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ABSTRACT We determined the effect on gene transcription of laser-mediated, long-wavelength ~ KEYWORDS
UV-irradiation of Saccharomyces cerevisiae by RNAseq analysis at times T15, T30, and T60 min after re-  yeast

covery in growth medium. Laser-irradiated cells were viable, and the transcriptional response was transient,  gene expression
with over 400 genes differentially expressed at T15 or T30, returning to basal level transcription by T60.  RNAseq
Identification of transcripts exhibiting enhanced differential expression that were unique to UV laser-  UV-laser-induced
irradiation were identified by imposing a stringent significance cut-off (P < 0.05, log, difference >2) then response

filtering out genes known as environmental stress response (ESR) genes. Using these rigorous criteria,
56 genes were differentially expressed at T15; at T30 differential expression was observed for 57 genes,
some of which persisted from T15. Among the highly up-regulated genes were those supporting amino
acid metabolic processes sulfur amino acids, methionine, aspartate, cysteine, serine), sulfur regulation
(hydrogen sulfite metabolic processes, sulfate assimilation, sulfate reduction), proteasome components,
amino acid transporters, and the iron regulon. At T30, the expression profile shifted to expression of
transcripts related to catabolic processes (oxidoreductase activity, peptidase activity). Transcripts com-
mon to both T15 and T30 suggested an up-regulation of catabolic events, including UV damage response
genes, and protein catabolism via proteasome and peptidase activity. Specific genes encoding tRNAs
were among the down-regulated genes adding to the suggestion that control of protein biosynthesis was
a major response to long-wave UV laser irradiation. These transcriptional responses highlight the remark-
able ability of the yeast cell to respond to a UV-induced environmental insult.

Absorption of ultraviolet (UV) radiation by living cells has the potential
to damage nucleic acids and proteins either by direct energy absorption
or indirectly through the generation of free radicals or singlet oxygen
species (Basu 2018). It is well-documented in humans that excessive
exposure to UV radiation results in a variety of skin cancers and
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damage to the lens of the eye (Modenese et al. 2018). In yeast, exposure
to short-wave UV radiation results in damage to DNA, stimulating
mitotic recombination-based repair which is largely completed during
the first cell cycle after irradiation (Yin and Petes 2013).

Most of the research on UV carcinogenesis has concentrated on
short-wavelength radiation (280-315 nm), although radiation of long-
wavelengths also may be carcinogenic. Whereas short-wavelength UV is
absorbed by DNA, long-wavelength radiation is toxic by indirect
mechanisms in which reactive oxygen species are generated after the
radiation is absorbed by cellular molecules (de Laat et al. 1996).

Our impetus for using laser-mediated irradiation is to cross-link
receptor-ligand and receptor-intracellular protein interactions in live
yeast in a time-resolved manner. UV light is routinely used to cross-link
photoactivatable groups to proteins of interest (Pham et al. 2013).
Generally, the protocol involves incubation for tens of minutes under
UV bulbs emitting light at 360 nm. A laser provides high power radi-
ation using monochromatic, collimated light. These optical properties
lead to high radiance (emitter power per unit area cross-section of the
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beam) enabling focusing of the high power to a small area with high
local fluence rates.

In a previous study using UV-laser irradiation, we induced a rapid
cross-linking of a peptide labeled with photoactivatable amino acid
analog p-benzoyl-L-phenylalanine (Bpa) into a binding pocket of bo-
vine serum albumin (Hauser et al. 2018). This protocol allowed cross-
linking of the ligand to the substrate in a matter of seconds, in contrast
to longer exposure required under a conventional UV lamp. This estab-
lished the feasibility of using laser-induced cross-linking to capture
protein-protein interactions in a live yeast cell in a matter of seconds
in a time-resolved manner.

To extend this methodology to the irradiation of a whole cell, it was
necessary to determine whether a short burst of long-wavelength UV
energy impacted cell viability or affected gene expression that would
influence the analysis of whole cell protein cross-linking. Depending on
the experimental conditions, changes in gene expression could influence
the results of cross-linking studies by altering expression of genes
encoding target proteins. In this correspondence, we conducted an
examination of early changes in the yeast transcriptome subsequent
to a short burst of laser energy. Within 15 min of inoculating laser-
irradiated cells into fresh medium, it was determined that there was a
change in the transcriptional profile of hundreds of genes, including a
subset of environmental stress response (ESR) genes (Gasch et al. 2000).
The change was transient, with differential expression persisting for
30 min before returning to near baseline levels by 60 min underline
the rapid ability of the yeast cell to respond to a UV-induced environ-
mental insult. The most highly expressed genes appeared to be those
involved in protein synthesis and degradation and in oxidative repair
mechanisms.

MATERIALS AND METHODS

Strain and growth conditions

Experiments were conducted using Saccharomyces cerevisiae strain
BY4741 (MATa his3A1 leu2A0 met15A0 ura3A0), a direct descendant
of Saccharomyces cerevisiae S288C (see Reagent Table). Apart from its
auxotrophies, BY4741 is essentially identical to S288C, the strain used
for the systematic yeast genome sequencing project (Goffeau et al. 1996;
Engel et al. 2014) which serves as the reference genome for this study.
BY4741 cultures were maintained on YEPD solid medium (1% yeast
extract, 2% peptone, 2% glucose, 2% agar) incubated at 30°. For liquid
cultures, strains were grown in an orbital shaking incubator (30°,
150 RPM) in YEPD without agar.

