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Abstract In order to survive in extreme environments,
organisms need to develop special adaptations both on
physiological and molecular levels. The sleeping chironomid
Polypedilum vanderplanki, inhabiting temporary water pools
in semi-arid regions of Africa, is the only insect to have
evolutionarily acquired the ability to withstand prolonged
complete desiccation at larval stage, entering a state called
anhydrobiosis. Even after years in a dry state, larvae are able
to revive within a short period of time, completely restoring
metabolism. Because of the possible involvement of stress
proteins in the preservation of biomolecules during the
anhydrobiosis of the sleeping chironomid, we have analyzed
the expression of genes encoding six heat shock proteins
(Pv-hsp90, Pv-hsp70, Pv-hsc70, Pv-hsp60, Pv-hsp20, and
Pv-p23) and one heat shock factor (Pv-hsf1) in dehydrating,
rehydrating, and heat-shocked larvae. All examined genes
were significantly up-regulated in the larvae upon dehydra-
tion and several patterns of expression were detected. Gene
transcript of Pv-hsf1 was up-regulated within 8 h of
desiccation, followed by large shock proteins expression
reaching peak at 24–48 h of desiccation. Heat-shock-
responsive Pv-hsp70 and Pv-hsp60 showed a two-peak
expression: in dehydrating and rehydrating larvae. Both
small alpha-crystallin heat shock proteins (sHSP) transcripts
were accumulated in the desiccated larvae, but showed

different expression profiles. Both sHSP-coding genes were
found to be heat-inducible, and Pv-hsp20 was up-regulated
in the larvae at the early stage of desiccation. In contrast,
expression of the second transcript, corresponding to Pv-p23,
was limited to the late stages of desiccation, suggesting
possible involvement of this protein in the glass-state
formation in anhydrobiotic larvae. We discuss possible roles
of proteins encoded by these stress genes during the different
stages of anhydrobiosis in P. vanderplanki.
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Introduction

Molecular chaperones are a large and diverse group of
proteins with property of supporting noncovalent assembly/
disassembly of other macromolecules in the cell (Kregel
2002; Burdon 1986; Frydman 2001). Heat shock proteins
(HSP) also actively participate in long-term adaptations to
the environmental changes and seasonal developmental
patterns in invertebrates. In a number of insect species, up-
regulation of hsps begins at the start of diapause and
decreases back to the normal homeostatic level during the
re-initiation of development (Rinehart et al. 2006b, 2007a;
Gkouvitsas et al. 2008). During the last decade, involve-
ment of large HSPs (HSP40, HSP60, HSP70, HSP90, and
HSP100) in various hypometabolic processes in arthropods
has been experimentally confirmed on a number of insect
species. In spite of some species-based and HSP-type-
related controversy, it is widely accepted that insect
diapause is associated with changes in HSP expression
both on transcriptional and translational levels. After an
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initial report in 1998 by Denlinger’s group, changes in
expression of HSP associated with different types of
diapause were confirmed for members of several insect
taxa, including Hymenoptera, Coleoptera, Lepidoptera, and
Diptera (Benoit et al. 2009; Rinehart et al. 2006b, 2007a;
Danks 2000; Gkouvitsas et al. 2008). The growing amount
of data suggests that association of HSP with developmen-
tal arrest is a common pattern even beyond insects, and
temporal changes or continuously higher levels of HSP
expression would have impact in developmental progress,
thermal resistance, and general level of metabolic activity
(Watanabe et al. 2003a). The main functions of HSPs in
these examples of development arrest are proposed to be an
interaction with other cryoprotectants to increase general
stability of the protein pool and a direct action on the
suppression of the development (Rinehart et al. 2007a).

