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Abstract

Aims: The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy
of malaria diagnostic tests, without admitting a reference test, exploring a dataset (n~3317) collected in São Tomé and
Prı́ncipe.

Methods: Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection
prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and
PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (v5, § 5 years old) and fever
status (febrile, afebrile).

Results: In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2%
with a highest posterior density interval of [2.3–4.1]. The other three subpopulations (febrile § 5 years, afebrile or febrile
children less than 5 years) present a higher prevalence around 10.3% [8.8–11.7]. In afebrile children under-five years old, the
sensitivity of microscopy is 50.5% [37.7–63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4%
[90.3–99.5]/93.8% [91.6–96.0] – afebrile – and 94.1% [87.5–99.4]/97.5% [95.5–99.3] – febrile. In individuals with at least five
years old are 96.0% [91.5–99.7]/98.7% [98.1–99.2] – afebrile – and 97.9% [95.3–99.8]/97.7% [96.6–98.6] – febrile. The PCR
yields the most reliable results in four subpopulations.

Conclusions: The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough
evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the
other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical
analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria
diagnostic tests, taking into account different groups of interest.
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Introduction

Malaria is caused by Plasmodium parasites that infect humans

through the bites of an infected female mosquito of the genus

Anopheles. Plasmodium falciparum, P. vivax, P. ovale and P. malariae are

the main species of malaria parasites. The first two species cause

the most infections worldwide [1]. The World Malaria Report

2010 [2] summarizes information from 106 malaria-endemic

countries (and 2 countries that were certified as free of malaria in

2010: Morocco and Turkmenistan). This report estimated that the

number of cases of malaria changed from 233 million in 2000 to

225 million in 2009. The number of deaths due to malaria is

estimated to have decreased from 985 000 in 2000 to 781 000 in

2009. As pointed out by Wongsrichanalai et al. [3], the

discrepancy found in worldwide malaria statistics (values range

from 300 to 500 millions cases a year) emphasizes the importance

of correctly diagnosing malaria to better understand its true extent.

The good clinical practice recommends the parasitological

confirmation of the diagnosis of malaria through microscopy.

There are some exceptions, namely for children under the age of 5

years in high prevalence areas, where there is no evidence that the

benefits of microscopy confirmation exceed the risk of not treating

false negatives, for cases of fever in established malaria epidemics

where resources are limited and for locations where good quality

microscopy is not feasible [1]. This method is cheap, but time-

consuming, labor intensive and depends on the quality of the

blood films and the expertise of the lab technicians.

In recent years, a variety of rapid diagnostic tests (RDTs) have

been explored (e.g. [4–8]). RDTs are often more costly than

microscopy and this should be borne in mind when deciding
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purchase quantities and level of use in a health care system [1].

Rapid diagnostic tests may have a crucial role in malaria control in

poor countries [3]. On the other hand, even in the United States,

according to Stauffer et al. [9], approximately 4 million travelers

to developing countries seek health care, with w1500 cases of

malaria reported annually. These authors explored the perfor-

mance of a RDT approved by the US Food and Drug

Administration, pointing out that the diagnosis of malaria is

frequently delayed by physicians who have no tropical medicine

experience and by lack of the technical expertise.

Molecular techniques such as polymerase chain reaction (PCR)

and quantitative nucleic acid sequence bases amplification are also

used, but are not widely used in resource-limited settings [10].

In this work, a statistical analysis will be carried out to explore

the performance of three diagnostic tests – a Rapid Diagnostic

Test (RDT), the Microscopy and a Polymerase Chain Reaction

(PCR) technique – applied in 3317 blood samples collected in São

Tomé and Prı́ncipe. In 2005, this country began an initiative

aimed at reducing malaria-related mortality to zero [11]. Lee et al.

[12,13] present some results on pre-elimination of malaria on the

island of Prı́ncipe and show a remarkable decline in malaria

morbidity and mortality after the implementation of an integrated

malaria control programme in 2004. According to World Malaria

Report 2010 [2], São Tomé and Prı́ncipe belongs to a group of 11

African countries that showed a reduction of more than 50% in

either confirmed malaria cases or malaria admissions and deaths

in recent years due to intense malaria control interventions.

However, the World Malaria Report 2010 [2] points out that in

2009 there was evidence of an increase in malaria cases in São

Tomé and Prı́ncipe. This report notes that ‘‘the increases in malaria

cases highlight the fragility of malaria control and the need to maintain control

programmes even if numbers of cases have been reduced substantially’’.

Statistical analysis is crucial to validate diagnostic tests. The

development of classic (frequentist) and Bayesian statistical

approaches for evaluation of the diagnostic tests in the absence

of a gold standard test has been an active field of biostatistical

research applied to many areas, including tropical diseases (e.g.

[14,15]), oncology [16,17] and veterinary medicine [18]. Latent

class models with two latent classes are widely used to estimate the

prevalence, sensitivities and specificities in the absence of a gold

standard. Microscopy has been considered as the gold standard for

malaria diagnosis. However, admitting microscopy as a reference

technique impairs the sensitivity and specificity estimation for

other diagnostic techniques [19]. Bayesian approaches are

increasingly being used in the analysis of parasitological data,

including in the performance of diagnostic tests. Menten el al [20]

present several Bayesian latent class models for the diagnosis of

visceral leishmaniasis. Limmathurotsakul et al. [21] explore some

diagnostic tests for melioidosis. In malaria, as the best of our

knowledge, few papers explore latent class models. Speybroeck et

al. [14] present a contribution of a Bayesian approach to estimate

the prevalence of malaria, applying ELISA, PCR and microscopy

to datasets from Peru, Vietnam, and Cambodia. Ochola et al. [19]

use a Bayesian formulation of the latent class model of Hui and

Walter to estimate the diagnostic accuracy of the malaria

diagnostic techniques and microscopy in the absence of a gold

standard, based on a systematic review. Fontela et al. [22] point

out the poor methodological quality and/or poor reporting of

published diagnostic accuracy studies on commercial tests for the

three major infections: tuberculosis, malaria and human immu-

nodeficiency virus. In this work, our goal is to explore the accuracy

of three diagnostic tests for malaria, using Bayesian Latent Class

Models (BLCM), considering their performances in four popula-

tions based on the combination of age groups (less than 5 years,

greater than or equal to 5 years) and fever status (febrile, afebrile).

BLCM without and with restrictions (also called constraints) are

used to estimate the disease prevalence, together with sensitivities,

specificities, and predictive values of the diagnostic tests. The

choice of this type of models will be discussed in the next sections.

Materials and Methods

Malaria Diagnosis Data
In São Tomé and Prı́ncipe (STP), a malaria programme was

officially initiated in 2004, and a molecular diagnostic laboratory

was set in the main island of São Tomé in 2007, following STP

government directives for malaria control and for ethical clearance

throughout the implementation of the programme. In the context

of this program, between July 2008 and August 2009, a household

survey provided data on three mentioned above diagnostic tests

applied in 3317 blood samples. The households were selected

randomly. Ethical approval was obtained from the Ministry of

Health of the Democratic Republic of STP. Informed verbal

consent was obtained from residents who answered a short

questionnaire, which included information on the use of bed nets.

Parents responded on behalf of infants and children [13]. It was

expected and observed that the participants in the research are

illiterate or semi-literate, therefore could not sign a written

consent. This study took into account that the principles of verbal

informed consent were the same for written informed consent.

This procedure was approved by Ministry of Health of the STP.

The body temperature (ear) was also collected and recodified into

fever status (Febrile and Afebrile) taking into account a cut-off of

37.5uC for fever. The age groups were defined according to WHO

recommendations - v5 and §5 years old - considering the

importance of under-five children that are mainly affected by

anaemia and mortality [23].

The central statistical analysis of the three diagnostic tests –1.

RDT, 2. Microscopy and 3. PCR – (binary variables taking the

values: 1. positive versus 0. negative) will take into account a unique

dataset of the four subsamples defined by the combination of age

groups and fever status, as indicated in Table 1, and it will be

presented in the next section.

