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Abstract

A complex network is a useful tool for representing and analyzing complex systems, such as the world-wide web and
transportation systems. However, the growing size of complex networks is becoming an obstacle to the understanding of
the topological structure and their characteristics. In this study, a globally and locally adaptive network backbone (GLANB)
extraction method is proposed. The GLANB method uses the involvement of links in shortest paths and a statistical
hypothesis to evaluate the statistical importance of the links; then it extracts the backbone, based on the statistical
importance, from the network by filtering the less important links and preserving the more important links; the result is an
extracted subnetwork with fewer links and nodes. The GLANB determines the importance of the links by synthetically
considering the topological structure, the weights of the links and the degrees of the nodes. The links that have a small
weight but are important from the view of topological structure are not belittled. The GLANB method can be applied to all
types of networks regardless of whether they are weighted or unweighted and regardless of whether they are directed or
undirected. The experiments on four real networks show that the link importance distribution given by the GLANB method
has a bimodal shape, which gives a robust classification of the links; moreover, the GLANB method tends to put the nodes
that are identified as the core of the network by the k-shell algorithm into the backbone. This method can help us to
understand the structure of the networks better, to determine what links are important for transferring information, and to
express the network by a backbone easily.
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Introduction

In recent years, complex networks have been investigated by

scholars in many domains. The representation, analysis and

modeling in complex network theory bring a new paradigm to

research on some complex systems including the Internet,

transportation systems, biological systems, and social systems [1].

One of the primary aims of complex network research is to reveal

the structural characteristics of complex systems. Many emerging

concepts, such as the small-world property [2], scale-free behavior

[3], community structure [4], and fractality [5], form the basis of

our understanding of complex network structure. Because the

scales of networks are becoming larger, a more intuitive and

efficient method is required to represent and analyze the complex

networks. Reducing a large-scale network to an essential backbone

can help to solve the conflicts between the large scale of the

complex networks and the understanding of the network structure.

The backbone of a network is a core component that is extracted

by filtering redundant information from the network and

preserving far fewer links and nodes from the original network.

The filtering methods for backbone extraction can be divided

into two main categories: global methods and local methods. Some

global methods use certain global measures to filter the links, such

as the link betweenness-based method [6] and the link weight-

based method [7]. These methods apply a global threshold on the

weights or the betweenness of links in such a way that only those

that exceed the threshold are preserved. These filters have been

used in the study of functional networks that connect correlated

human brain sites [8], food web resistance as a function of link

magnitude [9], and mobile communications networks [7]. The

link weight-based method, however, could neglect nodes that have

a small strength (The strength of node i is defined as

si~
X

j[Qi
wij , where wij is the weight of the link i,jð Þ and Qi is

the set of neighbors of node i) because the introduction of a

threshold induces a characteristics scale from the outside [10].

The link salience [11], another type of global method, defines

the shortest-path tree T rð Þ that summarizes the shortest paths

from a reference node r to the remainder of the network and that

is conveniently represented by a symmetric N|N matrix (N is the

number of nodes in the network) that has the element tij rð Þ~1 if

the link i,jð Þ is part of at least one of the shortest paths and

tij rð Þ~0 if it is not. The central idea of the approach is based on

the notion of the average shortest-path tree that is defined as

S~STT~
1

N

XN
r~1

T rð Þ. The element 0ƒsijƒ1 of the matrix S
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quantifies the fraction of the shortest-path trees that the link i,jð Þ
participates in and denotes the salience of the link i,jð Þ. Link

salience is a robust approach to classifying network elements

because the distribution of s, the link salience, exhibits a

characteristic bimodal shape on the unit interval in many kinds

of networks [11]. Link salience, however, tends to give an higher

evaluation to the links being adjacent to low-degree nodes that

often lie in the periphery of networks than the links being adjacent

to high-degree nodes. For example, in Figure 1, link i,pð Þ is a part

of the shortest-path tree T rð Þ for all of the reference nodes, i.e.,

sip~1, because i,pð Þ is the only path that connects node p to the

remainder of the network. Thus, link i,pð Þ is always a part of the

backbone extracted by the link salience method even though the

link is meaningful only for node pto transfer information between

it and the rest of the nodes.