Dehydration of cells is one of the most serious
stresses, and is crucial for most organisms, since massive
irreversible protein–protein aggregation caused by the
hydrophobic effect occurs as a compensation for the loss
of free water. Such changes in most cases lead to death,
as the majority of organisms have limited potency to
withstand water loss (Alpert 2006; Goyal et al. 2005;
Sakurai et al. 2008a; Bohnert 2000). At the same time,
there are examples of anhydrobiosis—the phenomena of
maintaining viability for a long period of time under the
absence of free water. The best-characterized examples
include microorganisms, plants, rotifers, nematodes, tardi-
grades, crustaceans, and insects (Alpert 2006; Goyal et al.
2004; Watanabe 2006). In such organisms, all biochemical
reactions and metabolism are undetectable in the dried
state, but anhydrobiotes are able to revive back to the
active life in a short period of time after appearance of
water. In some groups of organisms, anhydrobiosis is an
obligate part of the life cycle, while others continuously
maintain the potential to reversibly enter the dry state
(Crowe and Madin 1974; Guidetti and Jonsson 2002;
Watanabe 2006; Watanabe et al. 2005; Clegg 2001, 2005).
While physiological and morphological aspects of anhy-
drobiosis are relatively well-described, the molecular
mechanisms allowing such natural dry preservation of cell
organelles and macromolecules are yet to be understood in
detail. HSPs have, for a long time, been thought to have
high impact on the intracellular processes associated with
desiccation tolerance in higher eukaryotes, but only a few
members of this group of chaperones have been actually
analyzed with a special focus to anhydrobiosis. Two small
HSPs, p26 and artemin, have been found in high amounts
(10–15% of total non-yolk proteins) in the encysted
embryos of several branchiopod crustaceans, and a
growing amount of data suggests that chaperone activity
of these proteins is a key factor for the formation of dry

cysts, viable and resistant to environmental stresses (Clegg
2001, 2005; Willsie and Clegg 2001). Accumulation of
small HSPs has also been observed in plant seeds
(Hoekstra et al. 2001; Kalemba and Pukacka 2008;
Wehmeyer and Vierling 2000). Larger HSPs have had
even less attention. Recently, Schill and co-authors have
demonstrated that at least some isoforms of HSP70-coding
genes are up-regulated when tardigrades enter anhydro-
biosis and revive back to active metabolism, while other
chaperones show no clear pattern of involvement in the
process of anhydrobiosis (Schill et al. 2004, 2009; Reuner
et al. 2009).

In the present study, we have focused on the African
chironomid Polypedilum vanderplanki—the largest known
anhydrobiotic animal. The larvae of this chironomid can
withstand complete desiccation and maintain viability for
years in a dry state, indicating the existence of a highly
effective mechanism of long-term preservation of proteins
in the dried larvae. The activity of HSPs, together with
other protectants (trehalose and LEA proteins) for cells and
organelles, has previously been suggested to be of
significance for the larvae, enabling protection of the
metabolic machinery upon anhydrobiosis (Kikawada et al.
2006, 2007; Nakahara et al. 2008; Watanabe 2006). We
have conducted comparative analyses of structural and
expression of genes coding six members of main HSP
families and a heat shock factor (HSF) in relation to
anhydrobiosis of P. vanderplanki.

Materials and methods

Insect rearing

P. vanderplanki larvae were reared on milk agar under
controlled light (13 h light:11 h dark) at 27 to 28°C. The
procedure of desiccation to induce anhydrobiosis is as
previously described (Watanabe et al. 2003b), i.e., the
larvae were placed on filter paper with 0.44 ml of distilled
water in a glass Petri dish (diameter 65 mm, height 20 mm),
which was set in a desiccator (20×20×20 cm) with 1 kg of
silica gel. Larvae for RNA and protein expression analyses
were sampled according to the time (in hours) passed from
the beginning of desiccation (D) and of rehydration (R),
correspondingly.

Heat shock treatment

To examine the heat shock response of HSP-coding gene
expression, 100 wet active larvae were kept at 42°C for
60 min in a 50-ml tube with preheated deionized water and
then transferred to a tube of the same volume of the water at
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25°C during 90 min for recovery. After that, total RNAwas
extracted from the larvae for further analysis. The control
larvae were kept at 25°C continuously in deionized water
until RNA extraction.

Chaperones cDNA cloning from P. vanderplanki

In a P. vanderplanki EST database (Kikawada et al. 2006),
the clones showing structural similarities to known hsps
were isolated, and the corresponding full-length cDNAs
were obtained by 5′- and 3′-RACE using a SMART RACE
cDNA amplification kit (Clontech, Mountain View, CA,
USA) with specific primers (sequences are available upon
request). The full length of Pv-hsps and Pv-hsf1
corresponding cDNAs were subcloned into pCR®4-
TOPO® vector (Invitrogen, Carlsbad, CA, USA) and
further used as templates for real-time PCR.

