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Achilles tendon adaptation is a key aspect of exercise performance and injury risk
prevention. However, much debate exists about the adaptation of the Achilles tendon
in response to exercise activities. Most published research is currently limited to elite
athletes and selected exercise activities. Also, existing studies on tendon adaptation
do not control for genetic variation. Our explorative cross-sectional study investigated
the effects of regular recreational exercise activities on Achilles tendon mechanical
properties in 40 identical twin pairs. Using a handheld oscillation device to determine
Achilles tendon mechanical properties, we found that the Achilles tendon appears to
adapt to regular recreational exercise at comparatively low intensities by increasing its
stiffness. Active twins showed a 28% greater Achilles tendon stiffness than their inactive
twin (p < 0.05). Further, our research extends existing ideas on sport-specific adaptation
by showing that tendon stiffness seemed to respond more to exercise activities that
included an aerial phase such as running and jumping. Interestingly, the comparison of
twin pairs revealed a high variation of Achilles tendon stiffness (305.4–889.8 N/m), and
tendon adaptation was only revealed when we controlled for genetic variance. Those
results offer new insights into the impact of genetic variation on individual Achilles tendon
stiffness, which should be addressed more closely in future studies.

Keywords: Achilles tendon, connective tissue adaptation, genetic variation, exercise activities, aerial phase,
sports, tendon stiffness, twin study

INTRODUCTION

In humans, the gastrocnemius muscle inserts together with the soleus muscle via a well-developed
Achilles tendon onto the calcaneus (Swindler and Wood, 1973; Standring et al., 2016). Particularly
the anatomical length of the human Achilles tendon is outstanding among extant great apes from a
comparative perspective. In our closest relatives, the chimpanzees (Pan troglodytes) and gorillas
(Gorilla gorilla), the gastrocnemius muscle inserts almost immediately onto the calcaneus, so
that the Achilles tendon is barely visible (Swindler and Wood, 1973; Myatt et al., 2011). Several
studies consider the well-developed Achilles tendon as an adaptation that fosters energy-efficient
locomotion (Alexander, 1984, 1991), particularly during bipedal running (Bramble and Lieberman,
2004). Extensive research has shown that during running, the Achilles tendon acts like a spring
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element, which is stretched and loaded with strain energy
during the initial phase of stance and recoils during the late
phase of stance to support the foot push-off (Hof et al.,
2002; Arampatzis et al., 2006; Lichtwark et al., 2007). While
the evolutionary advantage of this adaptation seems generally
accepted (Bramble and Lieberman, 2004), debate continues about
structural adaptations of the Achilles tendon in response to
exercise-related mechanical loading.

Generally, the Achilles tendon can adapt to external
mechanical loading by increasing its stiffness, elastic modulus,
and cross-sectional area (for review see Wiesinger et al., 2014;
Bohm et al., 2015). The adaptation to external mechanical
loading seems to depend on frequency, duration, and intensity.
Data from several longitudinal training studies suggest that
high muscle contraction intensities (i.e., 70–90% of maximum
voluntary contraction) endured over several seconds are most
effective in inducing structural changes within the tendon (for
review see Bohm et al., 2015). It has been speculated that
longer durations of tension during strength training exercises
result in a more efficient transmission of the tendon strain via
the extracellular matrix to the cytoskeleton of the tendon cells
(Bohm et al., 2014). Consequently, the strain triggers cellular and
molecular responses, such as the synthesis of collagen and matrix
proteins, thereby affecting the Achilles tendon’s mechanical and
morphological properties (Wang, 2006; Heinemeier and Kjaer,
2011; Galloway et al., 2013). The loading stimulus duration
argument has recently been applied to explain why jumping
results in less pronounced adaptive responses of Achilles tendon
properties than an exercise protocol with longer loading duration
(i.e., 3 s) (Bohm et al., 2014).

