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Vitamin A (retinol) is a necessary and important constituent of the body which is provided by
food intake of retinyl esters and carotenoids. Vitamin A is known best for being important
for vision, but in addition to the eye, vitamin A is necessary in numerous other organs in
the body, including the skeleton. Vitamin A is converted to an active compound, all-trans-
retinoic acid (ATRA), which is responsible for most of its biological actions. ATRA binds
to intracellular nuclear receptors called retinoic acid receptors (RARα, RARβ, RARγ). RARs
and closely related retinoid X receptors (RXRα, RXRβ, RXRγ) form heterodimers which bind
to DNA and function as ligand-activated transcription factors. It has been known for many
years that hypervitaminosis A promotes skeleton fragility by increasing osteoclast forma-
tion and decreasing cortical bone mass. Some epidemiological studies have suggested that
increased intake of vitamin A and increased serum levels of retinoids may decrease bone
mineral density and increase fracture rate, but the literature on this is not conclusive. The
current review summarizes how vitamin A is taken up by the intestine, metabolized, stored
in the liver, and processed to ATRA. ATRA’s effects on formation and activity of osteoclasts
and osteoblasts are outlined, and a summary of clinical data pertaining to vitamin A and
bone is presented.
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INTRODUCTION
It was reported by Hopkins in 1906 that no animal can survive
on a mixture of pure protein, fat, carbohydrates, water, and salt
(1). Six years later, he reported that “accessory factors” present in
astonishingly small amounts in milk support growth in rats (2). In
1918, McCollum suggested that “accessory fat soluble food factor”
supporting growth should be called “fat soluble A” (3). Two years
later, it was suggested by Drummond that “fat soluble A” should
be called vitamin A (4). The chemical nature of vitamin A was
described by Karrer in 1931 (5), but it was not until the end of
the 1940s that vitamin A could be produced in large quantities (6,
7). Frederick Hopkins was awarded the Nobel Prize in 1929 for

Abbreviations: Acp5, gene encoding tartrate-resistant acid phosphatase; ADAS,
adipose-derived adult stromal cells; Alpl, gene encoding alkaline phosphatase;
AP-1, activator protein-1; ATRA, all-trans-retinoic acid; BCMO1, β-caroten-15,15′-
monooxygenase; Bglap, gene encoding osteocalcin; BMD, bone mineral density;
BMP2, bone morphogenetic protein 2; Bmpr1A, gene encoding bone morphogenetic
protein receptor 1A; Calcr, gene encoding calcitonin receptor; CBP, CREB-binding
protein; Col1a1, gene encoding collagen type I, alpha 1; CRABP, cellular retinoic
acid-binding protein; C/EBPβ, CCAAT/enhancer binding protein β; CRBP, cellu-
lar retinol-binding protein; CRE, cyclic AMP response element; CREB, cyclic AMP
response element-binding protein; Csf1r, gene encoding colony-stimulating factor
1 receptor; Ctsk, gene encoding cathepsin K; DMP1, dentin matrix phosphopro-
tein 1; FABP, fatty acid-binding protein; FGF23, fibroblast growth-factor 23; FOP,
fibrodysplasia ossificans progressiva; Fos, FBJ osteosarcoma oncogene; HDAC, his-
tone deacetylase; Hifa, gene encoding hypoxia-inducible alpha; Ibsp5, gene encoding
integrin-binding sialoprotein or bone sialoprotein; IRF-8, interferon regulatory
factor-8; MEF, mouse embryonic fibroblasts; Mgp, gene encodingmatrix gla protein;

his work on vitamin A. Paul Karrer was awarded the Nobel Prize
in 1937 for having established the chemical nature of many vita-
mins, including vitamin A. For a comprehensive background on
the history of vitamin A, see Semba (8).