Laser irradiation

The Explore One XP 355-1 UV laser (Spectra-Physics, Santa Clara CA)
controlled by L-Win, a LabView-based graphical user interface, was used
toirradiate samples. The software indicated that the energy per pulse ata
pulse repetition frequency was 50 kHz and laser output set at 75%
maximum amperage was 36.7 X 1076 J/pulse. Irradiating the sample
under these conditions for 30 sec results in the delivery of approxi-
mately 55 J. The beam was directed through a plano-concave lens
(f 75.0 mm, @1” UV Fused Silica, Thorlabs, Newton, NJ) to expand
the diameter to approximate that of the diameter of the sample tube
(10 mm), and the beam was reflected off a fused silica UV-laser mirror
(Thorlabs, Newton, NJ) down into the tube. To begin the irradiation,
the tube containing the sample was placed into a benchtop freezer
block, chilled to -20°, the block positioned such that the aperture of
the tube was in alignment with the beam, and the samples were irra-
diated. Upon completion of the 30s irradiation interval, the tubes were
stored on ice until used as described below.
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Measurement of cell growth

Three biological replicates of BY4741 (40 mL cultures) were grown
overnight and each were processed identically. Mid-log phase cells were
harvested by centrifugation and washed twice with 25 mL sterile
phosphate buffered saline (PBS: 10 mM Na,HPO,, 1.5 mM KH,PO4,
3 mM KCl, 150 mM NaCl, pH 7.4) and finally re-suspended in 3 mL
PBS. Two 0.5 mL samples were placed into 2 mL flat bottom Eppendorf
tubes and were kept on ice. One of the two samples was laser-irradiated
for 30s as specified above, the second was not irradiated and served as a
control. Following laser treatment, control and laser-irradiated cells
were counted and diluted to a concentration of 2 X 10° cells/ml in
YEPD. Four technical replicates (200 p.L) of each of the three biological
replicates for both control and laser treated samples were added to
a 96-well plate. The plate was incubated in the spectrophotometer
(BioTek PowerWave 340, Winooski, VT) at 30° with shaking. The
Agoo was measured every 30 min to monitor the growth of the cells
until stationary phase was reached.

Trypan blue exclusion

A small portion of the laser-irradiated and control cells prepared for the
growth curve (above) was diluted to 4 x 108 cell/mL (100 pL total
volume), mixed with 100nL of 0.4% Trypan blue with 0.85% NaCl
for microscopic examination. In addition, a non-viable control was
prepared by heating cells (100 pl, 4 x 10® cells/mL) to 100° for
10 min prior to trypan blue staining. The slides were imaged on a
Keyence BZ-X710 Microscope (Itasca, IL) set for bright field, and im-
ages were collected using the 40x objective. The color, white balance
and exposure were maintained across all images. The percent viability
was determined for laser treated and control cells across four different
fields. Data reported are the average of the determination across the
three biological replicates.

Post-Irradiation time course for RNASeq

The process described below was repeated in triplicate for a total of three
biological replicates. An overnight culture of BY4741 was used to
inoculate a 50mL culture of YEPD to a density of 2 X 107 cells/mL
which was then grown for an additional 5 hr until mid-log phase. The
cells were harvested by centrifugation, washed, re-suspended in 1 mL
PBS, chilled on ice and counted. The cells were adjusted to a final
volume of 6mL in PBS at a concentration of 5 X 10® cells/mL. The
6 mL of cells were split into two 3 mL portions and held on ice. The first
was left on ice while the second was further divided into 6 x 0.5 mL
cultures in 2.0 mL flat bottom Eppendorf tubes and laser irradiated as
described above. Upon completion of laser irradiation, the 6 x 0.5 mL
portions were combined back into a single 3 mL sample. Laser and non-
laser treated groups (3 mL) were added to 100 mL YEPD pre-warmed
to 30° (final density of 1.5 X 107 cells/mL). Immediately upon inocu-
lation, a 21 mL sample of the culture was removed and labeled as Time
0 (zero incubation time in the YEPD post-inoculation) and the remain-
ing 82 mL of culture was placed into an orbital shaking incubator. One
mL of the 21 mL sample was used to measure optical density. The
remaining 20 mL were harvested by centrifugation at 4°, washed with
ice cold PBS, harvested, re-suspended in 1 mL of ice-cold PBS, and
transferred to a 2 mL Eppendorf tube. The cells were then harvested
again, the PBS was removed, and the cell pellet was promptly snap
frozen in dry ice-ethanol. The entire harvest and freezing process took
approximately 6 min. Subsequent 21 mL samples were removed at
15 (T15), 30 (T30), and 60 (T60) minutes post-inoculation and pro-
cessed as described for the Time 0 sample. The snap frozen cells were
stored at -80° until processed for RNA extraction.
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RNA isolation and integrity check

The frozen cell pellets were processed for RNA extraction as previously
described (Fozo et al. 2010). Briefly, the protocol entails bead-beating in
acid phenol/chloroform, followed by a second extraction in hot acid
phenol/chloroform, followed by repeated extractions with phenol/
chloroform until the aqueous/organic interface was clean. The RNA
was then precipitated in ethanol, dissolved in RN Ase-free water and the
concentration determined spectrophotometrically.

RNA integrity was verified by gel electrophoresis to ensure that
two distinct bands corresponding to 18s and 26s rRNA subunits
with minimal to no smearing was present. The samples were run on
a 2100 Bioanalyzer using a High Sensitivity Total RNA Analysis Chip
(Agilent, Santa Clara, CA) to assess RNA purity and concentration. The
samples were run using the Plant RNA Nano Assay because the yeast 26S
is closer to the plant 25S than the eukaryotic 28S rRNA and is specified
by the manufacturer to be the most appropriate analysis for yeast RNA.
The 2100 Bioanalyzer outputs a RIN score (RNA Integrity Number)
which is a meter of RNA quality where a score above 6 indicates high
quality RNA.

Library preparation and sequencing

Library preparation and sequencing was conducted by the University of
Tennessee Genomics Core. The Tru-Seq Stranded mRNA kit (Tllumina,
San Diego, CA) was used on 2 g of total RNA to enrich mRNA, create
c¢DNA, and prepare the library for sequencing. Library quality was
verified using the DNA 1000 Assay Chip on the 2100 Bioanalyzer
(Agilent, Santa Clara, CA). This assay detects the presence of artifacts
from inefficient ligation, poor DNA quality, primer dimers, and PCR
artifacts from over-amplification, but is primarily used to assess con-
centration. Sequencing was performed using the MiSeq 2x75bp paired
end sequencing kit (Illumina, San Diego, CA) which produces 44-50
million paired-end reads.