However, several cross-sectional studies on running and
jumping report changes in the Achilles tendon’s cross-sectional
area and/or stiffness, despite much shorter strain durations
(i.e., 0.2–0.25 s). For example, Rosager et al. (2002) and
Magnusson and Kjaer (2003) detected a significantly larger
Achilles tendon cross-sectional area in trained runners than non-
runners. Similarly, elite runners and volleyball players had larger
Achilles tendon cross-sectional areas than elite kayak athletes,
whose training includes less frequent mechanical stimulation of
the lower extremities (Kongsgaard et al., 2005). In the same
vein, Wiesinger et al. (2016) showed greater Achilles tendon
cross-sectional areas in highly trained endurance runners and
world-class ski jumpers compared to national-level elite water
polo players and sedentary individuals. Notably, within the
same study it was found that differences in the cross-sectional
area were not consistently mirrored by differences in stiffness.
Here, tendon stiffness was only higher in ski jumpers than in
sedentary individuals but did not differ between runners and
water polo players. In contrast, Karamanidis and Epro (2020)
measured a significantly increased Achilles tendon stiffness in
elite high and long jumpers compared to age-matched controls.
Those results, although partly inconclusive, suggest that chronic
exposure to repetitive loading by running and jumping can result
in tendon adaptation.

An essential characteristic of running and jumping
movements is a repetitive aerial phase, during which the
athlete lifts both feet off the ground and then freely falls under

gravity before touching the ground again (Zaciorskij, 2000). With
touchdown, at the end of an aerial phase, the impact exposes the
Achilles tendon to mechanical loading that can be magnitudes
greater than during activities with no aerial phase, such as
walking (Lichtwark et al., 2007; Lai et al., 2015; Kharazi et al.,
2021). Particularly the pioneering work by Komi et al. (1987,
1992) and Fukashiro et al. (1995) revealed that Achilles tendon
forces are highest in activities with an aerial phase. Also, the
Achilles tendon undergoes considerable length changes (i.e., 5.6%
for running and up to 8.2% for single-leg hopping) (Lichtwark
and Wilson, 2005, 2006) within stretch-shortening cycles. While
numerous research indicates that exercise activities with a regular
aerial phase, respectively, exercise including stretch-shortening
cycles, such as running and hopping, do not appear to induce
immediate mechanical or morphological changes in the Achilles
tendon (Obst et al., 2013), data on long-term tendon adaptation
are rare. Regarding long-term effects, it is reasonable to speculate
that individuals who regularly engage in exercise activities with
an aerial phase (e.g., running, basketball, or tennis) show more
pronounced Achilles tendon adaptations than individuals who
engage in exercise activities without an aerial phase (e.g., cycling,
inline skating, swimming).

Although there is evidence for enhanced adaptations in
runners and jumpers, the generalizability of the existing research
is problematic because those studies are often limited to elite
athletes. Additionally, those studies do not control for genetic
variation, even though there is evidence that the genome of elite
athletes varies in some alleles compared to non-elite athletes
(for review see Macarthur and North, 2005). Currently, it
cannot be excluded that genetic variation also affects baseline
Achilles tendon mechanical properties. One promising approach
to overcome the challenge of genetic variation might be studying
identical (monozygotic) twins. Identical twins derive from
a single fertilized egg and inherit identical genetic material
(Boomsma et al., 2002). There is a growing body of literature on
identical twins that highlights the critical role played by genetic
variation on strength and fitness outcomes (Marsh et al., 2020),
bone metabolism (Smith et al., 2003), and exercise-induced
muscle damage (Gulbin and Gaffney, 2002). However, no twin
study has investigated the effect of exercise activities on Achilles
tendon properties.

In light of the controversial literature on Achilles tendon
adaptation and the potential impact of genetic variation, this
study attempted to find evidence that long-time regular exercise
activities, even at a recreational level, can trigger Achilles tendon
adaptation. Another objective was to determine whether exercise
activities with a regular aerial phase have greater effects on
tendon adaptation. To this end, the experiment was designed
as an explorative cross-sectional twin study with recreationally
active or non-active identical twins. The experimental design
allowed us to control for genetic variation. We measured Achilles
tendon stiffness to evaluate tendon adaptation in response to
regular exercise activities at a recreational level. Research shows
that, in addition to tendon morphological properties such as
the cross-sectional area, tendon mechanical stiffness increases in
response to mechanical loading (Arampatzis et al., 2007; Bohm
et al., 2014). Thus, changes in tendon stiffness are indicative
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of tendon adaptation. By comparing Achilles tendon stiffness
among identical twin pairs, we aimed to test two hypotheses:
(1) Regular recreational exercise activity leads to greater Achilles
tendon stiffness compared to no regular exercise. (2) Exercise
activities with an aerial phase lead to greater Achilles tendon
stiffness than exercise activities without an aerial phase.