It was recognized in early studies that vitamin A is important
for vision, and in 1933, Wald showed that the vitamin A deriva-
tive 11-cis-retinal makes up rhodopsin, together with the protein
opsin (9). The visual signal transmitted from the retina to the
central nervous system is caused by the light-energy-dependent
decomposition of rhodopsin to opsin and all-trans-retinal. George
Wald, together with Ragnar Granit and Haldan Keffer Hartline,
received the Nobel Prize in 1967 for their discoveries concerning

Mitf, gene encoding microphthalmia-associated transcription factor f; Mmp2, gene
encoding matrix metallopeptidase 2; NCor, nuclear receptor corepressor; NFATC1,
nuclear factor of activated T cells; NF-κB, nuclear factor kappa B; OPG, osteo-
protegerin; PHEX, phosphate regulating endopeptidase homolog X-linked; PPAR,
peroxisome proliferator-activated receptor; PPRE, PPAR response element; PTH,
parathyroid hormone; RALD, retinal aldehyde; RALDH, retinal dehydrogenase;
RANK, receptor-activated nuclear factor kappa B; RANKL, RANK ligand; RAR,
retinoic acid receptor; RARE, retinoic acid response element; RBP, retinol-binding
protein; RDA, recommended daily allowance; ROR, retinoid-related orphan recep-
tor; RORE, ROR response element; RXR, retinoid X receptor; SMRT, silencing
mediator of RAR and thyroid hormone receptor; Sost, gene encoding sclerostin;
Sp7, gene encoding osterix; SRC, steroid receptor co-activator; STRA6, stimulated
by retinoic acid receptor; Tnfsf11, gene encoding RANKL; Tnfrsf11a, gene encod-
ing RANK; Tnfrsf11b, gene encoding OPG; TRAP5b, tartrate-resistant acid phos-
phatase 5b; Twist, gene encoding twist family basic helix-loop-helix transcription
factor 1.
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the primary physiological and chemical visual processes in
the eye.

Vitamin A not only is important for growth and vision, but
most cells in the body express vitamin A receptors. Important
functions include stem cell differentiation, organ development and
function, and the innate and acquired immune systems (10–16).
In developing countries, vitamin A deficiency is common, and
vitamin A supplementation can save countless lives at a mini-
mal cost (17). Vitamin A is used for treatment of skin disorders
like acne and also for different malignant tumors, particularly
acute promyelocytic leukemia. It also is used for Kaposi’s sarcoma,
head and neck squamous cell carcinoma, ovarian carcinoma, and
neuroblastoma (18, 19).

Pathological changes in the outer cortex of bone characteris-
tic of hypervitaminosis A have been observed in the tibial shaft
from a partial Homo erectus skeleton found in Kenya (20). Early
explorers suffered from vitamin A intoxication after consump-
tion of polar bear liver, which caused vertigo, vomiting, diarrhea,
headache, convulsions, peeling of the skin, and sometimes death
(21–23). In experimentally induced hypervitaminosis A in ani-
mals, it was observed as early as the 1920s that excessive vitamin
A results in thinning of the cortex of long bones and in sponta-
neous fractures (24). In epidemiological studies, it has been shown
that increased levels of vitamin A in serum can be associated with
decreased bone mass and increased risk for fractures (25, 26).

It is the aim of the present review to describe both the presence
and function of vitamin A receptors in bone and to summarize
the current knowledge of clinical studies investigating the role of
vitamin A for bone mass and fracture risk.

VITAMIN A UPTAKE AND METABOLISM
Vitamin A is obtained from the diet either as retinyl esters in eggs,
liver, bottled milk or fortified cereals, or as carotenoids (e.g., β-
carotene) in vegetables such as carrots or spinach. Approximately,
75% of vitamin A comes from retinyl esters. Retinyl esters and
carotenoids taken up by enterocytes are incorporated in chylomi-
crons (Figure 1). These are transported by the lymphatics and then
released into the circulatory system. Approximately, 66–75% of
dietary retinoid is eventually taken up by hepatocytes, where vita-
min A can be stored as retinyl esters or hydrolyzed to retinol, which
binds to retinol-binding protein (RBP) before being released into
the bloodstream (27). The remaining dietary retinoids are taken
up by extra-hepatic tissues such as white adipose tissue, skeletal
muscle, heart, lungs, and kidneys (28).