The local methods use local measures to determine which links

must be filtered, such as the disparity filter method [10] and the

locally adaptive network sparsification (LANS) [12]. The disparity

filter method introduces the normalized weight that corresponds to

link i,jð Þ of a certain node i of degree ki and is defined as

pij~wij=si, where wij is the weight of the link, si is the strength of

node i. The normalized weight is assumed to be produced by a

random assignment from a uniform distribution; thus, the

probability density function of pij is assumed to be

f x; kið Þ~ ki{1ð Þ 1{xð Þki{2
. The backbone will include those

links whose normalized weights satisfy the relation

aij~1{ ki{1ð Þ
ðpij
0

1{xð Þki{2
dxva or

aji~1{ kj{1
� � ðpji

0

1{xð Þkj{2
dxva, where a is a specified

significance level. Here aij and aji denote significance of the link’s

normalized weight not following the uniform distribution. The

local heterogeneity (Section 3.1) of a link’s weight is the premise of

the disparity filtering method [10].

The LANS method, for each node i and for any of its neighbors

j, considers the fraction of non-zero links whose weights are less

than or equal to pij , F̂F pij
� �

~
1

DQi D

X
m[Qi

IND pimƒpij
� �

, where

INDfg is the indicator function, DQi D is the number of neighbors of

node i, and pij is the normalized weight of link i,jð Þ. If 1{F̂F pij
� �

is

less than a predetermined significance level a, the link i,jð Þ is

locally significant and is included in the backbone network.

Although both of the local methods do not belittle some links that

have small weights from a global view by considering the

importance of the links in each specific node, we argue that they

could ignore some links that have small weights with respect to the

topological aspect. They assume that, for a certain node, its

neighboring links (the links that connect to the node) with larger

weights are more important. In many cases, however, local and

global topological structures of a link determine how important the

link is. For example, in Figure 2, although the weight of link i,jð Þ is
greater than that of link i,kð Þ, link i,kð Þ is more important than

link i,jð Þ for node i because i,kð Þ is the path through which i can

reach most of the other nodes. From the prospective of

information transfer, link i,kð Þ can help node i send or receive

information more effectively than link i,jð Þ can, because deleting

link i,kð Þ could cause more damage than deleting link i,jð Þ for the
information transfer of the network.

Because the local and global methods have advantages and

disadvantages, in this study we aim to design a backbone

extraction method that accounts for both the global and local

topological structure of the networks. And the importance of links

is synthetically determined by the weights of the links, the degree

of the nodes, and the topological structure. The results of

experiments on some real networks show that our propose method

has some good characteristics.

Materials and Methods

In this study, we are inspired by the ideas of link salience and

the disparity filter to propose a globally and locally adaptive

network backbone (GLANB) extraction method. First, for each

specific node, we compute the involvement of its neighboring links,

which measures the fraction of the short paths connecting the node

to the remainder of the network, which the links participate in.

Second, we use a null hypothesis to determine whether each link is

statistically important based on its involvement.

2.1 Link Involvement
We first consider a weighted, undirected and connected

network. We define the length of the link i,jð Þ as dij~1=wij , with

wij being the weight of link i,jð Þ, which is consistent with definition

of the link length in the link salience method. In most networks the

link weights denote the connection strength between nodes. For

example, in social networks the link weights often denote the

communication frequency between people. Thus, we assume that

the links with high weights are important in our case, and we

invert the weights to compute the link length that measures the

distance between nodes. In practice, the formula of measuring link

Figure 1. An undirected artificial network. The first number on the
line is the value of the link weight, and the second number is the value
of the link salience. Although the link i,pð Þ gets the largest value 1 of
the link salience, it is only important for node p. The links i,kð Þ and j,kð Þ
have the smallest value of the link salience, but they are in the core of
the network.
doi:10.1371/journal.pone.0100428.g001