MATERIALS AND METHODS

Participants and Experimental Design
Forty identical twin pairs (19 female and 21 male pairs)
participated in this explorative cross-sectional study. All
participants (mean age: 40 ± 18 years; body mass: 61 ± 18 kg;
height: 162± 17 cm) were required to be healthy, with no injuries
of the lower limbs within the last 6 months. Each participant
gave written informed consent to participate in the study. The
study was approved by the local ethics committee of the Faculty
of Behavioral and Social Sciences and conducted according to the
Declaration of Helsinki.

All participants answered a questionnaire, including questions
about regular physical activity (“Do you participate in regular
physical activity?”), kind of physical activity (“If yes, what kinds
of physical activities do you participate in?”), weekly training
load (“How many hours do you spend exercising each week?”),
and, if they remembered, total years of training (“For how
many years have you participated in this sport regularly?”).
Participants were considered physically active if they followed
a regular training regime of 60 min/week for at least 1 year,
regardless of intensity. The different exercise activities were
divided into sports with and without an aerial phase. Sports with
an aerial phase had to be characterized by regular movements
with both feet off the ground. Three investigators (KL, NCK,
and FS) evaluated all sports independently and agreed with their
decision on regular aerial phases. Sports without an aerial phase
include bouldering, cycling, hiking, horse riding, nordic walking,
pilates, resistance training (excluding plyometric training), speed
skating, swimming, water gymnastics, weightlifting, and yoga.
Sports with an aerial phase include indiaca, running, soccer,
tennis, and trampoline.

Once the questionnaire was answered, we determined and
marked the middle of the free Achilles tendon in the twin pairs.
Free Achilles tendon length is defined as the distance from the
most distal insertion of the soleus muscle in the Achilles tendon
to the distal insertion of the tendon at the calcaneus (Kongsgaard
et al., 2005). According to Kongsgaard et al. (2005), the average
free Achilles tendon length is about 10% of the lower leg length.
Therefore, we measured the lower leg length in one of the
identical twins in a standing position, as the distance from the
palpated knee-joint gap (the gap between the femoral and fibular
bone at the lateral side) to the floor. Then, we calculated the free
Achilles tendon length (0.1 × lower leg length) and used that
measure to draw a line from the palpated distal insertion of the
tendon at the calcaneus toward the distal insertion of the soleus
muscle (Figure 1). Next, we marked the middle of that line for the
stiffness measurement. The same parameters were used to define
the middle of the free Achilles tendon in the other twin, assuming

anthropometric similarity in identical twins (Chatterjee et al.,
1999). Within-pair variance in knee height of identical twins has
been reported to be 0.24 cm (Chatterjee et al., 1999), suggesting
that differences in Achilles tendon length are most likely equally
small. Then, both twins had to sit on a chair with their knees
bent at 90◦ and their feet positioned at a 20◦ dorsiflexion angle
on a self-built construction (Figure 1). This position allowed us
to measure the Achilles tendon stiffness in a relaxed state while
applying a defined ankle angle (Davis et al., 1999; Orishimo et al.,
2008; Hug et al., 2013; DeWall et al., 2014).