Retinoid in the form of all-trans retinol is transported from the
liver to peripheral cells bound to RBP in plasma. In the fasting state,
>95% of retinoid in the circulation is found as retinol bound to
RBP. Approximately, 25–33% of dietary retinoid that is absorbed
in the intestine is delivered to tissues other than the liver by chy-
lomicrons (27). A transmembrane-spanning receptor stimulated
by retinoic acid receptor (STRA6) mediates the cellular uptake of
retinol from RBP, while hydrolysis of retinyl esters by lipoprotein
lipase is thought to facilitate uptake of retinol from chylomi-
crons (29, 30) (Figure 2). Carotenoids associated with lipopro-
teins in chylomicrons can be taken up by lipoprotein-specific
receptors and converted to retinaldehyde (RALD) by β-caroten-
15,15′-monooxygenase (BCMO1) (31). Bone is the second most
important organ for clearance of chylomicron remnants, and it has
been reported that other fat soluble vitamins can be delivered to

FIGURE 1 | Vitamin A is provided from the food either as preformed
vitamin A (retinyl esters) or as provitamin A carotenoids. Retinyl esters
are hydrolyzed by pancreatic and intestinal enzymes and free retinol is taken
up by the enterocytes. Half of the carotenoids is oxidized to retinal and then
reduced to retinol. Retinol is esterified with long-chain fatty acids and

incorporated into chylomicrons together with intact carotenoids and then
carried by the lymphatics. The chylomicrons are taken up by hepatocytes in
the liver where vitamin A is stored as retinyl esters. Before being released
from the liver to the circulation, retinyl esters are hydrolyzed to retinol which
binds to retinol-binding protein (RBP).
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FIGURE 2 | Retinoids reach target cells mainly in the form of retinol
bound to RBP. A fraction of retinoids is also delivered by chylomicrons.
Inside the cell, retinol is oxidized to the active metabolite ATRA by ADH and
RALDH via all-trans-retinal that is bound by CRBP. ATRA is shuttled to the
nucleus by CRABP and FABP, facilitating binding to RARs and PPARs,

respectively. RARs and PPARs form heterodimers with RXRs to activate
transcription. In addition, ATRA can bind to RORs to initiate transcription.
Non-genomic effects of retinoids include phosphorylation of CREB that
translocates to the nucleus and activates genes. ATRA is inactivated by
oxidation by CYP26 enzymes.

osteoblasts in vivo via chylomicrons (32). Additionally, the active
metabolite all-trans-retinoic acid (ATRA) is present at low levels
in serum bound to albumin and has been shown to contribute to
tissue levels of ATRA (33).

Inside target cells, retinol is oxidized to retinal by alcohol dehy-
drogenases and bound to cellular retinol-binding protein (CRBP).
Retinal is then oxidized to ATRA, the biologically active metabo-
lite of vitamin A, by retinal dehydrogenases (RALDH). Cellular
levels of ATRA are regulated by the balance between synthesis
by RALDH and oxidative metabolism by cytochrome P450s such
as CYP26A1 and CYP26B1 (34–37). ATRA is bound to cellu-
lar retinoic acid-binding proteins (CRABP) and directed to the
nucleus for activation of specific nuclear receptors.

RETINOID RECEPTORS
Retinoids activate and repress expression of genes by both genomic
and non-genomic mechanisms. Two families of nuclear recep-
tors, retinoic acid receptors (RARs) and retinoid X receptors
(RXRs), are the primary receptors and mediators of retinoid
effects (38, 39). Each receptor family is made up of three iso-
types (α, β, and γ), produced by separate genes. In addition,
alternative splicing and different promoter usage give rise to at
least two different isoforms for each isotype (38). While the gene
sequence for each of the RAR isotypes differs significantly from
the other two, the sequences for each isotype are highly conserved
between humans and mice, leading to the speculation that each
RAR isotype has a specific function (40). RARs dimerize with
RXRs, and the heterodimers function as transcription factors,