Figure 2. An undirected artificial network. The numbers on the
lines denote the weights of the links. Although the weight of link i,jð Þ is
greater than that of link i,kð Þ, link i,kð Þ is more important for node i
than link i,jð Þ is, because link i,kð Þ is the only path through which node
i can reach the remainder of the network.
doi:10.1371/journal.pone.0100428.g002
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length should depend on the meaning of the weights. The length of

a path that connects two terminal nodes n1,nTð Þ and that consists

of T{1 links by a sequence of intermediate nodes ni, and the link

weight wniniz1
w0 is defined as l~

XT{1

i~1
dniniz1

. The shortest

path minimizes the total distance l and can be interpreted as the

most efficient route between its terminal nodes. The involvement

Iij of link i,jð Þ is defined as

Iij~
1

N{1

XN

s~1,s=i

g
(i,j)
is

gis
, ð1Þ

where N is the number of nodes in the network; g
(i,j)
is is the number

of shortest paths between node i and s that pass through the link

i,jð Þ; and gis is the total number of shortest paths between node i
and s. The involvement Iij denotes how much the link i,jð Þ is

involved in the most efficient connections between node i and the

other nodes; thus, it can be a measure of the importance of link

i,jð Þ for node i in the view of information transfer between node i
and the remainder of the network. The larger the value of Iij is, the

more important link i,jð Þ is for node i. We can see thatX
j[Qi

Iij~1, where Qi is the set of neighbors of node i.

The involvement is different from the betweenness centrality.

The betweenness of link i,jð Þ depends on the shortest paths

between all pairs of nodes, but the involvement Iij only depends on

the shortest paths between the node i and the rest of the nodes

since the definition of involvement Iij is based on the idea what

proportion of the rest of the nodes can connect the node i through

the link i,jð Þ. The involvement is also different from the salience

because the involvement considers the multiple shortest paths

between each pair of nodes, but the salience assumes that only one

shortest path exists between a pair of nodes. That is why the

GLANB can also be applied to unweighted networks that often

have multiple shortest paths between each pair of nodes.

2.2 Statistical Importance (SI) of Links
We find that the involvement of links that are around a single

node is distributed heterogeneously (see Section 3.1). We are

interested in the links that have a significant involvement at each

given node. However, the local heterogeneity of involvement could

simply be produced by random fluctuations. Similar to the

disparity filter method, we adopt a null model to compute the

random expectation for the distribution of the involvements that is

associated with the links of a certain node. The null hypothesis is

that the involvement I that corresponds to a connection of a

certain node of degree k is produced by a random assignment

from a probability density function of f x; kð Þ. Because the links

that are adjacent to a certain node with the degree of k should

have the same chance under the random condition to connect the

node to the remainder of the network, the mean of the

involvement must satisfy the condition

E x; kð Þ~ 1

k
,k§2andx[ 0,1½ �: ð2Þ

Many probability density functions satisfy this condition and

can be used to generate an involvement that is random and is

based on specific assumptions. For example, if we assume that for

each specific node that has the degree of k, its neighboring links

independently participate in the shortest paths between the node

and the remainder of the network with a probability of 1=k; then,
the involvement I obeys approximately the normal distribution

that has a mean of 1=k and a variance of
1

k
1{

1

k

� �
= N{1ð Þ.

Alternatively, we can assume that the involvement obeys the

power law distribution f xð Þ~bxa because for most complex

networks, the degree and weight have been verified to follow

power law distributions [1,3]. It is easy to obtain the probability

density function f x; kð Þ~ 1

k{1
x{

k{2
k{1,k§2. Moreover, the in-

volvement can be assumed to follow a uniform distribution, which

is similar to what the disparity filter method has performed for the

normalized weights of the links [10] and has the probability

density function of f x; kð Þ~ k{1ð Þ 1{xð Þk{2
.