Processing of RNAseq data

The sequencing reads were analyzed using Lasergene SeqMan NGen
version # 14.1.0(115) software (DNASTAR, Inc, Madison, WI). The
assembly workflow was set to Transcriptome/RNAseq and the assembly
type was set to Reference based assembly with the Saccharomyces
cerevisiae S288C (NCBI BioProject: PRINA43747) genome as the
reference genome. The remaining settings were left at default values.
Differential gene expression analysis was then performed in DNASTAR
Lasergene ArrayStar version # 14.1.0 build 172. The false discovery rate
(FDR) (Benjamini and Hochberg 1995) method is the default P-value
adjustment method in Arraystar and it was used to determine percent
confidence of differentially expressed genes (DEGs).

Clustering and gene ontology enrichment

For the subset of transcripts that were differentially expressed between
four time points (T0, T15, T30, and T60) (Table S1), two-way hierar-
chical clustering (Euclidian) was performed on the Log2 fold changes
from each pairwise comparison using the Perseus software (Tyanova
et al. 2016). Using ClueGO (Bindea et al. 2009), clusters were individ-
ually tested for over-represented GO biological process using a right-
sided hypergeometric enrichment test at medium network specificity
selection. P-value correction was performed using the Holm-Bonferroni
step-down method (Holm 1979). There was a minimum of 3 and a
maximum of 8 selected GO tree levels, while each cluster was set to
include a minimum of between 3% and 4% of genes associated with each
term. The GO terms at adjusted P < 0.05 were considered significantly
enriched (Table S1).
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Bray-Curtis clustering, NMDs, ANOSIM, GO, and
VOLCANO plots

For DEGs identified at each time point, Bray-Curtis clustering was
done in PRIMER version 7.0.12 (Primer-E, Quest Research Unlimited,
Auckland, NZ). The RPKM values from each replicate for each sample
was square root transformed and then measured for Bray-Curtis
similarity. Non-metric multidimensional scaling (nMDS) was then
performed on the resemblance data. A 1-Way Analysis of Similarities
(ANOSIM) for treatment and time was performed on the resemblance
data to measure variation between the samples and similarity between
the replicates within different samples. GO enrichment analysis was
performed using GO Slim Mapper from the Saccharomyces Genome
Database (Cherry et al. 2012). Volcano plots (Li 2012) were used to
show changes in the data set of replicates. This plot is a representation
of significance vs. fold-change on the y and x axes, respectively, of
individually expressed genes.

Data availability

Mumina MiSeq FASTQ files of the paired-end reads for each sample and
the associated processed data file are available online at NCBI's Gene
Expression Omnibus here [GEO Submission (GSE129319)]. Supple-
mentary material cited throughout the manuscript (Figure S1, Tables
S1-S4, and File S1) and Reagent Table have been deposited at FigShare:
https://doi.org/10.25387/g3.8047727.

RESULTS AND DISCUSSION

Effect of laser irradiation on cell viability
Prior to interrogating the transcriptome of laser irradiated cells, the
conditions used in this experiment were assessed for their impact on cell
viability via both trypan blue exclusion and growth assays. Trypan blue is
a vital stain which is excluded from live cells. Laser irradiated and non-
irradiated cells were stained with trypan blue, and images were collected
and scored for the presence of nonviable (blue-stained) cells (Fig. S1). For
comparison, heat-killed cells were included as a control. As expected,
100% of the heatkilled cells were stained (non-viable), while less than 1%
of the non-irradiated cells were stained. The laser-treated cell population
had 3-4% non-viable cells. These data suggested that laser irradiation
did not grossly damage cells. To verify that the irradiated cells were still
able to divide, cells (irradiated and non-irradiated) were inoculated
into fresh medium and the Agqy measured every thirty minutes until
stationary phase was reached. The growth curves (Figure 1) indicate
that following a lag phase, the doubling time of both the control (140 +
3 min) and laser-treated cells (137 = 14 min) were not significantly
different (P > 0.05, two-tailed T-test). Under these conditions DNA
damage was expected to be minimal in contrast to radiation at 254nm
that is commonly used for radiation-induced DNA damage in yeast
(Guintini et al. 2017; Li et al. 2018). The strong laser output we used
allowed for a much shorter exposure time (30 sec) and a longer wave-
length (355nm) that corresponded to the conditions used for our pre-
vious protein-peptide cross-linking experiments (Hauser et al. 2018).
The delay in growth initiation indicated by the longer lag phase of
irradiated cell was the result of cell metabolic responses to UV that are
described in the RNAseq experiments presented below in this report.
The expected doubling time for yeast grown in complete medium is
approximately 90 min (Sherman 2002); the increased doubling time
measured in this experiment is due probably to reduced aeration of
the cells while growing in a plate reader. Coupled with the trypan
blue staining, the growth assay indicated that the yeast cells were
mostly viable after laser treatment and therefore further interro-
gated by transcriptomic analysis.
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Figure 1 Growth of control (@) and laser irradiated (O) cells upon
transfer into growth medium. For each condition, the optical density
at 600 nm (Ago) was determined for three independent biological
replicates. Each biological replicate was measured in quadruplicate
and the average value for the biological and technical replicates plot-
ted as a function of time.