Stiffness Measurement
To measure tendon stiffness, we used a handheld oscillation
device (MyotonPRO R©, Myoton AS, Tallin, Estonia). The device
applies an external mechanical impulse to the surface of a tendon
and, thereby, compresses the underlying tissue. An accelerometer
then registers the response of the tendon in the form of a damped
oscillation curve. Consequently, the amplitude and frequency of
the sinusoidal curve are used as a surrogate measure of tendon
stiffness (Schneider et al., 2015). The easily accessible and cost-
effective device has already been used in previous studies to test
its validity and reliability and to detect changes in Achilles tendon
stiffness non-invasively (for review see Sichting and Kram, 2020).
Regarding the quality of stiffness assessment, several studies have
demonstrated that the use of the handheld device produces valid
(Pruyn et al., 2016; Feng et al., 2018) and reliable results. Data
consistently suggest good to excellent reliability for repeated
measurements with intra-class correlations (ICC) of 0.87 (95%
confidence interval: 0.61–0.96) (Ko et al., 2018), 0.83 (0.67–0.91)
(Pruyn et al., 2016), and 0.90 (0.76–0.96) (Liu et al., 2018).
Further, Schneebeli et al. (2020) reported a standard error of
10.8 N/m and a minimum detectable change of 30.0 N/m for
intra-rater measurements of the relaxed Achilles tendon.

In our setup, we measured the Achilles tendon stiffness
approximately in the middle of the free Achilles tendon. During
each measurement, the device applied five consecutive short-
term mechanical impulses (force: 0.4 N, impulse time: 15 ms),
each separated by 1 s to allow for the vibrations to dissipate
before the next impulse began. The mean of the five consecutive
impulses was used to calculate stiffness. It should be noted that
tendon stiffness derived from oscillation-based measurements
differ quantitatively from stiffness values derived from ultrasound
supported dynamometry.

Statistics
We performed several analyses to test the hypothesis that regular
recreational exercise activity leads to greater Achilles tendon
stiffness than no regular exercise. We tested this hypothesis
twice, (1) with and (2) without controlling for genetics. First,
the unequal variance t-test of unrelated data (Welch’s t-test)
(Ruxton, 2006) was applied to compare Achilles tendon stiffness
in physically inactive and physically active twin pairs (both twins
inactive vs. both twins physically active). This analysis aimed
to test Achilles tendon adaptation to exercise activities without
controlling for genetic predisposition. To control for age, we
applied the Welch’s t-test to compare age in those twin pairs.
Previous research has shown that age can affect Achilles tendon
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FIGURE 1 | Illustration of the Achilles tendon stiffness measurement with the foot placed in a 20◦ dorsiflexed position. The stiffness of the Achilles tendon was
measured in the middle of the free Achilles tendon length using a handheld oscillation device. The device applied a mechanical impulse to measure the oscillation
response of the Achilles tendon as a surrogate measure of stiffness.

stiffness (Waugh et al., 2012; Delabastita et al., 2018). Another
Welch’s t-test was applied to compare Achilles tendon stiffness in
those twin pairs, in which twin A was regularly physically active
while twin B was not (twin A vs. twin B). This analysis aimed to
control for genetic predisposition. In addition to that, absolute
differences in Achilles tendon stiffness were calculated for those
twin pairs, in which both twins were physically inactive, and those
twin pairs, in which twin A was regularly physically active, while
twin B was not. The Welch’s t-test was applied to compare the two
twin pairs. Finally, we plotted Achilles tendon stiffness of twin A
against Achilles tendon stiffness of twin B for inactive twins pairs
and those twin pairs, in which twin A was regularly physically
active while twin B was not. Pearson correlation coefficients
(r) were calculated to establish relationships between stiffness
measurements of twin A and twin B. Correlations below 0.4
were qualitatively interpreted as weak, between 0.4 and 0.75 as
moderate, and above 0.75 as strong (Fleiss, 1981).

For our second hypothesis, we predicted that individuals who
engage in an exercise activity with an aerial phase show greater
Achilles tendon stiffness than individuals who engage in an
exercise activity without an aerial phase. To test this hypothesis,
we compared mean stiffness differences in those twin pairs, in
which both twins participated in a sport without an aerial phase
against those twin pairs, in which at least one twin participated
in a sport with an aerial phase using the Welch’s t-test. For all
comparisons, we performed a power analysis to determine the
effect size (Cohen’s d) of the results (≥ 0.8 = large; < 0.8–
> 0.2 = medium; ≤ 0.2 = small) (Cohen, 2013). All statistical
analyses were carried out using R Studio (R Foundation for

Statistical Computing, Vienna, Austria). The level of significance
was set at α= 0.05.