All cases were tested by rapid diagnostic tests (RDTs, ICT

Diagnostics, Cape Town, South Africa), with blood films prepared

for microscopic examination, and with dry blood spots collected

on filter papers (FTA Classic Cards, Whatman, Newton, MA) for

Table 1. Subsamples defined by the combination of age
groups and fever status and observed frequencies of each
pattern of test results.

Tests Afebrile Febrile Afebrile Febrile

(1,2,3) v5 years v5 years §5 years §5 years

1 1 1 20 22 40 98

1 1 0 1 1 0 0

1 0 1 24 2 9 2

1 0 0 28 4 19 19

0 1 1 1 1 1 1

0 1 0 1 0 3 1

0 0 1 1 1 2 1

0 0 0 419 210 1535 850

Total 495 241 1609 972

doi:10.1371/journal.pone.0040633.t001
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PCR as previously reported [24,25]. Two technicians for each of

six teams carried out the RDT together and decided on the

reading. Three technicians recording the microscopic result were

unaware of the corresponding RDT results. The technicians that

performed the microscopic examination and PCR did not know

the age groups and the fever status of the patients. However, the

technicians that applied the RDT knew the age groups and the

fever status of the individuals because they also made the

demographic record of all cases including sex, age, body weight,

and temperature.

Some Points regarding the Statistical Analysis
Confidence intervals in the classical analysis - using a

reference test. It is still common in medical literature, the

classical statistical approach which admits the microscopy as a gold

standard. This approach has been criticized also in a malaria

context [14,19]. An important related issue is also the confidence

intervals that accompany the point estimate for the sensitivity or

the specificity (or other proportions). This problem is not much

addressed in medical literature but is still present even when a true

gold standard is considered. Usually a 95% confidence interval

(95% CI) is obtained by the Wald method that has been strongly

criticized due to the poor coverage probability, even for large

sample sizes, and the possibility of lower and upper limits outside

½0,1� [26–28]. To avoid the latter drawback, we recommend the

version of the Wald CI, and other methods, given by Pires and

Amado [26]. However, as poor coverage probability remains,

other alternative methods for constructing confidence intervals

should be used. There are a lot of alternative methods that are re-

emerging, for example, the Clopper-Pearson (or exact binomial),

Wilson (or score), Agresti-Coull and Jeffreys methods that provide

more reliable coverage probabilities than the Wald method. In the

context of diagnostic tests, Wilson method was recommended by

[29]. In risk situation, when a coverage probability must be

guaranteed, a conservative method (e.g. Clopper-Pearson) may

present advantages. Nevertheless, these and other recommended

methods may also present coverage problems near the boundaries

(0 or 1) [26–28]. Some of these are available from R Packages or

Epitools [30] (caution should be taken regarding the problem of

limits outside ½0,1�). The key to avoid troubles is to use several

recommended methods to understand if they provide consistent

information. The mathematical expressions of the methods used in

this work can be found in Table 2.

Latent class models. Ignoring the limited precision of a

reference test can incur serious bias in the performance of other

medical diagnostic tests and also in the prevalence estimation.

Frequentist and Bayesian latent class models are important

mathematical frameworks to study the prevalence and the

performance of diagnostic tests in the absence of a gold standard

test. In a Bayesian analysis, data are combined with the prior

information that expresses expert opinions and other sources of

knowledge. The elicitation of an informative prior is a hard and

subjective process that needs a careful dialogue between statisti-

cians and experts. Despite the existence of a broad and diverse

literature in elicitation of prior distributions, it is mainly oriented

to statisticians and not to experts in other fields. However, a vast

literature has emphasized the importance of prior information.

Speybroeck et al. [14] and the references therein point out the

merits of the Bayesian paradigm in the estimation of the

parameters associated with three diagnostic tests and the

prevalence of malaria infection.

In a frequentist perspective, the parameters of latent class

models can be obtained by the well-known Expectation Maximi-

zation (EM) algorithm. In a Bayesian approach, the parameters

are usually estimated by Markov Chain Monte Carlo (MCMC)

methods, via Gibbs sampling. The simplest model is the Two

Latent Class Model (2 LCM). In this model, the true disease/

infection status of an individual is considered a latent variable, Y ,

with two mutually exclusive categories (1. diseased/infected and 0.

non-diseased/non-infected). The manifest binary variables,

X1,X2,:::,Xk, that express the k diagnostic tests results, only give

an indication on disease/infection status. The 2 LCM assumes

that, given the true state of the disease or infection, the results of

the diagnostic tests are independent. This assumption is known as

Hypothesis of Conditional Independence (HCI) and it will be

discussed in the next subsection. Frequentist and Bayesian latent

class models, and their extensions to more complex settings,

require a careful analysis of several points to ensure reliable results.

Hypothesis of conditional independence. According to

the parsimony principle, mathematical models with the smallest

number of parameters are preferred to the more complex ones.

However, to investigate if the simplest and most parsimonious

2 LCM describes the data adequately, we need to check if the HCI

is or not violated. The HCI in some medical problems may not be

a realistic assumption, for example, when the two tests are based

on a similar biological phenomenon (e.g. [20], [31]). The

diagnostic of local dependence has been discussed by several

authors [31–35] and different methods have been proposed.

Among others, Hagenaars [32] suggests the analysis of the

standardized residuals for each pair of manifest variables. Garrett

and Zeger [34] developed a graphical method, the log odds ratio

check (LORC) plot, to compare the log odds ratio for the observed

and predicted two-way cross classification tables for each pair of

manifest variables. Qu et al. [35] also propose a graphical method,

the correlation residual plot, which is obtained by plotting

residuals of pairwise correlation coefficients, defined as the

difference between the observed and expected correlations.

Sepúlveda et al. [31] propose the use of Biplot representations

based on generalized linear models to identify conditional

dependence between pairs of manifest variables within each latent

class. In this field, Subtil el al. [36] simulated data incorporating

local dependence between pairs of manifest variables and applied

different local dependency diagnostic methods and found some

problems in the detection of the violation of the principle of

conditional independence. In case of failure of HCI, there are

alternative approaches to 2 LCM. Alternative models that

accommodate conditional dependencies have been proposed in

the last decade. Albert and Dodd [37] present an overview of some

modeling approaches to incorporate conditional dependence

between tests. Qu et al. [35] and Hadgu and Qu [38] developed

a general latent class model with random effects to incorporate

possible conditional dependencies among diagnostic tests. Addi-

tionally, Dendukuri and co-authors presented models in a

Bayesian perspective [39,40]. The accessibility of MCMC

methods provide solutions to complex models in evaluation of

diagnostic tests [41]. On the other hand, the knowledge transfer

from other areas may also contribute to this medical field. In

particular, sociology and psychology offer solid methodological

developments in the latent class models that may be useful in the

context of multiple diagnostic tests, as pointed out by Formann

[42].

Non-identifiability and label-switching problem. The

non-identifiability of latent class models is a sensitive issue that

requires careful attention. If models are not identified, there will

not be a unique computational solution. Jones et al. [43] and the

references therein give an overview on identifiability of models for

multiple binary diagnostic tests in the absence of a gold standard.

Apart from checking trivial conditions, such as that the number of

BLCM in Malaria Diagnosis
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parameters has to be smaller than the number of different

patterns, in general, for complex models it is not possible to say a

priori whether a model is or not identifiable [42].

An advantage of the Bayesian approach is the incorporation of

the prior information to avoid the non-identifiability. When the

model is identifiable, non-informative prior distributions can be

used for all parameters [40]. When the model is not identifiable, it

may still be possible to obtain a solution, adding constraints on the

parameters or/and by using informative prior distributions for

some parameters (e.g. [44] and [40] and the references therein). In

practice, a special attention should be given to the non-

identifiability under symmetric priors that leads to the label

switching in the MCMC output [45] produced in the parameter

estimation process. Label switching occurs when latent classes

change meaning over the estimation chain in the context of

MCMC. Other types of estimation (e.g., maximum likelihood

estimation) can exhibit this problem [46]. Machado et al. [47]

show the graphical behavior of the traceplots and posterior

densities for the latent class probabilities with a label-switching

problem. Stephens [48] points out that the common strategy of

removing label switching by imposing artificial identifiable

constraints on the model parameters does not always provide a

satisfactory solution. In fact, there is an active scientific debate in

many fields and other solutions have been proposed in the

literature (e.g. [45,48–51]). On the other hand, for the situations in

which two diagnostic tests are applied in two populations (the Hui-

Walter paradigm), Gustafson [52,53] demystifies the conventional

view of identifiability – ‘‘identifiability good, non-identifiability bad’’–,

presenting realistic scenarios where a moderate amount of prior

information leads to reasonable inferences from a non-identified

model, and scenarios where large sample sizes may be required to

obtain reasonable inferences from an identified model.

