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Abstract. The aim of the present study was to investigate the 
association between Ki-67 expression and radiomics features 
of dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) in patients with invasive breast cancer. A total of 
53 cases with low-Ki-67 expression (Ki-67 proliferation index 
<14%) and 106 cases with high-Ki-67 expression (Ki-67 prolif-
eration index >14%) were investigated. A systematic approach 
was applied that focused on the automated segmentation of 
lesions and extraction of radiomics features. For each lesion 
5 morphology, 4 gray-scale histogram and 6 texture features 
were obtained, and statistical analyzes were performed to 
assess the differences in these features between the low- and 
high-Ki-67 expressions. One morphology metric (area), 
3 gray-scale histogram indexes (standard deviation, skewness 
and kurtosis) and 3 texture features (contrast, homogeneity and 
inverse differential moment) demonstrated a significant differ-
ence (P<0.05), with low-Ki-67 expression lesions tending to 
be smaller, clearer and heterogeneous when compared with 
the high-Ki-67 expressed cases. These results may provide a 
noninvasive means to better understand the proliferation of 
breast cancer.

Introduction

As in most other countries, breast cancer is now the most 
common cancer in Chinese women, cases in China account 
for 12.2% of all newly diagnosed breast cancers and 9.6% of 
all deaths from breast cancer worldwide (1). Ki-67 is one of 
the major markers of tumor proliferation, assessed by immu-
nohistochemistry (IHC) with the anti-Ki-67 antibody called 
MIB-1 (2). Many investigations have reported that Ki-67 is 
an independent predictive and prognostic marker in patients 
with operable breast cancer (3,4). Thus, assessment of Ki-67 
is already introduced into daily practice in order to discrimi-
nate breast cancer subtypes, predict oncological outcomes, 
or decide on indications for adjuvant treatment (5). Current 
preoperative assessment of Ki-67 is mostly based on IHC, 
which requires tissue specimens typically obtained by needle 
biopsy. Due to the relatively small tissue sample size and tumor 
heterogeneity, the Ki-67 expression assessment performed on 
a needle biopsy sample may not be representative of the tumor 
entirety. Moreover, Ki-67 assessment can be unavailable in 
many critical cases where biopsy is in feasible.

Recently, several studies have hypothesized that tumor 
characteristics at the cellular and genetic levels are reflected 
in the phenotypic patterns and can be captured with medical 
imaging (6-8). On this theoretical basis, the radiomics meth-
odology has been proposed that objectively characterizes 
tumor phenotypes using the advanced quantitative features of 
medical images. These features, referred to as the radiomics 
features, are extracted from medical images using advanced 
mathematical algorithms in a high-throughput way, and can 
discover tumor characteristics that may fail to be appreciated 
by the naked eye (9-12).

To date, the previous research on the radiomics features 
of breast cancer has focused majorly on the separation of the 
benign and malignant (13,14), molecular receptor status of 
estrogen receptor (ER)+ and ER-, progesterone receptor (PR)+ 
and PR-, human epidermal growth factor receptor 2 (HER2)+ 
and HER2- for dynamic contrast-enhanced magnetic resonance 
imaging (DCE-MRI) (15-20). No report has been released 
on analyzing the Ki-67 expression with radiomics features. 
Therefore, the goal of this study is to explore the association 
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of extracted radiomics features with Ki-67 expression on 
breast DCE-MRI, which could provide a noninvasive means to 
better understand the proliferation of breast cancer and further 
providing valuable information for personalized therapy.

Materials and methods

Clinical data. The present retrospective study was approved by 
the Institutional Review Board of Tianjin Medical University 
(Tianjin, China). Three hundred seventy-seven (377) Chinese 
women with invasive breast cancer that were confirmed by 
pathology and underwent breast DCE-MRI were divided 
into two groups based on their Ki-67 proliferation index: 
Low-Ki-67 group-Ki-67 proliferation index less than 14%; 
high-Ki-67 group-Ki-67 proliferation index more than 14% (5). 
This breast DCE-MRI data was prospectively collected from 
January 2015 to September 2015 at our institution. In the entire 
data set, the low-Ki-67 group was composed of 53 low-Ki-67 
expressed lesions that accounts for 14.06% of the total cases. 
For a preliminary analysis, 106 high-Ki-67 expressed lesions 
(double of the low-Ki-67 expressed group) were selected at 
random from the total data set as the high-Ki-67 group. The 
ages of the patients ranged from 30 to 68 years old (49±10, 
median 48) in the low-Ki-67 group and from 29 to 72 years old 
in high-Ki-67 group (47±9, median 50). There was no statis-
tically significant difference in age between the two groups 
(P=0.483).