Laser irradiation induces differential gene expression

Toassess gene expression post-laser irradiation, total RN'A was extracted
from both control and 30s laser-irradiated yeast cells grown for various
times (0, 15, 30 and 60 min) after irradiation and inoculation into fresh
medium. The RNA was processed to isolate mRNA, which was then
subjected to RNAseq analysis. To examine global changes in gene
expression in response to laser irradiation, a three-dimensional Bray-
Curtis based non-metric multidimensional scaling (nMDS) plot (File S1)
was created using the RPKM values for every gene from every sample. A
snapshot of the three-dimensional image is shown in Figure 2. The
nMDS plot suggested similar gene expression when comparing control
(closed) and laser-treated (open) samples at TO (blue triangles) and T60
(pink diamonds), evidenced by the clustering of the three biological
replicate points for each treatment groups. In contrast, T15 (red
inverted triangles) and T30 (green squares) samples exhibited greater
differentiation between control (open symbols) and laser (closed sym-
bols) treatment groups in comparison to the differences at 0 and
60 min. The stress value, which represents the difference between dis-
tance in the reduced dimension compared to the complete multidimen-
sional space, is low (3D Stress: 0.02) for the nMDS plot thus verifying
that this is an accurate, low dimension representation of the observed
distances among the samples. Variation in treatments and composition
among replicates was further evaluated by ANOSIM to determine the
effect of treatment (control v. laser) and time (0, 15, 30 or 60 min) on
the sample sets (Table S2). The R statistic signifies no difference be-
tween treatment groups when the value is 0. When R approaches or is
equal to 1, the difference between treatments being compared is signif-
icantly greater than the difference among the replicates within the
treatments. At TO and at T60, control vs. laser-treated samples ex-
hibit low R values of -0.037 and 0.037, respectively, suggesting little
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Figure 2 Three-dimensional non-metric multidimensional scaling (3D-
NMDS) plot of control (solid symbols) and laser treated (open symbols)
samples collected at 0, 15, 30, and 60 min post-inoculation into fresh
medium. Three independent biological replicates are plotted for each
condition at each time point. The distance between points represents
the differences between the samples. The low stress value (3D stress =
0.02) of the ordination indicates a good fit. An additional view of a
rotating model is available (File S1).

differences between the treatment groups as reflected in the nMDS
plot (Figure 2). In contrast, laser-treated vs. control samples at T15
and T30 display high R values of 0.963 and 0.704, respectively, sug-
gesting significant differences in gene expression for laser-treated vs.
control groups at these time points. The nMDS plot indicates that
changes in the transcriptome in response to laser irradiation are
transient and have returned to baseline levels by 60 min post transfer
to growth medium. Given the shift to normal growth and strong
similarities between the control samples and the samples measured
60 min post-transfer, these data suggest that the cells have repaired
any damage induced by the UV irradiation by 60 min. To further
investigate this finding, we characterized the transient transcriptional
responses, which is detailed below.

DEGs in response to laser irradiation is distinct from
stress response

Volcano plots (Figure 3A-D, also shown in Table S1) of significance vs.
fold change over time were constructed to visualize the differentially
expressed genes (DEGs). Transcripts considered significantly different
(p-value <0.05, log2 difference >1) are highlighted in red and specific
genes meeting these criteria are listed in Table S1. A specific subset of
approximately 900 genes respond universally to a wide range of envi-
ronmental stress in yeast (Gasch et al. 2000). These environmental
stress response (ESR) genes are indicated by a small diamond on the
“circle” in the volcano plots (Figure 3) to define the overlap between the
general stress response and DEGs in response to laser irradiation. At
time TO (Figure 3A) there was little difference in gene expression com-
paring laser-treated and control groups, and only 1 of the 8 up-regu-
lated DEGs was identified as an ESR gene. In contrast, samples collected
at T15 (Figure 3B) exhibited up-regulation of 416 genes, including
80 ESR genes, and down-regulation of 15 genes none of which are
ESR genes. At T30 (Figure 3C) differential gene expression was reduced
to 228 up-regulated genes, but the number of ESR genes within this
population (89 ESR genes) was similar to those observed at T15. By T60
(Figure 3D) differential expression had returned to levels similar to
those observed for TO0. The data indicate that differential expression
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in response to laser irradiation under the conditions used in this ex-
periment is rapid and transient. There is some overlap with ESR genes,
but stress response does not account for all DEGs, and not all ESR genes
responded to the laser treatment.

The DEGs were further analyzed by two-way hierarchical clustering
(Figure 4A) to identify transcripts that were upregulated at T15, T30 or
at both T15 and T30. Gene ontology (GO) enrichment was performed
on each transcript cluster to identify functional responses and their
connectivity within and between clusters (Figure 4B). At T15 (Figure
4B, Cluster 3) amino acid metabolic processes (sulfur amino acids,
methionine, aspartate, cysteine, serine) are highly represented in addi-
tion to sulfur regulation (hydrogen sulfite metabolic processes, sulfate
assimilation, sulfate reduction). At T30 (Figure 4B, Cluster 2), the
expression profile shifts to expression of transcripts related to catabolic
processes (oxidoreductase activity, peptidase activity). Transcripts
common to both T15 and T30 time points (Figure 4B, Cluster 1)
suggest an upregulation of catabolic events, including protein catabo-
lism via proteasome and peptidase activity. Expression of genes in-
volved in DNA repair was minimal at T15 or T30 indicating that the
355nm UV-irradiation used in this experiment did not cause extensive
DNA damage, although it has been shown previously by others that
transcriptional response of S. cerevisiae to short-wavelength UV radi-
ation that damages DNA may not directly identify genes that protect
against UV radiation (Birrell et al. 2002). The irradiation conditions
used in this experiment appeared to trigger responses dealing with repair
of oxidative damage to proteins and cellular components. Twenty-
two genes involved in oxidative repair were highly up-regulated at
T30 (Table S4).