Sampling strategies or stratified analysis. The product-

multinomial model appears naturally when we collect independent

samples on a number of subpopulations corresponding to the

traditional stratified sampling [54]. Gustafson [52] explores one

way to develop an identifiable model through pre- or post-

stratification of the sample/population according to some cate-

gorical variable. Dohoo [55] and Gardner et al. [56] argue that it

is acceptable to artificially construct populations with a practical

meaning. The post-stratification is a way to overcome some

situations, where it is inconvenient or impossible to stratify a

population into strata before sampling because the value of the

variable of interest is only observed after the individual is sampled.

In our application, described before, the variable fever could be an

example of this type.

In medical problems, the relevance of distinguishing between

subsets is very important to understand if the performance of a

diagnostic test varies across smaller groups. As an example, the

World Malaria Report 2010 [5] emphasizes that ‘‘the clinical

sensitivity of an RDT to detect malaria is highly dependent on the local

conditions, including parasite density in the target population, and so will vary

between populations with differing levels of transmission’’. In order to

estimate the prevalence and the performance measures of several

diagnostic tests in the absence of a gold standard, in two or more

distinct populations, BLCM are widely used by the veterinary

community [57,58], where subpopulations (e.g. herds) appear

naturally or are created (e.g. [59]). On the other hand, Martinez et

al. [16] present a Bayesian approach to estimate the disease

prevalence, and the accuracy of three screening tests in the

presence of two covariates (age, pregnancy) in the absence of a

gold standard for cervical cancer. A logit link function was used to

relate the covariates linearly to the screening performance

measures to provide a meaningful and well-known measure of

association - odds ratio. Posterior odds ratios as association

Table 2. Lower – L(X ) – and upper – U(X ) – bounds of a 100|(1{a)% confidence level for a two-sided confidence interval –

½L(X ),U(X )� – for a proportion p (p̂p~
X

n
, where X is the number of successes) using different methods.

Method ½L(X),U(X)�

Wald
½max

X

n
{z1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

n2
(1{

X

n
)

r
; 0g, minfX

n
zz1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

n2
(1{

X

n
)

r
; 1g�

Clopper- X~0½0,1{(
a

2
)

1
n�, if

-Pearson 0vXvn½Betaa
2
(X ,n{Xz1),Beta1{a

2
(Xz1,n{X )], if

X~n½( a

2
)

1
n,1�, if

Wilson

½
2Xzz2

1{a
2
{z1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1{a
2
z4X (1{ X

n
)

q
2(nzz2

1{a
2
)

,
2Xzz2

1{a
2
zz1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1{a
2
z4X (1{ X

n
)

q
2(nzz2

1{a
2
)

�

Agresti-
½maxfXz2

nz4
{z1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xz2

(nz4)2
(1{

Xz2

nz4
)

s
; 0g, minfXz2

nz4
zz1{a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xz2

(nz4)2
(1{

Xz2

nz4
)

s
; 1g�

-Coull

Jeffreys X~0½0,1{(
a

2
)

1
n�, if

X~1½0,Beta1{a
2
(2,n)�, if

1vXvn{1½Betaa
2
(Xz

1

2
,n{Xz

1

2
),Beta1{a

2
(Xz

1

2
,n{Xz

1

2
)�, if

X~n{1½Betaa
2
(n,2),1�, if

X~n½( a

2
)

1
n,1�, if

zc and Betac(a,b) represent the c{quantiles of the N(0,1) and the Beta(a,b) distributions, respectively.

doi:10.1371/journal.pone.0040633.t002
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measures between pregnancy and age and the performance

measures of the three tests and prevalence are presented. This

approach is of great importance in the discovery of potential

effects of covariates in the sensitivity, specificity and prevalence. If

these effects are already known, it seems to be appropriate to

choose a stratified analysis, providing the performance measures of

each test in each stratum. In a first view the study design - a

random survey - seems to suggest a Latent Class Model with

covariates [60], however, as described before, the technicians that

applied the RDT knew the age groups and the fever status of the

individuals. Thus, the stratified analysis is the chosen approach to

the malaria dataset.

Bayesian Latent Class Models without and with
Constraints

In biomedical sciences, data from multiple dichotomous

diagnostic tests arise from multinomial or product-multinomial

distributions depending upon the number of populations [43]. The

well-known Hui-Walter model involves a split of the population

into two or more populations – (J )– and assuming conditional

independence of the k tests given the disease status; the sensitivity

and specificity should be constant across populations and the

prevalence of the disease is different within each population. This

model becomes identifiable whenever J§k=(2(k{1){1) (see

[19,61,62]).

In this work, the subsamples 1, 2, 3 and 4 are drawn from

subpopulations 1, 2, 3, and 4, where the corresponding malaria

infection prevalence is denoted by pj ,j~1,2,3,4. The sensitivity of

test i (i~1,2,3) in the subpopulation j (j~1,2,3,4) is denoted by

Seij . Similarly, Spij represents the specificity of test i in the

subpopulation j. We continue to assume conditional independence

of the k tests given the disease status, however, the prevalence, the

sensitivities, and the specificities may vary across subpopulations.

For cancer ascertainment data, Bernatsky et al. [17] considered

this situation but used a latent class hierarchical model. Here, we

adopt a different approach, considering constraints on the general

model to obtain other simpler models to model our data set.

In this work, we admit that the j{th subpopulation counts (Oj )

of the different patterns of test results (in a total of 23 possible

patterns) follow a multinomial distribution:

Oj DSeij ,Spij ,pj* Multinomial (Prj ,nj), i~1,2,3 and j~1,2,3,4,

where Prj is a vector of probabilities of observing the individual

pattern (x1j ,x2j ,x3j) of test results in population j

((x1j ,x2j ,x3j)~(1,1,1) to (0,0,0) as shown in the first column of

Table 1) giving by.

Prj ½(1,1,1)�~pj|Se1j|Se2j|Se3j

z(1{pj)|(1{Sp1j)|(1{Sp2j)|(1{Sp3j)

Prj ½(1,1,0)�~pj|Se1j|Se2j|(1{Se3j)

z(1{pj)|(1{Sp1j)|(1{Sp2j)|Sp3j

Prj ½(1,0,1)�~pj|Se1j|(1{Se2j)|Se3j

z(1{pj)|(1{Sp1j)|Sp2j|(1{Sp3j)

Prj ½(1,0,0)�~pj|Se1j|(1{Se2j)|(1{Se3j)

z(1{pj)|(1{Sp1j)|Sp2j|Sp3j

Prj ½(0,1,1)�~pj|(1{Se1j)|Se2j|Se3j

z(1{pj)|Sp1j|(1{Sp2j)|(1{Sp3j)

Prj ½(0,1,0)�~pj|(1{Se1j)|Se2j|(1{Se3j)

z(1{pj)|Sp1j|(1{Sp2j)|Sp3j

Prj ½(0,0,1)�~pj|(1{Se1j)|(1{Se2j)|Se3j

z(1{pj)|Sp1j|Sp2j|(1{Sp3j)

Prj ½(0,0,0)�~pj|(1{Se1j)|(1{Se2j)|(1{Se3j)

z(1{pj)|Sp1j|Sp2j|Sp3j :

To analyze the four subpopulations simultaneously, a product

multinomial distribution is considered simply using the product of

four multinomial distributions since the subpopulations are

independent. This general model may be simplified to obtain

other simpler models, using constraints. For example, the notation

Se1j~Se1,j~1,2,3,4 means that RDT test presents the same

sensitivity across the four subpopulations of interest. In a general

way, Seij~Sei and Spij~Spi means that the sensitivity and

specificity of the test i are constant over subpopulations. This

simplest model (denoted by M1 in next section) with constraints

considers a different prevalence for each subpopulation and the

sensitivities and specificities of each test are the same across

subpopulations. This model is commonly used to evaluate

diagnostic tests in two or more populations (see [19,58,61]). The

general model (no constraints are imposed on prevalence,

sensitivities and specificities across subpopulations, M2 in the next

section) has 28 parameters and the simplest model has only 10

parameters to be estimated, using a Bayesian approach.