The GLANB measures the statistical importance SIij of link

i,jð Þ by using a null model to calculate the probability in such a

way that its involvement Iij is compatible with the null hypothesis.

The statistical importance SIij of link i,jð Þ is defined as

SIij~1{

ðIij
0

f x; kið Þdx,ki§2, ð3Þ

where ki is the degree of node i. In this study, the involvement is

assumed to follow a uniform distribution, i.e.,

f x; kið Þ~ ki{1ð Þ 1{xð Þki{2
; thus, SIij~ 1{Iij

� �ki{1
,ki§2. To

control the impact of the degree on the statistical importance, we

add a parameter c§0 to the formula, as follows:

SIij~ 1{Iij
� � ki{1ð Þc

,ki§2: ð4Þ

If c~0, then the statistical importance SIij is determined only by

Iij and is not affected directly by the degree (Iij can be affected

indirectly by ki because the shortest paths to node i are affected by

ki). As c increases, the impact of the degree becomes larger. The

experimental results show some interesting characteristics of the

GLANB method under different values of c (see Section 3).

The smaller the value of SIij is, the more significantly the link

i,jð Þ is not compatible with a random distribution; furthermore,

the link i,jð Þ can be considered more important due to the

network-organizing principles. The final statistical importance of

an undirected link i,jð Þ is the minimum of SIij and SIji. In the case

when a node i of degree ki~1 is connected to a node j of degree
kjw1, the statistical importance of link i,jð Þ is SIji. The GLANB

can identify a backbone of a network by setting the significance

level a for the SI (a link is included in the backbone if its SI is less
than a) based on the distribution of SI (see Section 3.3), or identify

the hierarchical backbones by setting different significance levels

since the backbone under high significance level will contain the

backbone under low significance level. The backbone includes the

links that are statistically important according to the specified

significance level and their terminal nodes.

2.3 Unweighted and Directed Networks
The GLANB method can be easily applied in unweighted

networks. In this case, the weights of all of the links are treated as

being equal; thus, the length of a path is the number of links that

lie in the path.

To be applied in directed networks, the GLANB must be

modified. The directed link i,jð Þ from starting node i to ending

node j is either an out-link for node i or an in-link for node j.

Thus, we define the out (in) involvement I
outð Þ

ij (I
inð Þ

ij ) of the directed

link i,jð Þ separately as

Extracting the Backbone of Complex Networks
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I
outð Þ

ij ~
1

DQ outð Þ
i D

X
s[Q outð Þ

i

g
(i,j)
is

gis
and

I
inð Þ

ij ~
1

DQ inð Þ
j D

X
s[Q

inð Þ
j

g
(i,j)
sj

gsj
, ð5Þ

where Q outð Þ
i is the set of nodes that can be reached from node i

through a directed path, and Q inð Þ
j is the set of nodes that can reach

node j through a directed path; DQ outð Þ
i D denotes the size of Q outð Þ

i ;

g
(i,j)
is is the number of shortest paths from node i to s that pass

through the link i,jð Þ; and gis is the total number of shortest paths

from node i to s. The involvement I
outð Þ

ij measures how much the

link i,jð Þ is involved in the shortest paths from node i to the other

nodes, and I
inð Þ

ij measures how much the link i,jð Þ is involved in the

shortest paths from the other nodes to node j.

The statistical importance of link i,jð Þ is composed of two parts,

the in-importance SI
inð Þ

ij and the out-importance SI
outð Þ

ij , which are

defined from the viewpoint of the starting node i and the ending

node j separately as

SI
outð Þ

ij ~ 1{I
outð Þ

ij

� � k
outð Þ
i

{1ð Þc
,k

outð Þ
i §2 and

SI
inð Þ

ij ~ 1{I
inð Þ

ij

� � k
inð Þ
j

{1

� �c

,k
inð Þ
j §2 ð6Þ

where k
outð Þ
i is the out-degree of node i, k

inð Þ
j is the in-degree of

node j, and c is the control parameter. The final statistical

importance of the directed link i,jð Þ is determined by the

minimum of SI
outð Þ

ij and SI
inð Þ

ij . Similar to the case of weighted

and undirected networks, the GLANB can identify a backbone

from unweighted or directed network by setting a significance level

for SI based on the distribution of SI , or a hierarchical backbone

by setting different significance levels for SI .