Quantitative real-time PCR

Total RNA from hydrated, dehydrating, rehydrated, and
heat-shocked larvae was extracted using Trizol (Invitro-
gen) and the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) and reverse transcribed using Ready-To-Go™ T-
Prime First-Strand Kit (GE Healthcare Bio-Sciences,
Piscataway, NJ, USA). The RNA samples from dehy-
drating and rehydrating larvae were named “D” and “R”,
respectively, and numbers correspond to the hours of
treatment. Real-time PCR was performed using a Light-
Cycler® 2.0 real-time PCR apparatus (Roche Diagnos-
tics, Basel, Switzerland) with SYBR® Green PCR Master
Mix (TaKaRa, Ohtsu, Japan).

Amplifications were performed using 1× SYBR Green
PCR mix (TaKaRa) and 10 pmol of each primer. PvEf1-alpha
gene (AB490338.1) was used as an internal standard for data
normalization and quantification. The expression of each
gene was tested in triplicate in each of the three biologically
independent experiments. The cycling conditions were as
follows: 3 min activation at 95°C, 45 cycles of 10 s at 95°C,
20 s at 60°C, and 25 s at 72°C. Melting curves from 60 to
99°C, rising by 1°C at each step and pausing 5 s after each
step, and the accompanying software were used for qPCR
data normalization and quantification. The full list of primers
is described in Supplementary Table S1.

Statistical analysis

Results of gene expression are reported as means±95%
CIA (95% confidence interval) with statistical evaluation
performed using a two-tailed Student t test. A difference at
P<0.05 was considered significant in Prism version 5
(GraphPad Software, San Diego, CA, USA). The full list of

reference sequences used in this study is described in
Supplementary Table S2.

Results

Heat shock factor (Pv-hsf1) gene expression in relation
to anhydrobiosis

The full sequence for Pv-hsf1 (HM589528) was obtained
by a combination of sequence data from the P. vanderplanki
EST database and RACE cloning. Pv-hsf1 has a 15-bp
5′-UTR, a 571-amino acid coding ORF, and a 771-bp
3′-UTR (Supplemental Fig. S1). The deduced amino acid
sequence of Pv-hsf1 shows the typical characteristics of the
HSF1 family (Wu 1995), including the DNA binding
domain and oligomerization domains (Supplemental
Fig. S1). Phylogenetical analysis confirmed the identity of
Pv-HSF1 (Fig. 1c).

Pv-hsf1 expression was examined throughout dehydra-
tion and rehydration of the larvae using real-time PCR
technique. While transcripts were detected in all samples,
relative Pv-hsf1 expression increased in the larvae already
in D-8 (corresponding to 8 h of desiccation) and maintained
a high level, up to nearly complete dehydration of the
larvae (Fig. 1b). In the desiccated, rehydrating, and
completely revived larvae (R 1–48), Pv-hsf1 expression
was detected at low level as observed in non-stressed active
larvae. The Pv-hsf1 gene was also heat shock-inducible
(Fig. 1a).

Heat shock protein 90-kDa (Pv-hsp90) gene expression
in relation to anhydrobiosis

The full-length sequence for Pv-hsp90 (HM589529) was
obtained through combination of the sequence from the
EST database and RACE cloning of P. vanderplanki
cDNA. A conceptual translation of the composite cDNA
revealed that the ORF encodes a 714-amino-acid protein
with classical ATPase domain and HSP90 catalytic domain
(Supplemental Fig. S2). The deduced amino acid sequence
of Pv-hsp90 is structurally similar to cytoplasmic HSP90s
and, according to the modern nomenclature, should be
classified as a member of HSP90a group (Fig. 1f).

The presence of mRNA encoding Pv-HSP90 was linked
to the entering to anhydrobiosis and further rehydration
periods. As shown in Fig. 1e, over-expression of Pv-hsp90
was detected after 8 h of desiccation. After approximately
48 h of desiccation, its expression reached the maximum
level, but in completely dried larvae (R0) and during the
rehydration mRNAs gradually declined to the level of
average metabolic expression pattern at 48 h after rehydra-
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tion. The expression of Pv-hsp90 was also enhanced by
heat shock (Fig. 1d).