Introducing different constraints into M2, several other Bayesian

latent class models were fitted via MCMC techniques, using Gibbs

sampling, to explore the accuracy of the three diagnostic tests in

the four defined subpopulations (Table 1) simultaneously.

Berkvens et al. [44] consider two types of constraints -

deterministic and probabilistic. Both types of constraints express

previous knowledge on parameters of a model and/or are imposed

to overcome the non-identifiability of a model. The last one

appears in a Bayesian context to reflect the available knowledge

and uncertainty, specifying a prior distribution for a parameter.

Informative priors are based on historical information, expert

opinions, beliefs based on the repetition of similar experiments,

and so on. If previous information is not available, a non-

informative or a vague prior distributions are commonly used.

The elicitation of an informative prior is a hard and subjective

process that needs a careful dialogue with experts. Despite the

existence of a broad and diverse literature in elicitation of prior

distributions, it is mainly oriented to statisticians and not to experts

in other fields. In practice, user-friendly graphical tools are

essential to lead with this sensitive issue. In this process, we used

Epitools [30] to summarize Beta distributions for specified a and b
parameters – Beta(a,b). In our opinion, the flexibility of Beta(a,b)
seems to be more natural than the Uniform distributions to

describe probabilistically this type of performance parameters. We

should note that an Uniform over the interval [0,1] is equivalent to
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a Beta(1,1). If previous studies have been pointed out that a

particular test presents a sensitivity most of times concentrated

near 1, choosing a right-skewed beta distribution with parameters

(a,b)~(23,2), with a standard deviation of 0.053 and theoretical

quantiles 0.025, 0.50 and 0.975 equal to 0.789, 0.931 and 0.990,

expresses a better performance than the another right-skewed Beta

distribution with parameters (a,b)~(23,3) (standard deviation of

0.062 and quantiles: 0.025, 0.50 and 0.975 equal to 0.740, 0.895

and 0.975). A left-skewed distribution suggests a trend to a poor

performance of a test or a low prevalence. For example, according

to an expert, the probability of malaria infection prevalence lower

than 0.15 is equal to 0.95. Additionally, he/she considers that the

mean, mode and median are approximately 0.10. A Beta(15,131)

seems to be a good candidate to express this information.

Some computer programming to evaluate the BLCMs was

implemented in WinBUGS 1.4.3 program [63]. Appendix S1 shows

an example of the code corresponding to model M5. The R statistical

software version 2.80 [64] was also used to benefit from the package

R2WinBUGS. In general, inferences were based on 100,000

iterations after discarding an initial burn-in of 5,000 iterations with

convergence assessed by running multiple chains from various

starting values [65]. All parameters were estimated with 95% credible

intervals (Bayesian version of the confidence intervals). Additionally,

the highest probability density (HPD) intervals for parameters of

interest were obtained using BOA 1.1 7–2 [66]. These results will be

presented later. Convergence was monitored using the standard

diagnostic procedures based on a visual assessment of the long chains

for each parameter and using the Gelman-Rubin and the Raftery-

Lewis measures. The first requires a Rv1:2 and the last one a

dependence factor DFv5 [66].

In terms of model selection, the Deviance Information Criterion

(DIC) [67] which penalizes goodness of fit by ‘‘complexity’’ (with

the last one measured by effective number of parameters) was

valued. The model with the smallest DIC should be selected.

However, if two competing models differ in DIC by less than three

units, the models are not considered statistically different [62,67].

The BUGS project [68] gives some guidelines suggesting that

differences of more than 10 might definitely rule out the model

with the higher DIC, differences between 5 and 10 are substantial,

but if the difference in DIC is less than 5, and the models produce

very different inferences, then it could be misleading just to report

the model with the lowest DIC. This criterion is a generalization of

the Akaike Information Criterion (AIC) and Bayesian Information

Criterion (BIC) that are also presented (Tables 3 and 7). In models

with negligible prior information, DIC will be approximately

equivalent to AIC [67]. Note that we use these measures as a

comparison criteria to select a model from a set of two-latent class

models fitted to a particular dataset. In the literature on latent class

models, some criticism has been reported when DIC, AIC and

BIC are used to choose the number of latent classes [69,70] and

some variants have been proposed. To assess the adequacy of the

selected model, the Bayesian p-value [71], based on Pearson

statistics, was also calculated as described in detail by Nérette et al.

[62]. This version of Bayesian p-value suggests the lack of fit when

p-values near 0 or 1 [62,72]. Other versions and interpretations of

Bayesian p-value can be found, as well in the context of latent class

models [44]. There is some subjectivity in the choice of a cut-off to

indicate the adequacy of a model, as pointed out by Neelon et al.

[72], by analogy to the frequentist p-value, a Bayesian p-value in

(0.05, 0.95) suggests an adequate fit, although, in some cases, a

stricter criterion might be more appropriate and the values should

be in (0.20, 0.80). Ideally, the p-value should be close to 0.5 to

express an adequate model fit [20,72,73].

Results and Discussion

Results with Non-informative Priors
The hypothesis of conditional independence was checked using

LORC, correlation residual plots and bivariate residuals and

biplots. No statistical evidence of local dependence was detected,

however, taking into account that in certain situations some of

these tools may not detect the HCI [36], multinomial fixed effects

models with conditional dependence modeled by covariances

between tests within classes (e.g. [39,62]) were also explored

following biological reasons. The fitting of such models (based on

DIC and p-value and predictive frequencies of each pattern) did

not show relevant information compared with simpler models.

Even if these models offer a closer description of reality, the

balance with parsimony remains an important issue. Interpret-

ability and identifiability problems may arise from models with a

larger number of parameters. Moreover, it is well-known that

models assuming different dependency structures can provide

different parameter estimates and lead to very different interpre-

tations, in spite of their similarity in terms of adjustment measures

[37]. In addition, in a Bayesian context, it might be difficult to

elicit prior distributions to the covariances or random effects

coefficients [20].

Following the HCI exhaustive validation and analysis of the

other described topics, we gave a special attention to the results of

two mentioned models - M1 and M2 - and three related models

with constraints: M3, M4 and M5. Briefly,

M1. The typical model (with constraints) admits a different

prevalence for each subpopulation and the sensitivities and

specificities of each test are the same across subpopulations (i.e.,

for j~1,2,3,4, Se1j~Se1, Se2j~Se2, Se3j~Se3, Sp1j~Sp1,

Sp2j~Sp2, and Sp3j~Sp3),

M2. The general model (without constraints) that assumes

possible differences across subpopulations in terms of prevalence,

sensitivities and specificities of each test,

M3. This model with constraints admits a different prevalence

across subpopulations, the specificity of microscopy is equal across

subpopulations and also the specificity of PCR (i.e., for

j~1,2,:::,4, Sp2j~Sp2 and Sp3j~Sp3). All the remaining

parameters vary across subpopulations,

M4. The general model - M2 - adding: p1~p2~p4~p,

M5. The same constraints of the M3 adding: p1~p2~p4~p.

In a first step, we explored our malaria dataset with non-

informative prior distributions for all parameters related with test

characteristics (Seij and Spij ,i~1,2,3 and j~1,2,3,4), using

Beta(1,1) distributions, equivalent to Uniform distributions over

the interval [0,1]. For the prevalence in the four subpopulations

Table 3. Some measures for the selected models (under HCI).