Imaging data. The DCE-MRI examinations were performed 
on a 3.0T scanner using a dedicated 8-channel phased-array 
breast coil (Discovery MR750; GE Healthcare, Shanghai, 
China). Sagittal data was obtained by the volume imaging 
for breast assessment bilateral breast imaging technique, with 
TR=6.1 ms, TE=2.9 ms, flip angle=15 ,̊ matrix size=256x128, 
field of view=26x26 cm, NEX=1, slice thickness=1.8 mm. 
Before injection of the contrast agent, serial mask images 
were obtained. Successively, the contrast agent (Gd-DTPA, 
0.2 ml/kg body weight, flow rate 2.0 ml/sec) was manually 
injected using an automatic MR-compatible power injector, 
and thereafter flushed with the same total dose of saline solu-
tion. The dynamic MRI acquisitions were started immediately 
after the injection. The acquisition was repeated five times, 
and each phase took 90-100 sec. The radiomics analysis was 
conducted at the first post‑contrast time‑point of the MRI.

Lesion segmentation. The contour of the lesion region of 
interest (ROI) in the largest DCE-MRI slice of each lesion was 
automatically constructed using the localizing region-based 
active contours algorithm (21). Figs. 1 and 2 show the 
segmented results of two MRI images.

Radiomics features. Radiomics features provide an objective 
and quantitative metrics to assess tumor phenotype. In this 
work, 15 features were extracted from each ROI, including 
5 morphological features, 4 gray-scale histograms and 6 
texture features, as explained below.

Morphological features. Five metrics, including area, 
normalized radial length (NRL), roundness, compactness and 
concavity rate, were calculated for the morphological descrip-
tion of the images. Area is one of the most basic characteristics 

to describe image ROI, and normally defined as the number of 
the pixels in the ROI. NRL defined as the Euclidean distance 
from the center of the lesion ROI to each of its contour pixels 
and normalized to the maximum radial length of the lesion. 
Roundness is the measure of how closely the shape of an object 
approaches that of a mathematically perfect circle, and defined 
as the ratio of the circumcircle radius to the inscribed circle 
radius of the lesion ROI. The circum and inscribed circles are 
defined as circles with their radii being the maximum and 
minimum distances from a boundary point to the center of the 
lesion ROI, respectively, as shown in Fig. 3A. Compactness 
and concavity are associated with shape and margin of the 
lesion. Compactness is defined as the 4πxA/P2, where A is the 
cross-sectional area of the tumor and P is the measured length 
of the perimeter of the lesion. Concavity rate is defined as abs 
(A-B)/B, where B is the area of the convex hull calculated for 
the lesion region, as illustrated in Fig. 3B, and ‘abs’ denotes 
the absolute value.

Gray‑scale histograms features. Four features were 
computed for each lesion according to the definitions of the 
gray-scale histogram: Mean, standard deviation (SD), skewness 
and kurtosis. Their definition can be found in literatures (22).

Texture features. Texture is a repeating pattern of local 
variations in image intensity, and is characterized by the 
spatial distribution of intensity levels in a neighborhood. Six 
gray-level co-occurrence matrix (GLCM) texture features 
were obtained for each lesion as defined by Haralick et al (23), 
including energy, entropy, contrast, correlation, homogeneity 
and inverse differential moment (IDM). The ROI extraction 
and radiomics feature calculations were performed using 
programs written with MATLAB 2014b.

Statistical methods. To compare the differences in morpho-
logic, gray-scale histograms and texture features of low- and 
high-Ki-67 expression by using radiomics analysis method, 
the statistical method used was the Mann-Whitney U test, 
with the significance level set as α=0.05. Statistical analysis 
was performed using R 3.4.3 software (www.R-project.org). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

The average values and SD of the radiomics features are 
compared in Table I. No statistically significant differences 
were observed in roundness, NRL, compactness, concavity 
rate, mean, energy, entropy and correlation between two 
groups (P>0.05). Fig. 4 shows the box and whisker plots of 
the radiomics parameters values of two groups for P<0.05. 
It displays the center and spread of a numeric variable in a 
format.

In the five morphological parameters, only one feature, 
area, which indicating statistical significance in differ-
entiating the low-Ki-67 expression from the high-Ki-67 
expression (P=0.002). As shown in Table I and Fig. 4A, the 
high-Ki-67 cases tended to have larger lesion size. There was 
no significant difference in roundness, NRL, compactness and 
concavity between two groups (P>0.05).

For the gray-scale histograms features, SD, skewness and 
kurtosis showed statistical significance between the two groups 
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Figure 1. DCE-MRI of a 63-year-old woman with low-Ki-67 expression. (A) Segmentation outlines obtained from the active contours segmentation method. (B) The 
gray-scale histogram of the region of interest. The values of the area, SD, skewness, kurtosis, entropy, contrast, homogeneity and inverse differential moment were 
436, 48.784, -0.535, 2.242, 6.120, 4.597, 0.529 and 0.079, respectively. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging. SD, standard deviation.