Expression of genes coding two 70-kDa heat shock proteins
(Pv-hsp70 and Pv-hsc70) in relation to anhydrobiosis

We have cloned two full transcripts corresponding to
proteins from HSP70 family (Fig. 2). The first transcript,
named Pv-hsc70 (HM589530), is a full-length clone of
2,272 bp, with a 1,962-bp ORF encoding a 654-aa protein.
The deduced amino acid sequence contained the typical
HSP70 protein family signatures 1–3 (Supplemental
Fig. S3) and showed the highest similarity to Chironomus
HSC70 (AAN14525) (Fig. 2c). No up-regulation of Pv-
hsc70 was observed under heat stress, and we defined the
transcript as a cognate 70-kDa HSP (Fig. 2a). Analysis of
Pv-hsc70 expression showed that up-regulation of the
mRNA was first detectable in the larvae subjected to
8-h drying and kept increasing with maximum level
occurring at 48 h of dehydration. The mRNA level

showed a lower value in completely dried and just
rehydrated larvae and finally dropped to the average non-
stress level comparable to the 12–24 h revived larvae
(Fig. 2b).

The second full-length transcript, Pv-hsp70 (HM589531),
consisted of 2,441 bp with a 1,974-bp ORF, encoding 658-aa
protein. The deduced amino acid sequence, with the highest
similarity to Aedes hsc70 (ABF18258), showed the presence
of all conservative HSP70 family structural signatures
(Fig. 2f, Supplemental Fig. S4). Over-expression of the
transcript in response to heat stress was observed, and we
defined the gene as inducible HSP70 (Fig. 2, Supplemental
Fig. S4). Though up-regulation of Pv-hsp70 was already
detectable in larvae after 8 h of desiccation (Fig. 2e) and
reaching at its peak in the larvae subjected to 48-h drying,
the level of expression was lower than that of Pv-hsc70
(Fig. 2b). Furthermore, a second peak of up-regulation
appeared in the larvae 3 h after the beginning of rehydration.
The expression returned to the average metastatic level at the
stage of 24 h of rehydration (R-24, Fig. 2e).
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Fig. 1 Relative mRNA expression profiles for Pv-hsf1 and Pv-hsp90
in heat-shocked (a, d) and anhydrobiotic (b, e) chironomid larvae.
Values for the mRNA level of each gene were corrected with PvEf1-
alpha expression level. The level of expression was calculated for

each gene relative to the expression in control hydrated larvae (value=
1). Error bars represent mean value±95% CI for three replicates. cont.
control hydrated larvae. c, e Neighbor-joining tree of the Pv-HSF1 and
Pv-HSP90 amino acid sequences
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Heat shock protein 60-kDa (Pv-hsp60) gene expression
during anhydrobiosis

The cDNA encoding the P. vanderplanki HSP60 (Pv-hsp60,
HM589532) was 2,243 bp in length (Supplemental Fig. S5)
with a 1,710-bp ORF. The deduced protein comprised 569
amino acids. The first 26 triplets downstream of the

initiation codon ATG encode amino acids that together
have the necessary characteristics of a mitochondrial
presequence. A GGM motif was located at the carboxyl
terminus; other domains indicating typical mitochondrial
HSP60 (GroEL_like type I chaperonin) properties were
found in the deduced protein sequence (Supplemental
Fig. S5, Fig. 2i). The highest-scoring amino acid similar-
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Fig. 2 Relative mRNA expression profiles for Pv-hsp70, Pv-hsc70,
and Pv-hsp60 in anhydrobiotic (b, e, h) and heat-shocked (a, d, g)
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changes for each gene was calculated using that of control hydrated
larvae as standard (value=1). Error bars represent mean value±95%
CI for three replicates. cont. control hydrated larvae. c, f, i Neighbor-
joining tree of Pv-HSC70 and Pv-HSP60 amino acid sequences
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ities were to HSP60 (chaperonins) from Anopheles
(XP_318461.2), Culicoides (AAB94640.1), and Aedes
(XP_001661764). The gene was not heat-inducible
(Fig. 2g). Expression activity of Pv-hsp60 in the larvae
was similar to that of Pv-hsp70: a two-peak pattern during
entering and reviving from anhydrobiosis. We observed
initial increase of the expression already in the larvae
subjected to 8 h of desiccation and some further increase
(2–4 folds) up to the nearly complete desiccated state of the
larvae (D-48). At the same time, level of expression of Pv-
hsp60 in rehydrating larvae was initially on the lower level
compared with that in the dehydrating larvae, but showed
the second peak in a few hours after complete revival of the
larvae (Fig. 2h).