Measures M1 M2 M3 M4 M5

n 10 28 22 26 20

pD 9.12 16.24 16.20 16.19 14.30

AIC 207.72 170.01 152.02 164.28 146.32

BIC 268.79 341.00 286.37 323.06 268.45

DIC 196.84 130.26 124.22 128.47 120.62

Bayesian
p-value

0.000 0.477 0.638 0.552 0.703

n - Number of parameters to be estimated.
pD - Effective number of estimated parameters.
doi:10.1371/journal.pone.0040633.t003
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(p1,p2,p3, and p4), the Uniform distribution was considered –

U(0,0.5). For the five selected models (M1, M2, M3, M4, and M5),

no convergence problems were found and some of the measures

that we have been discussing are presented in Table 3.

The assumption of constant test accuracy across subpopulations

with different malaria infection prevalence was evaluated though

model M1 and it seems to reveal a poorer fit. M2 admits

differences across subpopulations in terms of prevalence, sensitiv-

ities and specificities of each test and compared with the model M1

seems to fit better. M4 adds only the possibility of febrile and

afebrile under-five children and febrile with at least five years old

having similar prevalence, but the test’ characteristics varying

across subpopulations. This model presents a DIC similar to M2.

M3 and M5 present yet better DICs. However, M3 presents a

DIC not substantially different from M4. Between M3 and M5,

the difference in DICs is also less than 5. Following the

recommendations of the BUGS Project [68], we present the

estimated parameters according to the three models to investigate

possible discrepancies in estimates given by these models (see

Table 4).

The posterior inferences, which combine prior information (or

lack of it) with data information via Bayes’ theorem, are

summarized in Table 4, presenting the posterior means and

95% credibility interval. Additional to the original parameters of

the models, the positive predictive values (Ppvij ) and negative

predictive values (Npvij ) were also indirectly estimated using their

relationship with the prevalence, sensitivities and specificities (see

expressions, for example, in [29]). M3 and M5 produce similar

results. M4 presents some discrepancies at least in some predictive

values. According to the parsimony principle, M5 is the simplest

model and all criteria of selection and goodness-of-fit are

satisfactory, consequently, it is elected as the final model to fit

the malaria dataset. Further analysis will be needed to see how the

inferences change with different types of informative priors.

Results with Informative Priors
Some information was collected in published works to help us in

the choice of the prior distributions for each parameter of our

elected model. An accurate estimation is not necessary, this

process is flexible and seeks some general knowledge. Additionally,

expert opinions were considered in final informative prior

distributions.

RDT. Table 5 shows a range of values for sensitivities and

specificities of the RDT test (ICT Diagnostics, Cape Town, South

Africa), according to local area and age groups or fever status.

Bendezu et al. [74] describe that the same RDT used in different

places showed different results (probably related to different

conditions like temperature, humidity, characteristics of the

malaria parasites, etc.). The study design, the sample size and

Table 4. Bayesian estimates of prevalence, sensitivities,
specificities and predictive values, given by posterior means
and 95% credibility intervals – Mean [P0:025{P0:975] – with
non-informative priors, by age groups and fever status, using
the models M3, M4 and M5.

Parameters M3 M4 M5

p1 10.1 [7.5–13.2] 10.4 [8.9–11.9] 10.4 [9.0–12.0]

Se11 94.3 [85.8–99.1] 94.7 [86.4–99.3] 94.3 [85.7–99.1]

Sp11 94.0 [91.5–96.4] 94.0 [91.5–96.3] 94.1 [91.5–96.3]

Ppv11 64.0 [51.6–77.1] 64.9 [54.9–75.5] 65.1 [55.0–75.6]

Npv11 99.3 [98.2–99.9] 99.3 [98.4–99.9] 99.3 [98.2–99.9]

Se21 45.2 [31.4–59.4] 45.3 [31.4–59.6] 45.0 [31.2–59.2]

Sp21 99.8 [99.6–99.9] 99.6 [98.7–100.0] 99.8 [99.6–99.9]

Ppv21 96.3 [92.1–98.8] 92.2 [79.2–99.3] 96.4 [92.6–98.8]

Npv21 94.2 [91.6–96.2] 94.0 [92.2–95.7] 94.0 [92.2–95.6]

Se31 91.2 [76.7–99.1] 91.4 [77.4–99.2] 91.1 [77.2–99.0]

Sp31 99.9 [99.7–100.0] 99.6 [98.8–100.0] 99.9 [99.7–100.0]

Ppv31 98.5 [96.6–99.7] 96.8 [89.8–99.9] 98.6 [96.9–99.7]

Npv31 99.0 [97.0–99.9] 99.0 [97.4–99.9] 99.0 [97.3–99.9]

p2 11.4 [7.7–15.7] 10.4 [8.9–11.9] 10.4 [9.0–12.0]

Se12 91.4 [78.4–98.8] 92.4 [79.9–99.0] 91.5 [78.5–98.8]

Sp12 97.8 [95.4–99.4] 97.8 [95.3–99.4] 97.8 [95.4–99.4]

Ppv12 84.3 [69.1–95.3] 83.0 [68.9–94.4] 83.1 [69.0–94.2]

Npv12 98.9 [97.0–99.8] 99.1 [97.6–99.9] 99.0 [97.5–99.9]

Se22 87.1 [72.1–97.1] 88.2 [73.2–97.6] 87.3 [72.3–97.1]

Sp22 99.8 [99.6–99.9] 99.5 [98.2–100.0] 99.8 [99.6–99.9]

Ppv22 98.3 [96.3–99.4] 95.6 [84.9–99.9] 98.1 [96.3–99.4]

Npv22 98.4 [96.2–99.6] 98.7 [96.9–99.7] 98.5 [96.8–99.7]

Se32 92.1 [79.0–99.0] 92.3 [79.4–99.1] 92.2 [79.3–99.1]

Sp32 99.9 [99.7–100.0] 99.1 [97.4–99.9] 99.9 [99.7–100.0]

Ppv32 98.7 [96.9–99.8] 92.6 [80.2–99.4] 98.6 [96.9–99.7]

Npv32 99.0 [97.2–99.9] 99.1 [97.6–99.9] 99.1 [97.6–99.9]

p3 3.2 [2.4–4.1] 3.2 [2.4–4.1] 3.2 [2.4–4.1]

Se13 95.3 [87.5–99.4] 95.3 [87.5–99.4] 95.3 [87.8–99.4]

Sp13 98.7 [98.1–99.2] 98.7 [98.1–99.2] 98.7 [98.1–99.2]

Ppv13 71.4 [60.2–81.4] 71.4 [60.1–81.5] 71.4 [60.0–81.5]

Npv13 99.8 [99.6–100.0] 99.8 [99.6–100.0] 99.8 [99.6–100.0]

Se23 79.9 [67.9–89.6] 79.7 [67.6–89.6] 79.8 [67.7–89.7]

Sp23 99.8 [99.6–99.9] 99.7 [99.4–99.9] 99.8 [99.6–99.9]

Ppv23 93.2 [86.7–97.6] 91.3 [81.4–97.6] 93.2 [86.6–97.6]

Npv23 99.3 [98.9–99.7] 99.3 [98.8–99.7] 99.3 [98.9–99.7]

Se33 97.5 [91.0–99.9] 97.5 [91.0–99.9] 97.5 [91.0–99.9]

Sp33 99.9 [99.7–100.0] 99.8 [99.6–100.0] 99.9 [99.7–100.0]

Ppv33 95.6 [90.2–99.1] 95.0 [87.3–99.5] 95.6 [90.2–99.1]

Npv33 99.9 [99.7–100.0] 99.9 [99.7–100.0] 99.9 [99.7–100.0]

p4 10.5 [8.6–12.5] 10.4 [8.9–11.9] 10.4 [9.0–12.0]

Se14 98.0 [94.4–99.8] 98.0 [94.5–99.8] 98.0 [94.5–99.7]

Sp14 97.7 [96.6–98.6] 97.7 [96.6–98.6] 97.7 [96.6–98.6]

Ppv14 83.4 [76.3–89.4] 83.2 [76.3–89.2] 83.3 [76.4–89.3]

Npv14 99.8 [99.3–100.0] 99.8 [99.4–100.0] 99.8 [99.4–100.0]

Se24 97.0 [92.9–99.4] 97.1 [93.0–99.4] 97.0 [92.9–99.4]

Sp24 99.8 [99.6–99.9] 99.8 [99.4–100.0] 99.8 [99.6–99.9]

Table 4. Cont.