Iron regulon transcripts exhibit differential expression

in response to UV laser irradiation

The top ten non-ESR genes, exclusive of genes encoding tRNAs (see
below), exhibiting the highest level of differential expression at T15, T30,
and T60 are presented in Table 1 and Table S3. At T15, the gene LSOI
(late-annotated small open reading frame) exhibited ~45-fold change
(FC) (Log, FC = 5.5) increase in expression, rising to ~73-fold (Log,
FC =6.2) at T30, representing the most highly modulated gene at these

time points. By T60, expression had returned to basal level and was not
significantly different (P > 0.05) from the control levels. LSOI, a mem-
ber of the Aft1p/Aft2p-regulated iron regulon encodes a 93 amino acid
protein that is involved in the cellular response to iron deprivation (An
et al. 2015). Its role in the iron regulon prompted a further interrogation
of the dataset for other genes transcriptionally activated by transcrip-
tion factors Aft1/Aft2 in response to iron deficiency (Martinez-Pastor
et al. 2017; An et al. 2015) which identified 12 additional differentially
expressed (Log, FC = 1) transcripts (Table 2). All of these genes, in-
cluding metalloreductases, ion transporters, an iron-recycling heme
oxygenase, and a copper-transporting ATPase, were differentially
up-regulated at T15. Six transcripts (LSOI, HMXI, TIS11, CCC2,
FRE3 and FIT2) were differentially expressed at both T15 and T30,
while only FIT2, an iron siderophore transporter, was up-regulated at
all three time points. None of the iron regulon transcripts identified in
this study as modulated in response to laser irradiation were identified
as part of the ESR gene dataset (Gasch et al. 2000) suggesting that this
response is distinct from a general cellular stress response.

The transcriptional regulation of the iron regulon genes in UV-laser
irradiated cells is likely in response to the generation of reactive oxygen
species (ROS) which have the potential to cause intracellular damage to
DNA, protein and lipids. ROS can result in decreased iron availability
due to its oxidation (Matsuo et al. 2017) and many genes in the Aft1p/
Aft2p-iron regulon are differentially expressed under oxidative stress
(Castells-Roca et al. 2011; Castells-Roca et al. 2016). The iron regulon
genes, including those identified in this study, encode proteins required
for mobilization of iron, such as reductive and non-reductive uptake at
the plasma membrane, reduction and transport from the vacuoles. The
reductive pathway involves the conversion of ferric to ferrous ions,
which can further contribute to oxidative stress by generating hydroxyl
radicals from oxygen. The up-regulation at T15 and T30 of the tran-
script for Hmx1p, which regulates the expression of antioxidant genes
(Collinson et al. 2011) in addition to regulating iron homeostasis, sug-
gests a need for oxidant protection. FIT2, a cell wall mannoprotein
transporter for siderophore-ferric iron was upregulated at T15, T30
and T60 suggesting intracellular ion scarcity. Under conditions of ox-
idative stress, gene expression patterns are altered to balance the

6 8 up-regulated (1 ESR) 6 418 up-reguiated (89 ESR) 6 228 up-regulated (85 ESR) T 16 up-regulated (3 ESR)
7 down-regulated (0 ESR) 15 down-regulated (1 ESR) down-regulated (0 ESR) 4 down-regulated (0 ESR)
5 5 5 6
@ (4] [ ]
=4 =4 24
[ [ ©
7 7 z
o =3 o
o3 o3 o3
- - -
o o o
S ] ©
2 2 <2
1 ; 1 1
0! 0 2 0
-4 4 B 6 -4-20 2 4 6 8 -4 4 -2 0 2 4 6 8

Laser T0-Control TO Laser T15-Control T15

= not significant transcript

Laser T30-Control T30 Laser T60-Control T60

o significant transcript esignificant ESR transcript

Figure 3 Volcano plot distribution of differential transcripts. ANOVA (F-test) was used to compare the means of gene expression from the
triplicate RPKM values for each gene in the presence and absence of laser treatment to determine a P-value. The -Log10 p-value was plotted as a
function of differential expression (Log2 difference) to generate the volcano plot. For each pairwise comparison (laser v. control) at (a) time 0, (b)
time 15, (c) time 30 and (d) time 60 min post inoculation into fresh medium, transcripts with a p-value < 0.05 and a Log2 difference > 1 were
considered to be significantly different and are highlighted in red. Significant transcripts which are part of the environmental stress response (ESR
transcript) are indicated by solid red diamonds. Transcripts which exhibit significant differential expression unique to laser irradiation are indicated

by open red circles. Table S1 lists all of these DEGs.
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Figure 4 Differential transcript abundance behaviors and network clustering of gene ontology (GO) functional intersections between the most
prevalent differential gene expression patterns. (a) Two-way hierarchical clustering (Euclidian) of Log2 fold changes for each pairwise comparison was
performed in the Perseus software for on only the differentially abundant transcripts observed. Non-significant transcript differences were replaced by
a zero value. Here, we highlight the three major discrete clusters representing those transcripts that were upregulated in time points 15 and 30 min
(blue), and those that were up-regulated in only the 15 min (cyan) and 30 min time points (purple). (b) For each of the three clusters, we performed GO
enrichment to identify the functional responses associated with each differential expression pattem. The node connectivity of significantly enriched
GO terms is represented for each cluster as well as between clusters, which is conceptually like a Venn diagram. The GO network highlights the
number of enriched terms for each cluster as well as the functional intersection, for example GO terms shared between all hierarchical cluster (1-3)
represent a sustained functional response. The GO terms at adjusted P < 0.05 were considered significantly enriched and are highlighted.

essential need for iron homeostasis with minimization of the role of
iron in the generation of hydroxyl radicals. We observed differential
gene expression of iron regulon genes reflected in the response to
UV-laser irradiation.