Expression of genes coding two small chaperones pv-hsp20
and pv-p23 (p26 homolog) during anhydrobiosis

The last two analyzed chaperones belong to the group of
low molecular mass proteins containing alpha-crystallin
domain (alpha-HSP). One of the small HSP-coding genes
(Pv-hsp20, HM589533) is a full-length clone of 835 bp
with a 522-bp ORF (Supplemental Fig. S6), coding a
putative 20-kDa protein (173 aa) with highest similarity to
Culex HSP22 (XP_001847195) and Drosophila HSP27
(ABX80641.1) (Fig. 3c).

The second small HSP (Pv-p23, HM589534) is repre-
sented by full-length clone of 885 bp, with a 588-bp ORF
(Supplemental Fig. S7), coding a putative 22.8-kDa protein
(196 aa) that most closely resembles Belgica sHSP
(ABF01017) and Artemia p26 (ABC41139) (Fig. 3f). Both
HSPs showed presence of the conservative alpha-crystallin
domain, assuming formation of large oligomeric complexes
as a structural prerequisite for the chaperone activity. At the
same time, the domain showed a low level of cross-
similarities (less than 35% on the amino acid level),
suggesting that activity patterns and cellular functions of
the proteins would be different. In addition, translated
sequence of Pv-hsp20 showed the presence of a typical
WDPF motif (amino acids residues 10–30, Supplemental
Fig. S6 and S7), whereas Pv-p23 did not.

We found that both Pv-hsp20 and Pv-p23 were up-
regulated in the larvae subjected to heat shock (Fig. 3a, d).
Furthermore, both genes showed over-expression associat-
ed with anhydrobiotic processes in the larvae, but their
expression patterns were different. Under normal non-
stressed conditions, the expression of Pv-hsp20 was at the
low level (Fig. 3b, e) and then up-regulated already after
8 h of desiccation and showed the highest level of
expression in the nearly dry and just revived larvae and
followed by slow declining to the normal, non-stressed
level at 48 h of rehydration. In contrast, expression of Pv-
p23 was dehydration-inducible and restricted to the late

stages of dehydration of the larvae showing its maximum
level in the completely desiccated and just revived larvae
and dropped to non-stress lowest level as early as 12 h after
rehydration (Fig. 3e).

Discussion

In this study, we have demonstrated that expression of
genes coding several members of the main HSP groups is
tightly linked to the anhydrobiosis of P. vanderplanki
larvae. Figure 4 summarizes the periods of up-regulation
of HSP-corresponding genes in chironomid larvae during
the dehydration–rehydration cycle.

Large HSP-encoding genes

Experimental data related to involvement of large heat
shock proteins specifically in anhydrobiosis in invertebrates
is limited to several papers related to hsp expression in
tardigrades, where it is shown that there are at least three
hsp70-like genes (all heat shock up-regulated) with differ-
ent expression profiles in relation to anhydrobiosis. All
three isoforms show significant up-regulation after revival
of the tardigrades to active stage (Schill et al. 2004; Jonsson
and Schill 2007; Reuner et al. 2009). At the same time,
after further analysis of other groups of hsp, the authors
concluded that chaperones are not involved in anhydrobio-
sis in water bears.