Parameters M3 M4 M5

Ppv24 98.3 [96.7–99.4] 98.0 [94.5–99.8] 98.3 [96.7–99.4]

Npv24 99.7 [99.2–99.9] 99.7 [99.2–99.9] 99.7 [99.2–99.9]

Se34 99.0 [96.2–100.0] 99.0 [96.2–100.0] 99.0 [96.2–100.0]

Sp34 99.9 [99.7–100.0] 99.8 [99.4–100.0] 99.9 [99.7–100.0]

Ppv34 98.7 [97.2–99.8] 98.1 [94.7–99.8] 98.7 [97.2–99.7]

Npv34 99.9 [99.6–100.0] 99.9 [99.6–100.0] 99.9 [99.6–100.0]

doi:10.1371/journal.pone.0040633.t004
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statistical analysis of each study also contribute to different findings

across different studies.

Microscopy. As microscopy is usually the reference test, very

few papers present its sensitivity and specificity. Speybroeck et al.

[14], using a Bayesian approach, found the following posterior

means and 95% credibility intervals for sensitivity by survey:

53.0% ([42.0–70.0] in Vietnam, 90.0% [72.0–100.0] in Peru

Iquitos, 89.0% [71.0–100.0] in Peru Jaen, Cambodia - Survey 1,

and Cambodia - Survey 2. In terms of specificities the lower

bounds of credibility intervals were higher than 94%. These

authors give details about their prior distributions (Uniform) based

on expert opinion. Through the classical analysis, using the PCR

as a reference test, Batwala et al. [75] explored the performance of

microscopy as a function of laboratory experience – health centre

(HC) microscopy and expert microscopy. The point estimates and

the 95% CI are reported in both cases. In patients with §5 years,

the specificity of HC microscopy was 95.7% [90.8–98.4] and the

expert microscopy was 98.6% [94.9–99.8]. In children under-five,

the specificities of HC microscopy and the expert microscopy were

89.0% [79.5–95.1] and 94.5% [86.6–98.5], respectively. The

overall sensitivity of HC microscopy was 47.2% (36.5–58.1) and

the sensitivity of expert microscopy was 46.1% [35.4–57.0].

PCR. The Bayesian analysis performed by Speybroeck et al.

[14], in the absence of a reference test, highlighted that PCR is

more sensitive than microscopy and the estimates for sensitivity

vary from 95.0% [89.0–100.0] in Vietnam to 98.0% [95.0–100.0]

in Peru Iquitos and Peru Jaen. In terms of specificity the results are

the following: Vietnam –97.0% [95.0–100.0], Peru Iquitos –

99.0% [98.0–100.0] and Peru Jean –100.0% (99.0–100.0). Cole-

man et al. [76] studied the performance of PCR at different

parasite densities relative to expert laboratory microscopy, for

active surveillance of Plasmodium falciparum and Plasmodium vivax,

and reported that PCR was sensitive 95.7% [84.3–99.3] and

specific 98.1% [97.8–98.4] for malaria at parasite densities w500/

ml. However, the sensitivity of PCR dropped off markedly for

parasite densities v500/ml. The specificity was constantly high,

with a minimum lower bound of the CI equal to 97.4%.

Based on expert opinions on malaria diagnosis in STP and

published works focusing on similar diagnostic tests, we consider

Beta distributions to represent a pessimistic or skeptical, a

optimistic and our prior beliefs distribution. The theoretical

Table 5. Some information based on literature – RDT (ICT Diagnostics, Cape Town, South Africa).

Source Local n Sensitivity(%)1 Specificity (%)2 Remarks

McMorrow et al. [4] Kenya 4582 94.0 [93.3–94.7] 95.6 [95.0–96.1] 3

Mozambique 2438 87.0 [85.6–88.3] 74.6 [72.8–76.3]

Zambia 3652 97.7 [97.2–98.1] 92.5 [91.6–93.3]

Chinkhumba et al. [77] Malawi 683 90.0 [82.9–94.3] 54.0 [50.1–58.2] Febrile/w5years

Kyabayinze et al. [78] Uganda 357 98.0 [94.0–99.0] 72.0 [65.0–77.0] Febrile/all ages

54.0 [41.0–67.0] v5 years

78.0 [71.0–85.0] §5 years

Portero et al. [80] Equatorial Guinea 400 81.5 [73.8–87.8] 81.9 [76.7–86.30] v5 years

Moonasar et al. [81] South Africa 405 99.5 [96.2–100.0] 96.3 [94.7–100.0] Febrile

1,2With 95% confidence intervals, if they are presented in source or it is possible to calculate them if they are not directly available. We use Wilson method to add CIs to
the results presented by McMorrow et al. [4].
3The sensitivity for low-density infections (v200 parasites/mL) range from 71.7% to 100%.
4The global sample size is 2576. Here, we consider only the patients tested by ICT rapid test.
5To detect P. falciparum monoinfection the sensitivity was 69.7% [57.1–80.4] and the specificity was 73.7% [68.6–78.3].
doi:10.1371/journal.pone.0040633.t005

Table 6. Coefficients (a,b) and theoretical quantiles (P0:025{P0:975) of Beta distributions for sensitivities (Seij) and specificities
(Spij): a skeptical, a optimistic and our prior beliefs distribution.

Skeptical Optimistic Our Prior

Parameters a b Quantiles a b Quantiles a b Quantiles

Se1j ,j~1,2,3,4 61.2 14.5 0.712–0.887 43.2 1.4 0.902–0.998 22.4 1.6 0.807–0.991

Sp1j ,j~1,2,3,4 10.2 4.4 0.450–0.896 45.6 1.5 0.905–0.998 25.4 2.1 0.801–0.989

Se2j ,j~1,3 18.8 23.4 0.301–0.595 48.2 10.0 0.722–0.902 7.6 3.4 0.404–0.913

Se2j ,j~2,4 7.2 4.1 0.352–0.877 42.1 1.8 0.883–0.995 8.8 2.2 0.531–0.968

Sp2j ,j~1,2,3,4 60.5 7.6 0.804–0.951 64.6 1.1 0.942–0.999 27.6 1.2 0.862–0.998

Se3j ,j~1,2,3,4 33.2 5.4 0.736–0.949 34.1 1.3 0.881–0.998 30.6 1.2 0.875–0.998

Sp3j ,j~1,2,3,4 44.3 6.9 0.760–0.943 67.6 1.7 0.929–0.998 26.6 1.3 0.851–0.997

doi:10.1371/journal.pone.0040633.t006
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Table 7. Bayesian estimates of the malaria infection prevalence, sensitivities, specificities and predictive values, given by posterior
means and 95% HPD intervals - Mean [95% HPD] - by age groups and fever status, using skeptical, optimistic and our prior
distributions to M5.