RESULTS

Across all twin pairs (Figure 2), 17 different sports were
performed for an average weekly duration of 4.0 ± 3.5 h. Thirty-
eight participants were able to remember when they began
their respective sport. Those participants performed their sport
regularly for 16 ± 15 years (range: 2–45 years). Achilles tendon
stiffness measures showed large variation between monozygotic
twin pairs, ranging from 305.4 to 694.4 N/m in inactive
twins, whereas in active twins measures ranged from 306.2 to
889.8 N/m (Figure 3).

Further comparison between physically active (both twins
active) and inactive twin pairs (both twins inactive) did not reveal
any significant differences (nactive = 25: 619.1 ± 121.5 N/m vs.
ninactive = 8: 605.0 ± 46.1 N/m) (Figure 4A). There was also
no significant difference in age between those twin pairs (active:
41 ± 20 years vs. inactive: 36 ± 19 years). However, for twin
pairs, in which only one twin was regularly physically active
(noneactive = 7), Achilles tendon stiffness was significantly higher
in the active (636.0 ± 115.5 N/m) compared to the inactive twin
(496.8± 142.7 N/m), on average by 28.0% (p< 0.01) (Figure 4B).
Cohen’s d was 0.59, indicating a moderate effect. The correlation
analysis revealed a strong correlation between twin A and twin
B, both for inactive twin pairs (r = 0.83) and those twin pairs, in
which twin A was regularly physically active while twin B was not
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FIGURE 2 | Summary of identical twin pairs who participated in the study.
Among all 40 twin pairs, both twins were physically inactive in eight pairs,
activity differed in seven pairs (twin A was regularly physically active, twin B
was not), and both twins were regularly physically active in 25 pairs. The
regular exercise activity in those 25 twin pairs included aerial phases in at least
one of the twins activities in 8 pairs and no aerial phases in 17 pairs.

(r = 0.79) (Figure 3). Notably, the was a clear offset between the
regression lines, representing inactive twin pairs and those twin
pairs, in which twin A was regularly physically active while twin
B was not. The offset might reflect the greater Achilles tendon
stiffness in active twins compared to their inactive siblings.

In terms of differences in Achilles tendon stiffness between
identical twins, the mean absolute stiffness difference in inactive
twin pairs was significantly smaller than in pairs with one
active and one inactive twin (ninactive = 8: 30.5 ± 26.1 N/m
vs. noneactive = 7: 139.2 ± 86.6 N/m, p = 0.02) (Figure 5A).
Cohen’s d was 0.84, indicating a large effect. Further, the mean
absolute difference in Achilles tendon stiffness between identical
twins who both performed a sport without an aerial phase was
significantly smaller than between twins, in which at least one
twin performed in a sport with an aerial phase (nnoaerialphase = 17:
57.9 ± 47.7 N/m vs. naerialphase = 8: 160.6 ± 74.6 N/m, p < 0.01)
(Figure 5B). Cohen’s d was 0.96, indicating a large effect.

DISCUSSION

The present study was primarily designed to determine the
effect of regular recreational exercise activity on Achilles tendon
stiffness. To control for genetic variation, this study was

FIGURE 3 | Comparison of Achilles tendon stiffness between identical twins,
in which either both twins were inactive (black squares) or one twin was active
while the other was not (gray dots). For the latter comparison twin A
represents the active twin and twin B represents the inactive twin. The offset
between the two regression lines indicates a greater Achilles tendon stiffness
in the active twins.

conducted as an identical twin study. We identified a large
variability in tendon stiffness among twin pairs, which seems at
least partially genetically predetermined. When controlling for
genetic preposition, the results of our study indicate that Achilles
tendon stiffness was greatest in those individuals who regularly
engaged in recreational exercise activities. Moreover, we found
differences in Achilles tendon stiffness between individuals who
engaged in an exercise activity with an aerial phase and those
without an aerial phase. These findings add novel insights to the
current understanding of tendon adaptation.