Results

To test the performance of the GLANB method, we apply it to

four real-world networks, a collaboration network (coauthor) [13],

an instant-message network (fetion), an email network (email) [14]

and an airport traffic network (airport). We compare the obtained

results with those obtained by the disparity filtering method and

the link salience method. (1) The collaboration network is based on

co-authorship of academic papers in the high-energy physics

community from 1995–1999. Nodes represent individuals, and

links measure the number of papers that were co-authored. The

data are publicly available at http://www-personal.umich.edu/

,mejn/netdata/. (2) The instant-message network is based on an

instant-message tool, fetion, which is provided by Mobile

Corporate. The nodes represent fetion users, and the links

measure the number of messages sent between each pair of users.

(3) The email network is an undirected and unweighted network.

The nodes represent email users, and the links represent whether

any communication exists between each pair of users. The email

network data are available at http://deim.urv.cat/,aarenas/

data/welcome.htm. (4) The airport traffic network is a weighted

Figure 3. The local heterogeneity of the involvement and the normalized weight in four real networks. Each point in the figure denotes
a node in the network. The local heterogeneity of the involvement for node i is defined as ci kið Þ~ki

X
j[Qi

I2ij , where Qi is the set of neighbors of
node i, ki is the degree of node i, and Iij is the involvement of link i,jð Þ. The local heterogeneity of the normalized weight for node i is defined as

c
0

i kið Þ~ki
X

j[Qi
wij=si
� �2

, where si~
X

j[Qi
wij is the strength of node i. We can find that for all of the networks, the involvement is locally more

heterogeneous than the normalized weight is.
doi:10.1371/journal.pone.0100428.g003
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and directed network. It measures global air traffic that is based on

flight data that is provided by OAG Worldwide Ltd. (http://www.

oag.com), and it includes all of the scheduled commercial flights in

the world in 2011. The nodes represent airports worldwide. The

link weights measure the total number of passengers that travel

between a pair of airports by direct flights per year. This network

is well represented in the literature [15,16,17]. In the experiments

only the largest connected subnetworks of each of the networks are

used. The backbone includes the links that are significantly

important according to the extraction methods and their terminal

nodes. Because the authors in [11] do not mention how the

salience method deals with the directed or unweighted networks,

we do not apply the salience method to the email and the airport

networks.

3.1 Local Heterogeneity of the Link Involvement
The condition under which the null model can perform well is

that for each node, its links’ involvement shows heterogeneity. If

this condition is not satisfied, then it is difficult to identify the

important links through the GLANB method. To assess the effect

of heterogeneities in the links’ involvements at the local level, for

each node i of degree ki, one can calculate the function [18,19]

ci kið Þ~kiYi kið Þ~ki
X
j[Qi

I2ij , ð7Þ

where Qi is the set of neighbors of node i and Iij is the involvement

of link i,jð Þ.
As a standard indicator of measuring the concentration of data,

the function Yi kið Þ has been extensively used in various domains,

including ecology, economics, physics, and complex networks

[10,19], where it is known as the disparity measure. Under perfect

homogeneity, when all of the links share the same amount of the

involvement of node i(i.e., Iij~1=ki), ci kið Þ equals 1 independently

of ki, while in the case of perfect heterogeneity, when only one of

the links carries the whole involvement of the node, the function is

ci kið Þ~ki. In this way, this function can be used as a preliminary

indicator of the presence of local heterogeneity. When local

heterogeneity of involvements exists, the GLANB can be more

useful than in the case of homogeneity because the GLANB aims

to identify the links whose involvements are significantly higher

than other neighboring links’. To compare the involvement with

the weights of the links, we also compute the heterogeneity of the

normalized weights [10] by

c
0
i kið Þ~ki

X
j[Qi

wij

si

� �2

, ð8Þ

where si~
X

j[Qi
wij is the strength of node i. Figure 3 shows the

local heterogeneity of the involvement and the normalized weight

in the coauthor, fetion, email, and airport networks. We can find

that for all of the networks, the involvement is locally more

heterogeneous than the normalized weight is (Figure 3). These

results indicate that applying the null model to the involvement

can identify the statistically important links well.