activating retinoic acid response elements (RAREs) in the pro-
moter regions of target genes. Most retinol signaling in cells is
thought to be mediated by ATRA-binding RAR in RAR/RXR
heterodimers (38, 41). The binding of ATRA to the RAR/RXR
complex induces a conformational change in the ligand-binding
domain of the receptor, which facilitates the recruitment of coac-
tivators, such as members of the steroid receptor co-activator
(SRC)/p160 family and p300/ CREB-binding protein (CBP) (38,
39). In the absence of ligand, the coactivators are replaced by core-
pressors, such as nuclear receptor corepressor (NCoR), silencing
mediator of RAR and thyroid hormone receptor (SMRT), mSin3A,
and histone deacetylases (HDACs), resulting in active repres-
sion of transcription of target genes by RAR/RXR heterodimers
(38, 42, 43).

Cellular retinoic acid-binding protein II (CRABPII) shuttles
ATRA to the nucleus and facilitates binding of RARs. ATRA is
also shuttled to the nucleus by the fatty acid-binding protein
(FABP)5. FABP, in contrast to CRABPII, facilitates binding of
ATRA to peroxisome proliferator-activated receptors (PPARs), α,
β/δ, and γ, which is another group of nuclear receptors that forms
heterodimers with RXR (39, 44–47). PPAR/RXR heterodimers
function as transcription factors, activating PPAR response ele-
ments (PPRE) in target genes. It has been hypothesized that
ATRA can have opposing effects depending upon CRABPII/RAR
or FABP5/PPAR β/δ binding in keratinocytes and carcinomas, but
this has so far not been tested in bone cells (44, 45).

In addition to RARs, RXRs, and PPARs, retinoids can bind
retinoid-related orphan receptors (ROR) β and γ (48,49). RORs do
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not form heterodimers with RXR but regulate gene transcription
by binding as monomers to specific ROR response elements
(ROREs) in target genes (50, 51). RORβ has been shown to sup-
press mineralization and to decrease expression of Bglap (encod-
ing osteocalcin) and Sp7 (encoding osterix) mRNA in cultured
murine osteoblasts (52). RORα has been shown to be involved in
osteoblast metabolism and RORα-deficient mice have abnormal
bone development (53, 54).

In addition to the genomic signaling via ATRA binding to dif-
ferent nuclear receptors that regulate RAREs, PPREs, and ROREs
in target genes, retinoids can have rapid non-genomic/non-
classical actions as well. ATRA induces a rapid phosphorylation
of cyclic AMP response element-binding protein (CREB), which
translocates to the nucleus, binds, and activates genes contain-
ing cyclic AMP response elements (CRE) in their promoters (39,
55). This effect is not limited to ATRA, but also can be exerted
by retinol, and does not involve RARs (56). Another type of
non-genomic effect has been described for cytosolic RARα. In
neuronal cells, RARα has been shown to act as a RNA-binding
protein that associates with a subset of mRNAs and inhibits their
translation (57–59).

EFFECTS BY RETINOIDS ON BONE RESORPTION
EFFECTS BY VITAMIN A ON BONE RESORPTION IN VIVO
There are only a limited number of experimental studies inves-
tigating the effect by vitamin A on the skeleton. Trechsel et al.
reported that treatment of rats with the retinoid Ro 13-6298
rapidly (2–4 days) caused hypercalcemia and decreased bone mass,
responses associated with an enhanced number of periosteal osteo-
clasts (60). The fact that bisphosphonate decreased the effect by
the retinoid on bone mass suggests that at least part of the effect
was caused by enhanced osteoclast formation. Similarly, it was
reported by Hough et al. that a high dose of retinyl palmitate
enhanced osteoclast numbers and increased urinary secretion of
hydroxyproline in rats (61).