Our comparison of identical twin pairs indicates that Achilles
tendon stiffness appears to be at least partially genetically
predetermined. The correlation analysis of inactive twin pairs
and twin pairs with one active twin revealed a strong linear
relationship between identical twin pairs in Achilles tendon
stiffness. Further, we found a considerable variation in tendon
stiffness between twin pairs, ranging from nearly 300 N/m to
a threefold of that tendon stiffness. Certainly, this variability
between twin pairs would be expected if they were doing different
levels of activity. However, against this prediction, we found a
considerable overlap in tendon stiffness in inactive and active
twin pairs (305.4–694.4 N/m vs. 306.2–889.8 N/m, respectively).
This observation may support the hypothesis that Achilles tendon
stiffness is partially genetically predetermined. Further, it lets
us speculate about interindividual variation in Achilles tendon
adaptation in response to mechanical loading. In this regard,
data from genetic analyses indicate a significant interindividual
variation in collagen fibril assembly and vulnerability to develop
symptoms of chronic Achilles tendinopathy (Mokone et al.,
2006; Hay et al., 2013). Related research by Passini et al. (2021)
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FIGURE 4 | Analysis of the impact of regular exercise activity on Achilles tendon stiffness. (A) Compares inactive and active twin pairs. In contrast, (B) compares
identical twin pairs where twin A is inactive and twin B is active. The latter comparison allowed to control for genetic predisposition and showed a significant
difference, indicated by the asterisk (∗p < 0.05).

FIGURE 5 | Comparison of Achilles tendon stiffness within identical twin pairs, expressed as absolute difference in Achilles tendon stiffness. (A) Shows the
significant impact of regular exercise activities. (B) Shows the significant impact of an aerial phase on differences in Achilles tendon stiffness. Significant differences
(p < 0.05) are indicated by an asterisk.

further shows that genetic mutations in the ion channel PIEZO1,
which regulates the mechanosensitive function of tenocytes, can
affect tendon properties. Similar results of a potential genetic
predisposition have also been found for bone properties (Smith
et al., 2003) and muscle strength (Marsh et al., 2020). While

considerably more work needs to be done to understand the
genetic influence on Achilles tendon stiffness and adaptation, our
findings suggest that genetic predisposition should be considered
when investigating tendon adaptation to exercise. The need
for such a consideration of genetics becomes also apparent
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in our analyses of the impact of regular exercise activities on
Achilles tendon stiffness. When we did not control for genetics
by comparing physically inactive and active twin pairs (both
twins inactive vs. both twins physically active), tendon stiffness
was slightly but not significantly increased in active twin pairs
(increased by 2.3%). In contrast, when we did control for genetics
by comparing twin pairs, in which twin A was regularly physically
active while twin B was not, tendon stiffness was significantly
increased by 28.0% in the active twin. These findings on the
role of genetics might help explain the controversial results on
the effect of exercise activities in previously published cross-
sectional studies.

Another important factor to consider when investigating
tendon adaptation to exercise appears to be the presence of
an aerial phase during movement. Our findings suggest that
sports that include an aerial phase affect Achilles tendon stiffness
more than sports without an aerial phase. Achilles tendon
differences were greatest among twin pairs in which at least one
twin participated in a sport with an aerial phase. In contrast,
differences in Achilles tendon stiffness were relatively small when
both twins participated in a sport with no aerial phase. This
finding is consistent with data obtained by Wiesinger et al. (2016),
who found that Achilles tendon stiffness in elite athletes with a
regular aerial phase (ski jumpers) was considerably higher than in
athletes without an aerial phase (water polo athletes). A potential
influencing factor may be the stretch-shortening cycle of the
Achilles tendon during exercise activities with an aerial phase.
Previous research indicates that the stretch-shortening cycle in
exercise activities with an aerial phase can be characterized by
considerable stretching of the Achilles tendon during landing
to store energy. Most of this energy is rapidly released during
shortening to contribute to the power generated by the muscle-
tendon unit during the propulsive phase (Maganaris and Paul,
2002; Ishikawa et al., 2005). Although there is evidence that those
regular stretching stimuli have no immediate effect on Achilles
tendon stiffness (Obst et al., 2013), there is much less information
about long-term effects. However, research on long-term bone
tissue adaptation might support the idea that exercise activities
with an aerial phase have the greatest effect on Achilles tendon
adaptation. A considerable body of literature shows that bone
adaptation is greatest in high-impact sports, such as gymnastics,
running, soccer, or rugby (e.g., Nordström et al., 1998; Daly et al.,
1999; Lima et al., 2001; Morel et al., 2001; Scerpella et al., 2003;
Yung et al., 2005; Maïmoun et al., 2013). While the underlying
mechanism for the differences in bone adaptation is still part of
an ongoing debate, it has been speculated that those high impacts
are followed by bone deformation induced by high muscle forces
pulling on the bone (Snow-Harter et al., 1990; Madsen et al., 1993;
Nordström et al., 1998), which may result in larger adaptation.
Large muscle forces pulling on the tendon during landing and
propulsion may also help explain the observed differences in
Achilles tendon stiffness in individuals who engaged in a sport
with and without an aerial phase. However, our results also
show large variation in Achilles tendon stiffness between twins
being active in the same category of exercise. This variation
might be explained by considerable differences in impact forces,
acting muscle forces, and impact frequencies. For example,