3.2 Size of the Backbones
The main purpose of extracting backbones is to reduce the

number of links in networks, while keeping more nodes. To

measure the effects of these filtering methods on the extracted

backbones, we analyze the relative sizes of the backbones as a

function of the preserved fractions of the links when the network is

filtered by the disparity filter, by the link salience and by the

GLANB (Figure 4).

For the four real networks, the link salience method can

preserve the largest fraction of nodes in the backbone, and the

disparity filter method preserves the smallest (except when the

Figure 4. Fraction of nodes maintained in the backbones. The fraction of nodes is a function of the fraction of links retained by the filters. The
dash lines correspond to the fraction of the nodes whose degree is greater than 1 in the networks.
doi:10.1371/journal.pone.0100428.g004
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fraction of links is less than 0.4 for the fetion network) when the

same fraction of links is maintained. The results of the GLANB

methods fall in between the disparity and the salience methods.

We must note that for the salience method, all of the links that are

adjacent to the nodes with a degree of 1 have the largest salience of

1, and preserving these links can retain at least one node. Thus,

the link salience method can preserve the largest fraction of the

nodes when filtering the networks.

We also find that in the backbone of the coauthor and fetion

networks identified by the GLANB method at the specified values

of control parameter c, the fraction of nodes stays approximately

unchanged for an interval of the fraction of links when the fraction

of nodes reaches the threshold that is the fraction of nodes with a

degree greater than 1. For the email networks, this phenomenon

also exists when c~0 or c~1. For the airport networks, this

phenomenon exists when c~0. The interval of keeping un-

changed is the longest for all of the networks when c~0 (Figure 4).

The reason of the phenomenon is that for the nodes that have a

degree of 1, the value of SI of their neighboring links is very close

to 1; thus, these nodes are difficult to include in the backbone

when the fraction of links in the backbone is not sufficiently large.

Moreover, as the control parameter c increases, the growth curves

of the fraction of nodes become relatively flat (Figure 4), because

high value of c prefers the links that correspond to the nodes that

have a high degree, and these links have a low value of SI .
Preserving these links in the backbone cannot increase the fraction

of nodes proportionally because some other links that could have

been preserved in the backbone are more likely to share the same

terminal nodes with them. Thus, these results indicate that the

parameter c can control the size of extracted backbone by

impacting the degrees of the nodes on the value of the

involvement.

3.3 Robust Classification of Links Based on the Statistical
Importance
Similar to the link salience measure [11], the surprising feature

of the statistical importance SI is that the distribution p SIð Þ
exhibits a characteristic bimodal shape on the unit interval

(Figure 5). The networks’ links naturally accumulate at the

boundaries and have a small fraction at intermediate values. The

statistical importance thus successfully classifies network links into

two groups: important (SI&0) or non-important (SI&1). Because
a small fraction of links fall into the intermediate range, the

resulting classification is not significantly sensitive to an imposed

threshold. This circumstance is fundamentally different from some

link centrality measures, such as weight and betweenness, which

possess broad distributions and which require external and often

arbitrary threshold parameters to perform meaningful classifica-

tions. The distribution of links’ statistical relevance when measured

by the disparity filter method shows a unimodal shape in the

coauthor network or a flat distribution in the fetion network

(Figure 5), which has the result that choosing the appropriate

significance level a to filter links becomes difficult. For the GLANB

method, as the control parameter c increases, the number of links

with high importance increases (Figure 5). The reason is that the

GLANB method with a high value of c favors the links that

correspond to the nodes that have the degree kw1, and these links

occupy a large proportion of total links.