Identification of highly modulated transcripts

The conventional default values for identifying transcripts exhibiting
differential expression is Log, FC >1 (twofold change) at a p-value <
0.05. To identify transcripts which exhibited significantly higher levels
of differential expression we plotted the number of differentially
expressed genes at three different expression levels (=twofold, =fourfold
or =eightfold) as a function of time for three different p values (P < 0.1,
P < 0.05 and P < 0.01). The number of genes expressing at least twofold
change (P < 0.1) was the lowest at Time 0 and Time 60 (Figure 5A).
Increasing the stringency (P < 0.05, P < 0.01; Figure 5B and 5C, respec-
tively) decreased the absolute number of DEGs, but the greatest changes
still occurred at T15 and T30. For this analysis, we elected to focus on
genes differentially expressed at fourfold or higher, at a confidence
interval of 95% at both T15 (Figure 5D) and T30 (Figure 5E) as a
representative population for transcripts with a high degree of statisti-
cally significant differential expression. Using these stringent criteria,
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92 and 102 transcripts were identified at T15 and T30, respectively
(listed in Table S4). Because laser irradiation should serve as a stress
condition, this pool of differentially expressed genes was assessed for
the presence of ESR genes. Of the 92 genes identified at T15, 36 were
upregulated ESR genes; of the remaining population 52 genes were
upregulated and 4 tRNA genes were downregulated. The distribution
of DEGs at T30 was similar to that at T15, with 45 ESR genes upregu-
lated, 6 tRNA genes (1 upregulated, 5 downregulated) and 51 genes
(50 upregulated, 1 downregulated) were differentially expressed in re-
sponse to laser irradiation.

The non-ESR genes differentially expressed in response to irradiation
were grouped by cellular process using GO Slim Mapper at T15 and T30
(Figure 6). The largest cluster mapped to the category “biological pro-
cess unknown” for both T15 (10/52 genes) and T30 (13/51 genes). At
the time of this analysis, a function has not been assigned to these genes.
There were also genes which could not be associated with a GO Slim
term at both T15 (4/52 genes) and T30 (3/51 genes). Among these were
a component of the iron regulon LSO! (An et al. 2015) previously
mentioned as a highly differentially expressed transcript at both T15
and T30 (Table 1 and Table 2). Other non-assigned genes at T15 were
annotated in the Saccharomyces Genome Database (Cherry et al. 2012)
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Table 1 Top 10 differentially expressed, non-ESR transcripts upregulated in response to laser irradiation at time T15, T30 and T60 min
post-transfer to growth medium. Blank entries in this Table indicates that the gene was not differentially expressed

T15 T30 T60

Gene Log2 FC p value Log2 FC p value Log2 FC p value
LSO1 5.5 0.001 6.2 0.00008
SRX1 5.5 0.015
HUGT1 4.7 0.001 52 0.00364 5.6 0.0321
HBN1 4.2 0.0179 29 0.0432
BTNZ2 4.1 0.0171
ROQ1 37 0.0225
YKLO71W 35 0.0385
RNR3 34 0.00007 3.8 0.00857 29 0.0348
MET17 34 0.00275
HMX1 3.3 0.00008 3.5 0.00352
YJL133C-A 3.7 0.00324 35 0.00103
FIT2 34 0.00125 24 0.0105
SPS100 3.4 0.00818
TiIS11 3.3 0.0126
HSP82 29 0.0426
YPRO15C 2.5 0.0209
SPO24 2.2 0.00982
ANS1 1.6 0.00068
YLRO53C 1.2 0.0272
Cis1 1.2 0.000001
THI12 1.2 0.00576

as encoding an aryl-alcohol dehydrogenase (AAD4) and a flavin mono-
nucleotide (OYE3), both involved in oxidative stress response, and a
glutathione S-transferase (GTT2) which is upregulated in response to
DNA replication stress. At T30, unassigned genes were FIT2, part of the
iron regulon (Table 1 and Table 2) and STFI which encodes a protein
involved in the regulation of the mitochondrial FIFO-ATP synthase
upregulated in response to DNA replication stress.

Discounting the transcripts which could not be mapped toa GO Slim
term or for which the biological function is unknown at T15, the
remaining 38 differentially expressed transcripts were assigned to
39 cellular process categories. At T30, the 35 differentially expressed
genes which did not include genes which could not be mapped or had no
known biological function were assigned to 42 different processes
(Figure 6 and Table S4). At T15, processes related to biological trans-
port (i.e., ion transport, transmembrane transport, cellular ion homeo-
stasis, amino acid transport) are represented. Reflecting the results of

the hierarchical clustering analysis (Figure 4B), transcripts for amino
acid transport genes (BTN2, MUP3, YCTI) involved in arginine
(BTN2), methionine (MUP3) and cysteine (YCTI) transport were
highly differentially expressed (P < 0.05, = fourfold change) only at
T15, suggesting an early upregulation, which is not detected at this
same stringency at T30. Interrogation of the transcriptome at lower
stringency (P < 0.1, = twofold change) identified the four amino acid
transporters identified above, as well as general amino acid permease
GAPI and the PUT4 proline transporter. A similar interrogation at
reduced stringency for the GO process “amino acid transport” at T30
identified only AGP3, a low-affinity amino acid permease which may
function to transport amino acids for use as a nitrogen source in
nitrogen-limiting conditions. None of the other amino acid trans-
port genes differentially expressed at T15 were detected at T30
further underscoring the transient nature of differential gene expres-
sion when comparing these two time points. These transport

Table 2 Differential expression of Iron Regulon Transcripts. Transcripts of genes identified as part of the iron regulon which were
significantly (Log2 FC >1, P < 0.05) modulated as a function of laser irradiation time. Blank entries in this Table indicates that the gene was

not differentially expressed. This list does not include any ESR genes

T15 T30 T60

Gene Log2 FC p value Log2 FC p value Log2 FC p value
LSO1 5.531574 0.00107 6.219368 8.04E-05
HMX1 3.309266 8.09E-05 3.527614 0.00352
TIS11 3.125413 0.00891 3.251401 0.0126
ccez 2.46325 0.00455 2.304157 0.0173
MRS4 2.051588 0.0184
FRE3 1.729197 0.0167 1.03597 0.0255
FIT2 1.572728 0.0293 3.442218 0.00125 2.375446 0.0105
Isuz 1.537686 0.0169
FRE5 1.450233 0.0323
FTH1 1.305262 0.018
ARN2 1.01569 0.021
FET4 -1.10737 0.0264
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responses may indicate a cellular mobilization of external resources to
respond to the laser insult. Amino acid would be required for rapid
protein synthesis rather than to await intracellular biosynthesis of
these building blocks. The regulation of this specific set of amino acid
transporters is interesting and warrants further exploration.