previous research has shown reasonable differences in Achilles
tendon strain magnitude between participants who are forefoot
or rearfoot strikers (Rice and Patel, 2017).

Interestingly, our findings on the impact of an aerial phase
on Achilles tendon adaptation contrasts with an argument
by Kharazi et al. (2021), who recently investigated Achilles
tendon strain during walking and running. Their results let
them speculate that submaximal running at up to 3.5 m/s does
not provide sufficient tendon loading magnitude for triggering
improvements of the Achilles tendon stiffness (Kharazi et al.,
2021). This argument builds upon former studies that found
no difference in Achilles tendon stiffness between runners
and untrained individuals (Karamanidis and Arampatzis, 2006;
Arampatzis et al., 2007). However, none of these studies
controlled for genetic variation. Likely, those previous results
were masked by a large natural variation in Achilles tendon
properties. Our study allowed us to control for genetics.
Particularly the comparison within inactive twin pairs supports
the argument for a genetic predisposition. Here, we found a
strong correlation and high similarity between twin A and twin
B, with significantly smaller mean differences in Achilles tendon
stiffness (30.5 ± 26.1 N/m) compared to twin pairs with one
active and one inactive twin (139.2 ± 86.6 N/m). Also, there
was a large variation between those inactive twin pairs, ranging
from nearly 300 to almost 700 N/m. Most likely, the close
similarity in Achilles tendon stiffness between twin A and twin
B and the considerable variation between twin pairs can be
explained genetically. That said, additional data from dizygotic
twins could provide more definitive evidence for heritability in
Achilles tendon stiffness (Boomsma et al., 2002).

Another finding that adds to the existing literature on exercise-
related Achilles tendon adaptation refers to the activity level and
response to habitual exercise. Currently, most research is limited
to elite athletes (e.g., Rosager et al., 2002; Magnusson and Kjaer,
2003; Kongsgaard et al., 2005; Wiesinger et al., 2016; Karamanidis
and Epro, 2020). In our study, however, all participants followed
their exercise activity at a recreational level for an average
weekly duration of 4.0 ± 3.5 h. Still, we found differences in
Achilles tendon stiffness between active and non-active twins
which could be attributed to habitual exercise. In contrast to this
finding, Hansen et al. (2003) found no changes in Achilles tendon
properties (i.e., cross-sectional area and stiffness) in previously
untrained individuals after 9 months of habitual running (about
78 sessions and 43 h). Possibly, 9 months of habitual exercise were
still not long enough to achieve measurable tendon adaptation,
and tendons may need more time to adapt due to the generally
low tissue turnover rate in tendons (Heinemeier et al., 2013). In
our study, participants were considered active if they performed
their sport regularly for at least 1 year. However, on average,
they performed their sport regularly for more than 15 years
(range: 2–45 years), which is a very long duration of regular
mechanical stimulation of the tendon. The long exposure to
regular activity raises the possibility that the Achilles tendon
had sufficient time to adapt slowly to habitual exercise activities
even at a recreational activity level, with structural adaptations
accumulating and eventually becoming detectable. Thus, the
investigation duration might be another factor besides genetic
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predisposition that can help to explain the controversial results
on changes in Achilles tendon stiffness. Further research is
required to fully understand the factors that trigger Achilles
tendon adaptation in response to habitual exercise activities.