3.4 K-shell distribution of links
To deeply explore the hierarchy of links in the backbones that

are extracted by the GLANB, disparity filter and salience methods,

we use the k-shell decomposition method to compare the

topological distribution of extracted links. The k-shell decompo-

sition method is often used to identify the core and the periphery

of the networks [20,21]. Although the k-shell method only takes

into account the nodes’ degree not the link weights, it provides a

way to compare the backbone extraction methods from the view of

topological structure. The process of the k-shell decomposition

starts by removing all of the nodes that have one link (degree 1)

only, until no more such nodes remain; then, it assigns them to the

1-shell. In the same manner, it recursively removes all of the nodes

that have a degree of 2 (or less), creating the 2-shell. This process

continues, increasing k until all of the nodes in the network have

been assigned to one of the shells. The shells that have high indices

lie in the core of the network. To assign all of the links to the shells,

we define the shell index of a link as the minimum of its two

terminal nodes’ shell indices.

For the coauthor, fetion and email networks, we extract the top

10% important links based on the SIij of GLANB (from low to

high), the aij of disparity filter (from low to high) and the sij of

salience methods (from high to low) separately to analyze their

distributions in terms of link-shells. Because the salience method

ranks the links for which one terminal node has the degree of 1 as

most important, and because both the disparity filter and the

GLANB methods rank them as least important, we also exclude

these links to extract the remaining top 10% important links based

on the salience method (salience-E) to analyze the distribution.

The distributions of the links in the range of the shell index are

shown in Figure 6. We can see that compared with the disparity

and salience methods, the GLANB (c~2) extracts more links that

lie in the higher shells, i.e., the topological core of the networks.

Especially for the salience method, most of the extracted links lie in

the lower shells. This circumstance occurs because the links whose

terminal nodes have a low degree tend to have a high salience. For

example, the links that are adjacent to the nodes that have the

degree of 1 have the highest salience of 1, which means that all of

the links in the 1-shell are certain to be in the backbone that is

extracted by the link salience method. For the salience-E method,

most of the links still fall in the low shells, and the distribution

almost coincides with that of the GLANB (c~0), which ignores the

degree of the corresponding nodes in a similar way as the salience

method. As the control parameter c increases, more links fall into

the higher link-shells.

There are two reasons to explain why the GLANB (cw0) is
more likely to extract links from the topological core of the

networks than the other methods. One reason is that the backbone

which is extracted by the GLANB (cw0) method does not include

the links that are adjacent to the nodes that have a degree of 1.

The second reason is that the null model depends on the degrees

of the nodes. When Iij stays unchanged, increasing the value of

degree ki can decrease the value of SIij in a power-law way (see

formula 4). The larger the value of c is, the more greatly ki affects
SIij . Thus, some links that have a higher shell index would be in

the backbone even though their involvement values are not very

high. Furthermore, from Figure 3, we can see that the distribution

of link involvements for the nodes that have a higher degree shows

heterogeneity, which means that some links have both a high-

degree terminal and a high involvement.

Discussion

The GLANB method accounts for both the global and local

topology structure of the network when extracting the backbones.

On the one hand, the involvement of each link is either a global

measure (because it depends on the shortest paths that are

determined by the global network structure and the link weights)

or a local measure (because the sum of the involvements of the
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links that are adjacent to any certain node has the value of 1). On

the other hand, the null model that is adopted in GLANB is based

on a local view because the probability density function depends

on the degree of each certain node. Thus, the GLANB determines

the importance of the links by synthetically considering the

topological structure, the weights of the links and the degrees of

the nodes. In this method, the links that have a small weight but

are important from the view of structure are not belittled.