More detailed studies have been performed by Kneissel et al.
(62) and by Lind et al. (63), both demonstrating decreased bone
mass and enhanced osteoclast formation by hypervitaminosis A.
Treatment of male or female rats with either Ro 13-6298 for 4 days
(62),or with a mixture of retinyl palmitate/retinyl acetate for 7 days
(63), resulted in decreased cortical bone mass and an enhanced
number of osteoclasts at the periosteal side of cortical bone,
responses decreased by alendronate (Figure 3). Kneissel et al.,

FIGURE 3 | Regulation of osteoclast formation in cortical (A) and
trabecular (B) bone. At the periosteal site of cortical bone [(A), left ], ATRA
stimulates RANKL production in osteoblasts and/or osteocytes which leads to
stimulation of differentiation of mature osteoclasts from osteoclast
progenitors. Unlike in bone marrow, ATRA does not inhibit differentiation of

these osteoclast progenitors. In bone marrow or at endosteal site [(A), right ],
ATRA does not stimulate RANKL formation but inhibits differentiation of
osteoclast progenitors to mature osteoclasts. The role of ATRA for osteoclast
formation on the endosteal surfaces of trabecular bone (B) is currently not
known.
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however, found no effect on trabecular bone mass even though
the number of trabecular osteoclasts was decreased, whereas Lind
et al. observed decreased trabecular bone mass but with no effect
on osteoclast number (Figure 3). These divergent findings are
difficult to explain, but might be influenced by effects on bone
formation by vitamin A since this was not assessed.

In the study by Kneissel et al., circulating levels of the osteo-
clastic resorption marker tartrate-resistant acid phosphatase 5b
(TRAP5b) was increased, whereas Lind et al. reported decreased
levels of circulating TRAP5b, carboxy-terminal collagen crosslinks
(released to circulation during degradation of bone matrix) and
osteoclastogenic cytokine receptor activator of nuclear factor
κB ligand (RANKL). The increased TRAP5b is consistent with
increased periosteal osteoclast numbers and decreased bone mass.
Decreased TRAP5b, RANKL, and bone matrix fragments, though,
should indicate decreased osteoclast numbers, which is in contrast
to the enhanced number of periosteal osteoclasts reported by Lind
et al. These authors also noted a substantial reduction of osteoclast
numbers at the endosteal side of cortical bone. It might be that this
response was more dominating than the periosteal response, and
that the biochemical markers reflected the inhibition of osteoclas-
togenesis at the endosteal site. Mechanistically, Lind et al. suggest
that decreased numbers of endosteal osteoclasts might be due to
hypoxia caused by reduction of blood vessels in the bone mar-
row close to the endosteal surfaces. Interestingly, hypoxia-related
genes, such as Hif1a (hypoxia-inducible factor 1 alpha) and the
downstream genes Twist1 (twist family basic helix-loop-helix tran-
scription factor 1) and Mmp2 (matrix metallopeptidase 2), also
were decreased by hypervitaminosis A in the bone marrow. It is
clear that hypervitaminosis A results in decreased cortical bone
mass associated with increased numbers of periosteal osteoclasts
(Figure 3). The effect is large enough to cause decreased strength
as shown by three-point bending (63). More detailed studies are
needed, however, to assess osteoclast formation on bone surfaces
facing bone marrow. Such studies should include treatment with
different concentrations of vitamin A and assessment at different
time points after treatment and at different ages of experimental
animals. Recently, it was reported (64) that both cortical bone mass
and bone size in response to treatment with retinyl palmitate was
different in young (2–3 months), middle-aged (8–10 months), and
old (18–20 months) rats, but no studies at the cellular level were
performed.