Parameters Skeptical(a) Optimistic(b) Our prior beliefs(c) Total Lower DF

p1 10.5 [9.0–11.9] 10.2 [8.8–11.7] 10.3 [8.8–11.7] 3834 3746 1.023

Se11 86.5 [80.5–92.5] 96.9 [93.2–99.8] 95.4 [90.3–99.5] 3747 3746 1.000

Sp11 93.4 [91.0–95.8] 94.1 [92.0–96.2] 93.8 [91.6–96.0] 3760 3746 1.004

Ppv11 60.8 [50.9–70.4] 65.5 [56.8–74.5] 64.2 [54.9–73.4] 3710 3746 0.990

Npv11 98.3 [97.5–99.1] 99.6 [99.2–100.0] 99.4 [98.8–99.9] 3917 3746 1.046

Se21 44.6 [34.4–54.9] 66.8 [57.5–75.5] 50.5 [37.7–63.2] 3824 3746 1.021

Sp21 99.6 [99.4–99.8] 99.8 [99.7–99.9] 99.8 [99.6–99.9] 3933 3746 1.050

Ppv21 93.0 [88.7–96.9] 97.5 [95.4–99.3] 96.6 [93.7–99.1] 3747 3746 1.000

Npv21 93.9 [92.4–95.3] 96.3 [95.2–97.5] 94.6 [93.1–96.2] 3768 3746 1.006

Se31 89.5 [81.6–96.2] 96.4 [91.9–99.9] 96.0 [90.7–99.9] 3714 3746 0.991

Sp31 99.7 [99.5–99.9] 99.8 [99.6–99.9] 99.8 [99.7–100.0] 4068 3746 1.086

Ppv31 97.0 [94.9–98.8] 98.2 [96.7–99.5] 98.5 [97.1–99.8] 3650 3746 0.974

Npv31 98.8 [97.8–99.6] 99.6 [99.1–100.0] 99.5 [98.9–100.0] 3665 3746 0.978

p2 10.5 [9.0–11.9] 10.2 [8.8–11.7] 10.3 [8.8–11.7] 3834 3746 1.023

Se12 84.3 [77.1–90.8] 96.5 [92.1–99.8] 94.1 [87.5–99.4] 3778 3746 1.009

Sp12 96.4 [93.9–98.7] 97.9 [96.1–99.4] 97.5 [95.5–99.3] 3809 3746 1.017

Ppv12 73.8 [60.2–87.0] 84.3 [73.5–94.9] 81.5 [69.6–93.1] 3802 3746 1.015

Npv12 98.1 [97.2–98.9] 99.6 [99.1–100.0] 99.3 [98.5–99.9] 3863 3746 1.031

Se22 82.0 [69.1–93.2] 94.3 [88.7–98.9] 87.6 [76.7–97.0] 3688 3746 0.985

Sp22 99.6 [99.4–99.8] 99.8 [99.7–99.9] 99.8 [99.6–99.9] 3933 3746 1.050

Ppv22 96.1 [93.7–98.2] 98.2 [96.8–99.5] 98.0 [96.4–99.5] 3747 3746 1.000

Npv22 97.9 [96.5–99.2] 99.4 [98.7–99.9] 98.6 [97.4–99.7] 3729 3746 0.995

Se32 89.8 [82.6–96.8] 96.2 [91.3–99.8] 96.1 [91.0–99.8] 3716 3746 0.992

Sp32 99.7 [99.5–99.9] 99.8 [99.6–99.9] 99.8 [99.7–100.0] 4068 3746 1.086

Ppv32 97.0 [94.9–98.8] 98.2 [96.7–99.5] 98.5 [97.1–99.7] 3758 3746 1.003

Npv32 98.8 [98.0–99.6] 99.6 [99.0–100.0] 99.6 [99.0–100.0] 3910 3746 1.044

p3 3.3 [2.4–4.2] 3.2 [2.4–4.1] 3.2 [2.3–4.1] 3738 3746 0.998

Se13 87.0 [81.0–92.5] 97.3 [93.9–99.9] 96.0 [91.5–99.7] 3768 3746 1.006

Sp13 98.6 [98.0–99.1] 98.7 [98.1–99.2] 98.7 [98.1–99.2] 3782 3746 1.010

Ppv13 67.6 [56.0–78.5] 71.6 [61.3–81.8] 70.6 [59.8–80.8] 3665 3746 0.978

Npv13 99.6 [99.3–99.8] 99.9 [99.8–100.0] 99.9 [99.7–100.0] 3914 3746 1.045

Se23 63.7 [53.7–73.4] 82.2 [75.3–89.4] 79.1 [68.7–88.9] 3793 3746 1.013

Sp23 99.6 [99.4–99.8] 99.8 [99.7–99.9] 99.8 [99.6–99.9] 3933 3746 1.050

Ppv23 84.7 [75.9–92.5] 93.3 [87.8–98.0] 92.8 [87.0–97.8] 3732 3746 0.996

Npv23 98.8 [98.3–99.2] 99.4 [99.1–99.7] 99.3 [98.9–99.7] 3956 3746 1.056

Se33 92.4 [86.2–97.8] 98.3 [95.3–100.0] 98.3 [95.3–100.0] 3725 3746 0.994

Sp33 99.7 [99.5–99.9] 99.8 [99.6–99.9] 99.8 [99.7–100.0] 4068 3746 1.086

Ppv33 90.7 [84.4–96.2] 94.2 [89.3–98.5] 95.2 [90.5–99.2] 3771 3746 1.007

Npv33 99.7 [99.5–99.9] 99.9 [99.8–100.0] 99.9 [99.8–100.0] 3889 3746 1.038

p4 10.5 [9.0–11.9] 10.2 [8.8–11.7] 10.3 [8.8–11.7] 3834 3746 1.023

Se14 91.1 [86.7–95.0] 98.3 [96.2–99.9] 97.9 [95.3–99.8] 3813 3746 1.018

Sp14 97.4 [96.3–98.3] 97.8 [96.8–98.6] 97.7 [96.6–98.6] 3828 3746 1.022

Ppv14 80.2 [73.1–86.7] 83.4 [77.2–89.6] 82.7 [76.2–89.0] 3740 3746 0.998

Npv14 98.9 [98.4–99.4] 99.8 [99.6–100.0] 99.8 [99.5–100.0] 3956 3746 1.056

Se24 94.3 [90.0–98.3] 97.4 [94.7–99.6] 96.2 [92.6–99.2] 3706 3746 0.989

Sp24 99.6 [99.4–99.8] 99.8 [99.7–99.9] 99.8 [99.6–99.9] 3933 3746 1.050

Ppv24 96.6 [94.6–98.4] 98.3 [96.9–99.5] 98.2 [96.7–99.5] 3807 3746 1.016
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parameters and quantiles of these distributions are presented in

Table 6. Our prior distributions for each subpopulation express: (i)

In general, the RDT test (ICT Diagnostics) presents a similar

behavior in each subpopulation; (ii) PCR is usually more sensitive

than microscopy; (iii) Microscopy is usually more specific than

PCR; (iv) Sensitivity of microscopy is slightly better in the febrile

individuals. Except for the specificity of microscopy, we consider

the same prior distribution for each parameters across the four

subpopulations (see Table 6), even though M5 only admits that the

specificity of microscopy and the specificity of PCR are equal

across subpopulations.

In Table 7, we present again the the posterior means and HPD

intervals for each parameters through model M5 with a skeptical,

a optimistic and our prior beliefs distributions. We check the

convergence of all parameters, and not just those of interest, before

proceeding to make any inference, using the trace plots and

Gelman-Rubin and Raftery-Lewis convergence diagnostics mea-

sures (the last one is presented in Table 7). DIC, AIC, BIC and

Bayesian p-values are also indicated in Table 7. These measures

favors our prior beliefs distribution, but the more optimistic prior

is yet admissible. The Bayesian p-value (0.007) associated to model

M5 with a skeptical prior distribution reveals a prior-data conflict.

Compared with the results obtained using M5 with non-

informative priors, it can be seen (last columns in Table 4) that

our prior information contributes to an increase of the sensitivities

of microscopy and PCR, in afebrile children under-five. In the

febrile children under-five, the sensitivities of RDT and PCR are

also improved. The rest of the parameters are quite similar. In

afebrile children under-five, the sensitivity of microscopy (even

under an optimistic prior) is very low. This finding is not

unexpected since other previous studies have reported low values,

when this test is not considered as a gold standard, pointing out

that asymptomatic cases often have undetectable malaria parasites

by microscopy [14,75].

Our study is associated to a small region composed of two

islands, where an intensive malaria control programme aimed at

pre-elimination of malaria was developed with success, where

prevalences were highly reduced in general and many positive

cases had no malaria clinical signs associated. Therefore, the data

and results may not be comparable to other regions elsewhere,

with higher prevelances obtained by microscopy or RDT. As

mentioned before different results may reflect different factors and

the word ‘‘comparison’’ may be too strong. Nevertheless,

Chinkhumba et al. [77] state that malaria RDTs must have both

sensitivity and specificity above 95% in field setting. These authors

report that the sensitivity of the RDTs evaluated in their study are

similar to the results of other published studies. However, they

found a low specificity in febrile patients above 5 years of age.

Kyabayinze et al. [78] alert to the low specificity of the ICT rapid

test especially in children below 5 years of age. In our study, in

terms of the RDT test, for the afebrile children under-five, the

specificity estimated by posterior mean is 93.8% and in the

Table 7. Cont.