In the present study, we have isolated two different
isoforms of hsp70 and they both are significantly up-
regulated during entire process of anhydrobiosis in the
chironomid larvae (Fig. 2b, e). Pv-hsp70, a heat-shock-
responsive isoform, referred to gene encoding as real
HSP70, showed an initial up-regulation pattern at the
beginning of dehydration of the larvae and later, an even
higher peak, at the stage corresponding to 3 h after
rehydration (Fig. 2e). Such patterns of inducible hsp70
expression are similar to that in tardigrades, where it was
suggested that chaperone over-expression was related to
refolding of the proteins damaged during formation of the
“tun” and revival back to active life after anhydrobiosis
(Schill et al. 2004). Pv-hsc70, a cognate isoform, instead
shows only one-peak up-regulation, with a gradual increase
in the expression level during desiccation, reaching a
maximum level at the final step of dry larvae formation
(stage D-48). Then, continuous decrease of mRNA level
was observed during rehydration, approaching average non-
stressed level at the stage R12 (Fig. 2b). Based on absolute
copy numbers estimated by real-time PCR and EST
database (data not shown) and on the expression pattern,
Pv-hsc70 seems to be the dominant HSP70 isoform both in
wet (active) and dry (anhydrobiotic) larvae. Activity of
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control hydrated larvae. c, f Neighbor-joining tree of the Pv-HSP20
and Pv-p23 amino acid sequences
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Fig. 4 Temporal representations of anhydrobiosis stages, in which genes encoding heat shock proteins are up-regulated in the larvae of the
sleeping chironomid
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HSC70 (cognate form of HSP70) is usually tightly linked to
de novo protein synthesis machinery and during hypome-
tabolic processes, such as insect diapause or under stress
conditions (including desiccation), where the expression of
hsc70 is reported to be unchanged (Denlinger 2002; Sonoda
et al. 2006a) or even down-regulated (Gkouvitsas et al.
2009). No specific studies on HSC70 in anhydrobiotic
invertebrates have been reported so far, but our results
suggest that protein product of Pv-hsc70 is an active
participant of anhydrobiotic processes in the larvae. While
in the cases of typical hypometabolic processes both
transcription and translation activity drop to lower level,
in the larvae of P. vanderplanki de novo synthesis of
several groups of LEA proteins and conversion of glycogen
to trehalose followed by its delivery to cells are critical
factors defining the success of anhydrobiosis (Kikawada et
al. 2006, 2008; Watanabe et al. 2007). As water leaves cells
during dehydration, the synthesis of LEA proteins and other
molecular factors essential for the anhydrobiotic state of
larvae have to be completed under conditions of increased
intracellular concentration of macromolecules. The over-
expression of Pv-hsc70 probably reflects an active partic-
ipation of Pv-HSC70 in this synthesis process.

Members of HSP90 family are considered to be the among
the most abundant chaperones in the cytoplasm of eukaryotic
cells, but, to the best of our knowledge, no studies focusing on
the relation of these chaperones to anhydrobiotic processes
have been reported to date (Goyal et al. 2005; Schill et al.
2009; Watanabe 2006). In spite of the fact that HSP90 is
important for multiple developmental and metabolic net-
works, information about its involvement in insect diapause
remains controversial. Depending on the type of diapause
and species, the expression level of the chaperone decreases,
increases, or remains unchanged (Lopez-Martinez and
Denlinger 2008; Rinehart et al. 2007a; Sonoda et al.
2006b). Recently, it was found that expressions of both
HSC70 and HSP90 in the larvae of flesh fly were
unresponsive to dehydration (Hayward et al. 2004; Rinehart
et al. 2006a, 2007a). In our study, up-regulation of Pv-hsp90
gene in the larvae of P. vanderplanki was observed
throughout the entire process of entering into, and revival
from, anhydrobiosis with a dynamic of expression similar to
that of Pv-hsc70 (Figs. 1 and 2). The similar patterns of
over-expression for both genes continued during rehydration
of the larvae, assuming the reinitiation of productive protein
folding pathways, in which both HSC70 and HSP90 play a
fundamental role (Leung and Hightower 1997; Young et al.
2001). This might suggest the co-activity of both chaperones
as a sign of maturation of the proteins involved in
anhydrobiosis process (Rajapandi et al. 2000).

