recent vaccines have proven effective in helping to counteract the SARS-CoV-
2 pandemic, variants have emerged, resulting in concern regarding the ability of the virus to
develop resistance to available vaccines and antiviral drugs in development. RNA-targeted
nanomedicines are a potential solution to this problem. Recently, a partial homopurine
palindrome site within the coding region of the SARS-CoV-2 genome has been identified.
GWRPD analysis showed that this site has a greater than 99% conservation among more
than 1500 variants, including those which have recently emerged and demonstrated high
infectiousness in the regions of Brazil, the United Kingdom, South Africa, and India. This
site was further explored using RNAfold to predict the potential structure formed by this
region of the genome in vivo. The resulting stem–loop structure can be targeted with
a TFO delivered by nanoparticles. Depending on the nanoparticle used, the TFO can
be stabilized and protected from the body while being delivered in high concentrations
to target cells. However, before this approach can be explored, the target site structure
must be characterized in order to more accurately understand how it interacts with the
nanoparticle-TFO delivery system. Additionally, although targeting this unique structure
with TFO is an attractive method, nanoparticle-mediated delivery of ASO or aptamer
targeting this or other highly conserved sites are excellent alternative strategies to consider.

6. Patents

Disc. 2021-047; Our Docket No. 19484. mRNA SARS-CoV-2 vaccine construct. Inven-
tors, Robert K. DeLong, Waithaka Mwangi and Juergen Richt. mRNA Vaccine Formulations
and Methods of Using the Same. Kansas State University.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14101012/s1, Table S1: Partial homopurine and homopyrimidine sites within the SARS-
CoV-2 genome.

https://www.mdpi.com/article/10.3390/ph14101012/s1
https://www.mdpi.com/article/10.3390/ph14101012/s1
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