Figure 5. The distributions of the link salience, the link statistical importance and the disparity filtering importance. Link
measurement refers to the values of the link salience, link statistical importance, and the disparity filtering importance that are given by the salience,
GLANB and disparity methods separately. For the GLANB and disparity methods, the smaller values mean higher importance. For the salience
method, the larger values mean higher importance.
doi:10.1371/journal.pone.0100428.g005

Figure 6. The distribution of links in link-shells. For the coauthor, fetion and email networks, we extract the top 10% important links, based on
the GLANB, disparity filter and salience methods separately, to analyze their distributions in terms of link-shells. In addition, we also exclude the links
that have degree of 1 to extract the remaining top 10% important links based on the salience method (salience-E) to analyze the distribution.
doi:10.1371/journal.pone.0100428.g006
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Furthermore, introducing the control parameter c into GLANB

provides a way to adjust the impacts of the node degrees on the

extracted backbones, which makes the backbone adaptive to the

global structure and the local structure by changing the value of c.
When c?0, the backbone mainly concentrates on the global

structure. When the value of c becomes larger, the backbone is

affected more greatly by the local structure. Another advantage is

that the GLANB method can be applied to all types of networks

regardless of whether they are weighted or unweighted and

regardless of whether they are directed or undirected.

The computational complexity of the GLANB method is

determined by the computation of the involvement and the

statistical importance of the links. To compute the involvement,

we must find all of the shortest paths between each pair of nodes,

which results in the computational complexity being

O NLzN2 ln Nð Þ
� �

[22], where N is the number of nodes and

Lthe number of links in the network. The computation of the

statistical importance must scan all of the links to compute the

degrees of the nodes and the SI of the links; thus, the

computational complexity is O Lð Þ. Because LvN2, the compu-

tational complexity of GLANB is O NLzN2 ln Nð Þ
� �

. When the

size of the network is very large, GLANB is not adaptable if it is

executed on only a single computer. However, the computational

environment has recently been changing dramatically. Parallel

computation platforms are being used pervasively because of their

low implementation costs and high performance. Because the

GLANB method is based on each single node to measure the

involvement and statistical importance of their neighboring links, it

is easy to implement GLANB on a parallel platform.

The experiments on the real-world networks show some

interesting results. First, the link involvements show local

heterogeneity that arises from the topological structure of the

networks and from the heterogeneous weight distributions because

the shortest paths are determined by those two aspects. Moreover,

the involvement is more heterogeneous in the weighted network

than in the unweighted network (Figure 3). Second, the link

importance distribution, which shows a bimodal shape, gives a

robust classification of the links. The bimodal distribution comes

from both the local heterogeneity of involvement and the null

model that is adopted in GLANB. Third, as the fraction of links in

the backbones increases, the size of the backbones that are

extracted by the GLANB method first increases rapidly and then

becomes almost unchanged, and at last, increases again. The

GLANB method assesses the links that are adjacent to the nodes

that have a degree of 1 as the least important; thus, as the number

of links in the backbone increases, the size of the extracted

backbone becomes unchanged for an interval when only the nodes

with a degree of 1 are not included in the backbone. Fourth, the

control parameter c can affect the size of the backbones. A larger

value of c decreases the growth rate of the size of the backbone,

because the links that are adjacent to the nodes that have a larger

degree are favored, and they cannot efficiently add more nodes

into the backbone. Fifth, the GLANB method tends to give more

importance to the nodes that are in the core of the network than

the other methods do. Especially as the control parameter c
increases, more nodes in the core are included in the backbone. In

practice, the choice of c value depends on what backbone is

needed. The larger the value of c is, more likely the backbone

includes the links that are adjacent to nodes with high degree and

that are in the core of network from the view of k-shells, and more

likely includes less nodes at preserving the same proportion of

links.

The GLANB method aims to extract backbones from networks

by filtering unimportant links, which can decrease the size of the

network greatly. Thus, this method can help us to understand the

structure of the networks better, to determine what links are

important to transferring information, to express the network by a

graph picture easily, and to control the network densities.
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