Pv-hsp60 also was the only gene coding a HSP60 family
member found in P. vanderplanki EST database and
analyzed in this study (our unpublished data). In contrast

to that of other chaperones, the mRNA expression of Pv-
hsp60 showed a much lower degree of change during entire
anhydrobiosis (Fig. 2h). Another member of the HSP60
family, TCP-1, involved in the folding of cytoskeleton
proteins was recently found to be tightly linked with
diapause and low-temperature survival in insects and brine
shrimp (Rinehart et al. 2007a; Wang et al. 2007), but at
present we have no data about the activity of the
homologous gene in the larvae of P. vanderplanki.

Genes encoding small (crystallin-like) HSPs

Here we have cloned and analyzed expression of two genes
coding small heat shock proteins (Pv-hsp20 and Pv-p23;
Fig. 3). Both proteins possess crystallin domains but show
differences in primary structure and expression pattern
during anhydrobiosis.

Pv-HSP20 has all the typical structural features of the
sHSP family and is phylogenetically close to HSP27 of
Drosophila. Expression of this gene is also up-regulated by
heat shock (Fig. 3). The expressional pattern of Pv-hsp20
resembles those of small HSPs appearing in developing
plant seeds ahead of the processes associated with
desiccation (Coca et al. 1994; Wehmeyer et al. 1996). To
date, there have been no studies focusing on the participa-
tion of HSP27 homologs in the anhydrobiosis of inverte-
brates. At the same time, activity of this gene is tightly
linked to the resistance to environmental changes and to
metabolic suppression during developing and diapausing
stages of insects and other invertebrates (Rinehart et al.
2007b; Hayward et al. 2004; Saravanakumar et al. 2008).
Up-regulation of Pv-hsp20 was already observed in the
larvae 8 h after the start of desiccation, and a high level of
the corresponding mRNA was maintained for at least 24 h
after revival from anhydrobiosis. We assume that Pv-hsp20
encodes a member of sHSPs and that its initial up-
regulation in dehydrating larvae may be related to chaper-
one activity in the larvae suffering from different factors
associated with water deficit, including molecular crowding
and oxidative stress. The dynamic of Pv-hsp20 mRNA
abundance is similar to that of Pv-hsp90 and Pv-hsf1, but at
the present step we have no data on joint activity of these
chaperones in the larvae (Fig. 4).

In contrast, expression of the second small HSP-
coding gene, Pv-p23, was undetectable in wet and semi-
dry larvae (Fig. 3e). Based on phylogenetic analysis, we
consider Pv-P23 to be a desiccation-inducible ortholog of
Artemia's p26—a small chaperone functionally involved
in the process of anhydrobiosis in anoxic cysts of lower
crustaceans (Willsie and Clegg 2001). In Artemia's cysts,
p26 increases in concentration, occupying 10–15% of total
non-yolk protein biomass, and migrates to the nucleus in
dehydrating cysts. Artemia's p26 has been proposed to act
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as a chaperone, stabilizing nuclear acids (Clegg 2005;
Liang and MacRae 1999; Willsie and Clegg 2001).

Drastic increase of Pv-p23 mRNA in the larvae occurred
between stages D-24 and D-48, i.e., during the period
preceding vitrification of the cells and tissues. Such a
dehydration-specific activity of the Pv-p23-coding gene
might suggest a direct link between this protein and
anhydrobiosis. As a member of the crystallin family, Pv-
p23 would also form an oligomeric structure and possibly
be involved in the vitrification of larval tissues on the late
stages of desiccation (Sakurai et al. 2008b). In summary,
we have shown that the initiation of anhydrobiosis-related
processes in P. vanderplanki is associated with up-regulated
expression of the genes coding major groups of HSP. We
suggest that HSPs constitute an important part of
anhydrobiosis-related changes in the cells of P. vanderplanki
larvae. At the same time, while our discussion is based on
the assumption that mRNA expression reflects the activity of
mature HSPs, it should be noted that a temporal shift
between gene expression and the activity of mature stress
proteins was observed in some cases (Kostal and Tollarova-
Borovanska 2009). Consequently, more data are needed to
make a conclusion on the activity of HSPs in anhydrobiotic
larvae. Thus, further studies with a special focus on cellular
and tissue-specific localization, defining the role of each
member of this family, including careful analysis of protein
expression of each isoform, will need to be carried out for
a better understanding of the origin and machinery of
long-term water-free preservation of biomolecules during
anhydrobiosis in the sleeping chironomid.
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