Parameters Skeptical(a) Optimistic(b) Our prior beliefs(c) Total Lower DF

Npv24 99.3 [98.8–99.8] 99.7 [99.4–100.0] 99.6 [99.2–99.9] 3833 3746 1.023

Se34 95.9 [92.6–98.9] 99.0 [97.4–100.0] 99.1 [97.4–100.0] 3802 3746 1.015

Sp34 99.7 [99.5–99.9] 99.8 [99.6–99.9] 99.8 [99.7–100.0] 4068 3746 1.086

Ppv34 97.2 [95.3–98.9] 98.3 [96.8–99.5] 98.6 [97.2–99.8] 3743 3746 0.999

Npv34 99.5 [99.1–99.9] 99.9 [99.7–100.0] 99.9 [99.7–100.0] 3896 3746 1.040

Raftery and Lewis convergence diagnostics related with our prior distribution and some measures of model selection (in the footnote).
(a)DIC: 168.824, AIC: 200.567, BIC: 322.703, and p-value: 0.007.
(b)DIC: 121.197, AIC: 149.205, BIC: 271.341, and p-value: 0.485.
(c)DIC: 115.934, AIC: 143.614, BIC: 265.750, and p-value: 0.768.
doi:10.1371/journal.pone.0040633.t007

Table 8. Point estimates and 95% confidence intervals, though five different methods, for the sensitivity and the specificity of RDT
in each subpopulation j (Se1j and Sp1j ) and overall (Seall and Spall ), using microscopy as a gold standard.

Parameter Point estimate x=n (%) Wald Clopper-Pearson Wilson Agresti-Coull Jeffreys

Se11 21/23 (91.3) 79.8–100.0 72.0–98.9 73.2–97.6 72.0–98.8 74.9–98.1

Se12 23/24 (95.8) 87.8–100.0 78.9–99.9 79.8–99.3 78.1–100.0 82.1–99.5

Se13 40/44 (90.9) 82.4–99.4 78.3–97.5 78.8–96.4 78.3–97.0 79.8–96.9

Se14 98/100(98.0) 95.3–100.0 93.0–99.8 93.0–99.4 92.6–99.9 93.7–99.6

Seall 182/191 (95.3) 92.3–98.3 91.2–97.8 91.3–97.5 91.2–97.6 91.6–97.6

Sp11 420/472 (89.0) 86.2–91.8 85.8–91.7 85.8–91.5 85.8–91.5 85.9–91.6

Sp12 211/217 (97.2) 95.1–99.4 94.1–99.0 94.1–98.7 94.0–98.9 94.4–98.8

Sp13 1537/1565 (98.2) 97.6–98.9 97.4–98.8 97.4–98.8 97.4–98.8 97.5–98.8

Sp14 851/872 (97.6) 96.6–98.6 96.3–98.5 96.3–98.4 96.3–98.4 96.4–98.5

Spall 3019/3126 (96.6) 95.9–97.2 95.9–97.2 95.9–97.2 95.9–97.2 95.9–97.2

doi:10.1371/journal.pone.0040633.t008
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remaining subpopulations is above 97.5%. In terms of sensitivity,

for febrile children under-five, we find: 94.1% [87.5–99.4]. In all

subpopulations, the positive predictive values of RDT are lower

than other tests. The PCR yields reliable results in four

subpopulations.

Comparison with Other Approaches
The sensitivity and specificity of several rapid malaria diagnostic

tests have been estimated using the microscopy as a gold standard.

However, the previous measures may change substantially

considering the polymerase chain reaction (e.g. [6]) as reference.

Only with the purpose of understanding the implications of the

classical statistical approach (which is still common in medical

literature), in this subsection, we present the performance

measures of RDT, admitting the microscopy as a gold standard

(Table 8). The use of interval estimation for reporting performance

measures is recommended but the Wald method may not be

appropriate. Thus, the Clopper-Pearson or exact binomial, Wilson

(or score), Agresti-Coull and Jeffreys methods are also calculated to

obtain confidence intervals (see Table 8).

The sensitivities are estimated based on smaller denominators

and the corresponding Wald interval tends to provide higher lower

bounds for the 95% CI than the other recommended methods.

The specificities in all subpopulations are estimated from larger

sample sizes and the five methods give similar results. The Wald

method is not appropriate to report the performance of a

diagnostic test, in particular, when the prevalence of an infection

is small (high) because erratic values for the sensitivity (specificity)

may occur.

Using the classical analysis (see Table 8), it is emphasized that

the sensitivities of RDT are lower than the Bayesian estimates in

three subpopulations. The exception is the afebrile with less than

five years old. The 95% HPD intervals are narrower than 95%

confidence intervals. Paradoxically, in our application, the Wald

confidence intervals are the ones that resemble more the Bayesian

credibility intervals, particulary for the sensitivities. Nevertheless,

this method is not recommended for the typical values of

sensitivities and specificities. One reviewer suggested a simple

ad-hoc method, assessing the sensitivity of a method as the

percentage of positive responses in the group that has positive

values for both other tests and specificity as the percentage of

negative among those that have negative values for both other

tests. There is some proximity between this approach and the

composite reference standards proposed by Alonzo and Pepe [79].

Particularly for the sensitivities, as the sample size decreases

because the discrepant results between the two reference tests are

discarded, the 95% confidence intervals are wider (data not

shown). However, for RDT test, combining the PCR and

microscopy results, the point estimates are closer to posterior

means obtained by Bayesian analysis. In terms of specificities, the

reduction of the sample size has less effect because the samples are

already larger, leading to smoother differences between the three

approaches.

In addition to the philosophical perspective that prior informa-

tion is an important source to characterize a problem in a more

realistic way, in this application, the major advantage of the

Bayesian approach is that the subpopulations parameters are

estimated by narrower intervals, compared with other approaches.

Analyzing the four populations at once and informative priors

could prevent identifiability problems. Furthermore, the use of

constraints helps enhance the modeling versatility because it is

possible to explore the differences and similarities between

subpopulations.

Conclusions
The accuracy of diagnostic tests for the malaria diagnosis based

on the optical microscopy as a gold standard has been criticized

and alternative statistical approaches have emerged without

wrongly assuming any of the diagnostic tests as a perfect gold

standard. Some studies have reported the performance measures

in different populations, exhibiting some differences. Here, we

have addressed this problem with a novel Bayesian approach, in

the malaria context, which avoids defining a gold standard and

provides estimates to the malaria infection prevalence and

performance measures in different subpopulations simultaneously.

Some deterministic and probabilistic constraints were considered

to express some available knowledge or suppositions of experts and

published literature about laboratory diagnosis of malaria.

Different models were explored, some of them providing similar

results. The elected model was the one that considers a different

prevalence in the afebrile individuals with at least five years old

and the remaining three groups with the same prevalence. This

model admitted the specificity of microscopy and the specificity of

PCR are equal across subpopulations and their sensitivities are

different. In terms of the performance measures of RDT no

constraints are imposed in each subpopulations.

The data information collected in STP seems to be dominant,

since the main findings were quite stable when we use different

prior distributions. When we consider a positive expectation, using

an optimistic prior, or a more skeptical position (pessimistic prior),

yielded the same results in terms of the order in which the tests

were arranged and even in terms of the magnitude of some

performance measures.

In the afebrile individuals with at least five years old, the

posterior estimate of the malaria infection prevalence was around

3.2% [2.3–4.1] and in the remaining studies groups around 10.3%

[8.8–11.7]. Microscopy had poor sensitivity compared to the other

tests, particularly, in afebrile children under-five years old 50.5%

[37.7–63.2]. The PCR yielded reliable results in four subpopula-

tions. However, in resource-limited settings, the PCR is not yet

accepted as a primary diagnostic test in malaria diagnosis.

According to Chinkhumba et al. [77], malaria RDTs must have

both sensitivity and specificity above 95% in field setting. In STP

the results seems to satisfy this conditions in adults and children

with at least five years old. In children under-five, the sensitivity

was lower than this target. In all subpopulations, data provide

enough evidence to suggest caution with the positive predictive

values of the RDT.

Supporting Information

Appendix S1 An example of the code corresponding to
model M5.
(PDF)
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