Figure 2. DCE-MRI of a 43-year-old woman with high-Ki-67 expression. (A) Segmentation outlines obtained from the active contours segmentation method. (B) The 
gray-scale histogram of the region of interest. The values of the area, SD, skewness, kurtosis, entropy, contrast, homogeneity and inverse differential moment were 
810, 31.746, -1.231, 3.985, 4.738, 1.704, 0.675 and 0.076, respectively. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging. SD, standard deviation.

Figure 3. Schematics of the (A) roundness and (B) concavity-rate calculations. In the roundness calculation, the red dot is the center of the lesion, and the red 
and green line circles are the inscribed circle and the circumcircle, respectively. In the concavity-rate calculation, the green circle is the convex hull.
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(P=0.043, 0.021 and 0.005). The values of the SD and skewness 
in the low-Ki-67 group is larger than those in the high-Ki-67 
group (Fig. 4B and C), and it is on the contrary for the kurtosis 
(Table I; Fig. 4D). The histogram is an effective graphical tech-
nique for showing both the skewness and kurtosis in the data 
set (Figs. 1 and 2). Notice that the shape of the two histograms 
is quite different. It seems that the histograms of the high-Ki-67 
cases tend to densely distribute in a narrow area.

For texture features, contrast, homogeneity and IDM showed 
statistical significance between two groups (P=0.0004, 0.005 

and 0.002). The value of contrast, and IDM in the low-Ki-67 
group was significantly larger than those in the high‑Ki‑67 
group (Table I; Fig. 4E-G). The homogeneity in the low-Ki-67 
group was smaller than that in the high-Ki-67 group (Fig. 4F). 
As can be seen in Figs. 1 and 2, the kurtosis of the high-Ki-67 
case was larger than that of the low-Ki-67. On the contrary, 
the contrast of the high-Ki-67 case was smaller than that of 
the low-Ki-67 case (High-Ki-67: Contrast index=1.704, IDM 
index=0.076, entropy index=4.738, homogeneity index=0.675; 
Low-Ki-67: Contrast index=4.597, IDM index=0.079, entropy 

Figure 4. Box and whisker plots for the associations between Ki-67 expressions and the DCE-MRI-based phenotypes. (A) Area, (B) SD, (C) skewness, 
(D) kurtosis, (E) contrast, (F) homogeneity and (G) IDM. SD, standard deviation; IDM, inverse differential moment. DCE-MRI, dynamic contrast-enhanced 
magnetic resonance imaging.
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index=6.120, homogeneity index=0.529). The spread of IDM 
in the low-Ki-67 group is more spread out than that in the 
high-Ki-67 group (Fig. 4G). This phenomenon can also be 
found in Fig. 4E.

Discussion

In oncology, biomarkers describe the characteristics of a malig-
nancy on various levels (clinical, histological, molecular and 
so on) and predict patient's outcome and treatment response, 
which is the reason why they are increasingly integrated into 
the clinical routine. Based on the radiomics theory, multiple 
features can be extracted and linked to clinical, genomic, and 
histopathological data. Extracted traits describe radiological 
shape, grey intensity and texture characteristics and can be 
analyzed on routinely performed images. In this study, these 
specific radiomic markers and patterns were developed for 
discriminating between low- and high-Ki-67 expressions 
of breast in DCE‑MRI for the first time. Breast cancer with 
high-Ki-67 expression responds better to chemotherapy but is 
associated with poor prognosis (6,24).

In our study a total of 5 morphological features, 4 gray-scale 
histograms and 6 texture features were extracted to charac-
terize each lesion. The Mann-Whitney test were performed 
to assess the statistical significance of the difference between 
the low- and high-Ki-67 expressions. The result shows that the 
lesion area, SD, skewness, kurtosis, homogeneity and IDM are 
significantly associated with the Ki‑67 expression level.

Morphology is a theory and technique for the analysis and 
processing of geometrical structures. Clinically, the doctor 

relies to a large extent on the morphology of the lesion for diag-
nosis. Li et al (25) indicated that the Ki-67 expression level in 
breast cancer tissue significantly correlated with the tumor size. 
This is consistent with the results of this study that the lesion 
area is significantly associated with the Ki‑67 expression. We 
can find that the values of the area in the low‑Ki‑67 expression 
were much smaller than that in the high-Ki-67 expression. This 
indicated that the increased expression of Ki-67 may predict 
the increased proliferation of breast cancer cells, enhanced 
invasiveness, and faster growth of the tumor. Nevertheless, 
since the definition diagnosis times of the patient cases were 
difficulty to accurately control in present, the above observa-
tion needs to be further validated under an identical condition 
or by using dynamic analysis in the future investigation.