To build further confidence in our results more twin pairs with
different athletic profiles (active vs. non-active, or aerial phase vs.
no aerial phase) would help. Our study shows that most identical
twins share a very similar lifestyle, including similar exercise
activities. However, we did not collect data on exercise activities
during childhood and adolescence. It is reasonable to speculate
that exercise activities during childhood and adolescence might
have affected tendon properties in adult individuals. Research on
the life-long turnover of human tendon tissue indicates that the
tendon core is formed during height growth and is essentially
not renewed after that (Heinemeier et al., 2013). Thus, exercise
activities during childhood and adolescence might be another
factor that impacts Achilles tendon properties in adults. It should
further be noted that our interpretation of the role of an aerial
phase is currently limited to a comparison of twin pairs in which
at least one twin performed in a sport with an aerial phase.
A comparison of twin pairs in which one had performed an
aerial phase sport while the other did not would have been a
more valid analysis. Unfortunately, our sample of twin pairs
included only two pairs who fulfilled that criterion. For that
reason, we decided to run the analysis as presented. Additional
caution should also be taken when interpreting the classification
approach of the different sports. Here, we used a qualitative
approach to classify the various exercise activities. Although this
approach allows a relatively simple classification, it does not
control or account for the variation in tendon load history. Future
studies should aim to quantify impact forces and frequencies, as
well as Achilles tendon strain.

Being limited to the handheld oscillation device for stiffness
measurements, this study does not provide information about
morphological adaptation, such as the tendons’ cross-sectional
area or other relevant material properties, such as the elastic
modulus. Those properties should be assessed to develop a more
comprehensive understanding of tendon adaptation. That said, a
study similar to this one could be carried out using ultrasound
and dynamometry. Also, ultrasound would be a more precise
method to determine free Achilles tendon length. Previous
research indicates considerable variation in the length of the free
Achilles tendon length (Drakonaki et al., 2021), but also between
runners and non-runners (Devaprakash et al., 2020). Although
we followed a standardized protocol to determine the middle of
the free Achilles tendon, caution must be applied, as our approach
does not guarantee that the stiffness measurements were acquired
within the free portion of the tendon. Ultrasound could also
help improving the definition of anatomical landmarks, like
muscle-tendon or tendon-bone insertions. Advanced ultrasound
technologies, like shear wave elastography, might be a consequent
next step to measure stiffness properties along the complete free
Achilles tendon, instead of using one measurement point as
done in this study.

Notwithstanding these limitations, our study provides first
evidence that the individual Achilles tendon stiffness is partially
determined by genetic variation. In addition, the study has

also indicates that exercise activities at a recreational level
can trigger Achilles tendon adaptation if stimulated regularly
for years. Our classification of exercise activities revealed that
activities with a regular aerial phase seem to have the greatest
impact on Achilles tendon adaptation. This finding extends
an existing idea on sport-specific tendon adaptation presented
by Wiesinger et al. (2016), which is currently limited to three
sports activities (ski jumping, running, water polo) at an elite
level. Our more general finding might also have implications
for Achilles tendinopathy, an overuse injury of the Achilles
tendon. When reviewing the literature on sports-related Achilles
tendinopathy, the highest prevalence is reported for sports with
a regular aerial phase, such as running, soccer, basketball, or
rugby (Sobhani et al., 2013). Thus, it seems likely that regular
exercise activities with an aerial phase can increase the risk
of an overuse injury of the Achilles tendon. Consequently,
individuals who participate in an exercise activity with an aerial
phase should slowly increase their training intensity level to
allow the Achilles tendon sufficient time to adapt to the high
impact loading. Further, when performing a sport with an
aerial phase, it might be helpful to include specific strength
training sessions, as proposed recently by Radovanović et al.
(2021). Such strategies could help to improve Achilles tendon
properties and to prevent overuse injuries. That said, more
research is needed to understand the impact of different exercise
activities on Achilles tendon adaptation and the associated
risk of injuries.
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