AtT30 the most highly represented processes for the 35 differentially
expressed genes described above included cellular metabolism (carbo-
hydrate metabolic process, protein complex biogenesis, cellular amino
acid metabolism), ionic homeostasis (cellular ion homeostasis, ion
transport, transmembrane transport), mitochondrion organization,
and sporulation. These changes may indicate a complex cellular re-
sponse to the laser insult in comparison to the more immediate
responses at T15. Mobilization of energy sources requiring mitochon-
drial function, carbohydrate metabolism, protein turnover and bio-
synthesis would be necessary. The initiation a sporulation response
might indicate a survival mechanism as well. These results indicate that
both mitochondrial and cellular components are the targets of oxidative
damage due to long-wavelength UV radiation.

UV-irradiation would be expected to result in damage to DNA,
protein and other macromolecules. Interestingly, only 4 genes (ECOI,
RADS53, FRAI, and RFA2) out of 63 in the Saccharomyces Genome
Database (SGD, www.yeastgenome.org) annotated with the Gene
Ontology (GO) term “DNA Repair” were up-regulated at the stringent
fourfold, 95% confidence level at T15. At T30, RFA1, RFA2, and SOHI
were the only DNA Repair transcripts up-regulated (Table S1, DNA
Repair tab). That more genes involved in DNA repair were not highly
up-regulated was likely due to the long-wavelength UV (355nm) and
the short irradiation time used in our experiments; short-to-mid wave-
length UV (250-300nm) is primarily responsible for UV damage to
DNA (Rastogi et al. 2010; Besaratinia et al. 2011).
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Figure 5 Differential transcript ex-
pression for control and laser treat-
ment RPKM values at minimum
twofold (), fourfold (A) or eight-
fold (O) change. Transcripts were
sorted by p value (A) P < 0.1, (B)
P < 0.05 and (C) P < 0.01. The
transcripts differentially expressed
(upregulated or downregulated), en-
vironmental stress response genes
(ESR) or tRNA genes detected at
T15 and T30 with P < 0.05 in
panel B are characterized in panels
(D) and (E), respectively. Figure 6.
GO Slim annotation for cellular
processes affected by laser irradiation
at T15 (black, 73 transcripts) T30

DEG at T15
(p <0.05, n=92)

( Egg;tnf:%z) (blue, 78 transcripts) for non-ESR tran-
p a9, scripts with at least fourfold increase
== Upregulated in expression at P < 0.05.
== Downregulated
mm ESR
tRNA

There was a representation of genes annotated in SGD as involved in
the phenotype “UV Resistance” primarily documenting genes involved
in UV repair after exposure to shorter wavelength UV 0f 300 nm or less
(https://www.yeastgenome.org/observable/APO:0000085) with 27 and
22 genes out of 322 total genes annotated to this term up-regulated at
T15 and T30, respectively, with many of these genes overlapping at the
two time intervals (Table SI1, UV Resistance Tab) suggesting a
prolonged response. Notably, the transcription factor YAPI, which
plays a central role in response to oxidative stress tolerance (Morano
et al. 2012) was upregulated. YAP I, a basic leucine zipper (bZIP)
transcription factor is a non-essential gene; a null mutant showed in-
creased mutation frequency and decreased resistance to short-wave UV
radiation and oxidizing and reducing agents while overexpression con-
ferred resistance to these agents (Temple et al. 2005; Toone and Jones
1998). Our results indicate that YAPI is also involved in conferring
resistance to long-wavelength UV. In addition, 6 different RAD
(RADiation sensitive) genes (RADI6, RAD5I, RADS52, RADS53,
RADS54, RAD 59, see Table S1, UV-resistance tab) which are involved
in nucleotide excision repair in response to DNA damage by UV light
(Aboussekhra and Wood 1994) were also upregulated as was HUGI,
a gene previously shown to be up-regulated by short-wavelength
UV(Wade et al. 2009), suggesting that if there is some level of
DNA damage, it is efficiently repaired by the genes activated in response
to oxidative stress and does not result in any compromise of cell growth.

At T15 there was an up-regulation of 15 of the 31 transcripts from
genes annotated as “Proteosome Storage Granule” in SGD (Table S1,
Proteasome tab). This number of up-regulated genes related to
proteasome function increased to 21 genes at T30. These data provide
evidence of protein turnover being a major cellular response to long-
wavelength UV-irradiation. The corresponding ubiquitin ligase genes,
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Figure 6 GO Slim annotation for cellular processes
affected by laser irradiation at T15 (black, 73 tran-
scripts) T30 (blue, 78 transcripts) for non-ESR tran-
scripts with at least fourfold increase in expression at
P < 0.05.
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which function in targeting of proteins for degradation, were repre-
sented by transcripts of CDC48, NPL4, and UFD1 at T15 and by UFDI
only at T30 (Table S1, Ubiquitin Ligase tab).