Skewness describes asymmetrical properties of pixel 
distribution. A distribution is symmetric if it looks the same to 
the left and right of the center point. The skewness for a normal 
distribution is zero, and any symmetric data should have a 
skewness near zero. Negative values for the skewness indicate 
data that are skewed left and positive values for the skewness 
indicate data that are skewed right. We can find in Fig. 4C that 
two groups almost all data skewed left, and the high-Ki-67 
expression was more to the left. Kurtosis is a measure of 
whether the data are heavy-tailed or light-tailed relative to a 
normal distribution. We can find in Fig. 4D that the high-Ki-67 
group had higher kurtosis. In general, this means that lesions 
with many voxels of similar uptake are likely to be more 
biologically proliferating.

Table I indicates that the high-Ki-67 expressed lesions 
were likely to show more homogeneous. This can be 

Table I. Feature parameters in association with Ki-67 expression.

 Mean ± SD
 --------------------------------------------------------------------------------------------------------
Feature parameters High-Ki-67 Low-Ki-67 P-value

Morphologic   
  Area 1,125.7±936.2 868.6±814.1 0.002
  NRL 0.275±0.040 0.271±0.035 0.261
  Roundness 0.745±0.148 0.732±0.146 0.619
  Compactness 0.707±0.135 0.705±0.157 0.991
  Concavity rate 0.112±0.075 0.128±0.106 0.449
Gray-level histogram   
  Mean 167.164±22.689 170.095±23.550 0.342
  SD 37.713±8.495 40.874±8.686 0.043
  Skewness -0.781±0.449 -0.636±0.438 0.021
  Kurtosis 3.423±1.084 2.980±0.970 0.005
GLCM   
  Energy 0.044±0.015 0.041±0.016 0.075
  Entropy 5.238±0.403 5.342±0.384 0.061
  Contrast 1.976±0.754 2.627±1.151 <0.001
  Correlation 0.847±0.054 0.832±0.055 0.053
  Homogeneity 0.644±0.045 0.616±0.583 0.005
  IDM 0.040±0.012 0.047±0.015 0.002

SD, standard deviation; NRL, normalized radial length; GLCM, gray-level co-occurrence matrix; IDM, inverse differential moment.
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explained that high-Ki-67 lesions have more biologically 
proliferating, and hence have more voxels of similar uptake 
that appears to be more homogenous. Most of the GLCM 
texture features were highly correlated with each other. 
A homogenously enhanced lesion has lower entropy and 
higher energy compared to a heterogeneously enhanced 
lesion. The larger the enhancement texture entropy, the 
more heterogeneous the tumor. As shown in Figs. 1 and 2, a 
homogeneously enhanced lesion has lower entropy compared 
to the heterogeneously enhanced one. Entropy quantifies 
complexity of the image. The higher values in entropy of the 
low-Ki-67 expression lesions may suggest that these images 
are more complex than the high-Ki-67 expression images. 
The contrast reflects the clarity of the image and the texture 
of the groove depth. The deeper the groove depth and the 
greater the contrast, the image is clearer. On the other hand, 
the contrast value is small, the image is vaguer. IDM reflects 
the sharpness of the image. A higher value of IDM indicates 
the image texture is clearer. Fig. 4G indicates that there is 
a little difference in image clarity in the high-Ki-67 group 
and the value in the low-Ki-67 group larger than high-Ki-67 
group overall. Together, the representation of these features 
indicates the high-Ki-67 expressed lesions are more likely to 
be heterogeneous.

Despite our encouraging results, some limitations exist in 
the present work. First, the automatically extracted features 
were investigated on the largest axial slice and the value was 
used to represent the whole lesion. The true texture analysis 
relies on 3D isotropic image acquisition. However, the 3D 
whole lesion analysis is computationally more complex and 
time-consuming. Second, we have only considered the tumor 
images at the 2nd enhancement phase, and not analyzed the 
pre-contrasts, other enhancement images and mammary 
gland tissues. Third, we did not analyze the kinetic features 
that are important parameters in diagnosis of benign and 
malignant breast masses. Finally, the patient sample set 
was relatively small, and hence results of this pilot study 
are somewhat preliminary. In future study we will work on 
a larger data set and address these limitations to verify the 
preliminary results.

In conclusion, our study illustrates the feasibility of the 
use of radiomics analysis in evaluating the Ki-67 expression 
level. The low-Ki-67 expression cases tend to be smaller and 
more heterogeneous than the high-Ki-67 expression cases. 
Identification of the Ki‑67 expression helps provide comple-
mentary information for precision medicine to aid clinical 
decision making. Based on this study, the next aim is to 
classify the lesion for the low and high-Ki-67 expressions by 
introducing the machine learning method.
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