Differential expression of tRNA genes

A recent report (Torrent et al. 2018) indicates that the tRNA pool in
yeast changes in response to a diverse collection of stress conditions in
order to enhance selective translation of stress-induced transcripts.
In our study, over the 60-minute sampling time, seventeen different
transcripts encoding tRNA genes were differentially expressed (P <
0.05) in response to laser irradiation (Table 3). In contrast to other
highly regulated genes, most of the tRNA transcripts exhibited primar-
ily reduced expression. Downregulation occurred at TO for the EMT2
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(Log, FC = -3.0) a methionine tRNA involved in adding methionine
residues to the nascent peptide chain. Interestingly, the transcript for
IMT4 which encodes a methionine initiator tRNA was up-regulated
(Log, FC = 3.0) at T30 suggesting an increase in protein synthesis. The
largest change in expression occurred at T15 for a leucine tRNA (Log2
FC = - 4) which was downregulated by 16-fold. Other tRNA genes
were also regulated, but at levels below the threshold applied for
significance (Table S1). These data indicate these tRNAs were regu-
lated by laser-induced damage. We surmise that these tRNA tran-
scripts were captured in the RNAseq analysis due to polyA tails
known to be present in some tRNA transcripts (Diivel et al. 2003;
Torrent et al. 2018) or possibly added during processing as a means to
down-regulate tRNAs to control translation (Wilusz 2015; Phizicky

Laser-Induced RNAseq of Yeast | 2557


http://www.yeastgenome.org/locus/S000002284/overview
http://www.yeastgenome.org/locus/S000000374/overview
http://www.yeastgenome.org/locus/S000003280/overview
http://www.yeastgenome.org/locus/S000003280/overview
http://www.yeastgenome.org/locus/S000006666/overview
http://www.yeastgenome.org/locus/S000006660/overview

W Table 3 Transcripts for tRNA genes differentially expressed at TO, T15, T30, and T60

tQ[UUGJE1 Glutamine (thiolation of uridine at wobble position) 0.00272 3.0 up
tK[UUU]G2 Lysine (thiolation of uridine at wobble position) 5.21E-06 2.3 up
EMT2 Met (elongation) 0.0152 3.0 down

down
down

tL[CAA]IG1
tRIACG)J

1.35E-05 4.0
0.0062 3.8

Leucine

Arginine (one of 6 nuclear tRNA genes containing
the tDNA-anticodon ACG (converted to ICG in
the mature tRNA), decodes CGU, CGC, and

probably CGA codons into arginine, one of
19 nuclear
tRNAs for arginine

Aspartate

Valine

tD[GUCJ2
tVIAACIET

1.12E-03 2.7
4.99E-04 2.4

down
down

IMT4 Methionine (initiator)
tN[GUUJL Asparagine

tRIUCUIMZ2 Arginine (nuclear)
tN[GUUIN1 Asparagine

tH[GUGIJE1 Histidine

tK[CUU]C Lysine (mito with Msk1p)

1.58E-03 3.0 up

6.54E-04 2.5 down
1.77E-03 24 down
1.79E-03 2.3 down
5.64E-05 2.1 down
5.68E-05 2.1 down

tkK[UUU]G1 Lysine (thiolation of uridine at wobble position) 0.000739 2.2 up
tA[AGCIM2 Alanine (one of 11 nuclear tRNA genes containing 8.18E-07 2.0 up
the tDNA-anticodon AGC (converted to IGC in
the mature tRNA), decodes GCU and GCC
codons into alanine, one of 16 nuclear
tRNAs for alanine
tH[GUGJH Histidine 0.00011 2.7 down
tG[GCCJO1 Glycine 0.00205 2.4 down

and Hopper 2010). It is probable that only a small set of tRNA down-
regulation would be needed to stop protein synthesis entirely to repair
cellular damage in preparation for re-initiating cellular growth after
repairs had been done.

CONCLUSION

Exposure to UV irradiation as delivered in this study (355 nm, 30 sec,
55]) allowed for continued cell viability, but resulted in rapid, transient
changes in gene expression assayed at T15 and T30 min post-transfer of
theirradiated cells into fresh growth medium which returned to baseline
levels by T60. UV-irradiation is a source of cellular stress; we did observe
differential expression of a subset of the ESR genes (Gasch et al. 2000).
However, upon filtering out the ESR genes, as well as setting a stringent
selection criterion to identify transcripts with at least a fourfold change
in expression, we identified a population of transcripts (56 at T15 and
57 at T30) that we ascribed to the laser-irradiated transcriptome.

The cell responded to long-wavelength UV irradiation with tran-
scriptional upregulation of genes annotated as responding to UV re-
sistance and oxidative stress. Furthermore, consistent with a cellular
response to repair cellular damage and to prepare for cellular growth
upon introduction into fresh medium, we noted increased transcripts for
amino acid mobilization and protein turnover utilizing proteasome
components, proteases, and peptidases. The down-regulation of tRNA
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genes also points to protein translation as a key process in the cell’s
coping with UV irradiation-induced damage. That DNA repair was not
a large factor in response to the UV laser used in this experiment is also
consistent with the know targets of long-wavelength UV as opposed to
shorter-wavelength UV-induced DNA damage. In addition, it is known
that the transcriptional response of S. cerevisiae to short-wavelength
UV radiation that damages DNA may not directly identify genes that
protect against UV radiation (Birrell et al. 2002). The yeast cell dem-
onstrates a notable ability to respond to damaging UV irradiation over
a short time interval by returning the normal transcriptional responses
by 60 min post-irradiation.

Long-wavelength UV radiation has been used to a much lesser extent
in biological studies in comparison to the use of short-wavelength UV.
Experiments using long-wavelength UV have concentrated mainly
to crosslink psoralen to DNA as this compound is used to treat skin
diseases. Some studies have measured transcriptional responses to long-
wavelength UV in keratinocytes (Luo ef al. 2017; Kraemer et al. 2013;
Zhao et al. 2013) and in melanocytes (Zhao et al. 2017). In yeast, long-
wavelength UV and psoralen has been used as a model to study DNA
damage repair mechanisms (Cruz et al. 2012).

The results of these experiments demonstrate that a short burst of
high-energy, long-wavelength UV did not substantially impact cell
viability. Furthermore, the transient nature of the transcriptional

-=.G3:Genes| Genomes | Genetics



response and the modest number of genes whose transcription was
regulated under the conditions of these experiments indicates that long-
wavelength UV irradiation of yeast cells for a short time period would
not impact proteomic studies unless the expression of a particular target
protein or its interactors were affected. There should be no additional
in vivo cross-linking of cellular proteins that were not already in close
physical proximity at the initiation of the laser-induced cross-linking.
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