EFFECTS BY VITAMIN A ON BONE RESORPTION IN ORGAN CULTURE
Increased numbers of osteoclasts as a consequence of hypervita-
minosis A was reported as early as 1934 by Strauss and Maddock
(24). That this was a direct effect by vitamin A was shown by
Barnicot (65) using fragments of crystalline vitamin A acetate
applied on parietal bones transplanted to mice brains and by Fell
and Mellanby (66) after adding plasma from fowl treated with
high doses of vitamin A to organ-cultured chicken or mouse long
bones. The decreased amounts of bone were not always associated
with an increased number of osteoclasts, and it was speculated
that other cells may be responsible for the action of vitamin A.
Raisz showed that vitamin A increased bone resorption in organ-
cultured, newborn mouse parietal bones and that, in parallel, the
number of osteoclasts was enhanced, although the number was

less than that induced by parathyroid hormone (PTH), prompt-
ing the suggestion that vitamin A caused bone resorption primarily
by increasing lysosome enzyme release, rather than by increas-
ing osteoclast formation (67). Later, Raisz et al. demonstrated
the importance of osteoclastogenesis for the effect of vitamin A
on bone resorption by showing that no effect could be obtained
in bone organ cultures from osteopetrotic mi/mi mice, which
are unable to form osteoclasts due to mutation in the Mitf gene
(microphthalmia-associated transcription factor f) (68). Since then,
several groups have reported that both retinol and ATRA stimu-
late bone resorption in different organ-culture models (61, 69–72).
Recently, we showed that ATRA-stimulated bone resorption and
the number of cathepsin K+ mature osteoclasts in organ-cultured,
neonatal mouse calvarial bones (73). The ATRA response was abol-
ished by calcitonin and zoledronic acid and was associated with
increased expression of osteoclastic genes, such as those encoding
calcitonin receptor, TRAP, and cathepsin K. These experiments
demonstrate that the bone-resorptive effect by ATRA in organ-
cultured bone is dependent upon differentiation and the activity
of osteoclasts.

The observations in bone organ culture consistently have
shown that vitamin A can stimulate bone resorption and osteo-
clast formation. We have shown that the bone-resorptive effect
in such organ cultures is dependent upon the osteoclastogenic
cytokine RANKL (73). Thus, ATRA increased the mRNA and pro-
tein expression of RANKL and transiently decreased the RANKL
inhibitor osteoprotegerin (OPG) at the mRNA level with no effect
on OPG protein. The effect on bone resorption and osteoclastic
genes was inhibited by exogenously added OPG, demonstrating
the crucial role of RANKL for the stimulatory effect by ATRA
on osteoclastogenesis and bone resorption. Nonetheless, it was
not demonstrated which cell type responded to vitamin A with
enhanced RANKL.

By using a pharmacological approach with a variety of different
agonists for the different RARs, we provided evidence that RARα

is mediating the stimulatory effects by ATRA on RANKL and bone
resorption (73).

Thus, organ-culture studies are in agreement with in vivo stud-
ies showing increased formation of periosteal osteoclasts, although
it remains to be definitively proven which cell type in bone is
the primary target for vitamin A (Figure 3). Interestingly, it
has recently been reported that treatment of the osteoblastic cell
line MC3T3-E1 with ATRA for 2–3 weeks up-regulates Tnfsf11
mRNA (encoding RANKL) while in parallel decreasing osteoblast
differentiation (74).

EFFECTS BY VITAMIN A ON OSTEOCLAST FORMATION IN CELL
CULTURES
Experiments in organ-cultured bones suggest that vitamin A
stimulates osteoclastogenesis by increasing the differentiation of
mononuclear progenitors present in periosteum/endosteum by
enhancing periosteal/endosteal RANKL, which is in agreement
with observations made at cortical periosteal surfaces in vivo in
murine animal models. Osteoclasts, though, are also formed on
surfaces of bone facing bone marrow, with divergent effects by
vitamin A observed in in vivo studies. Therefore, it has been
of interest to assess whether vitamin A, similar to PTH and
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1,25(OH)2-vitamin D3, can stimulate osteoclast formation in
bone marrow cultures containing bone marrow stromal cells and
hematopoietic cells, including osteoclast progenitors.

Using bone marrow cell cultures from human ribs, it has been
found that, in contrast to 1,25(OH)2-vitamin D3, ATRA had no
stimulatory effect on osteoclast formation (75). A similar obser-
vation has been made using rat bone marrow cells (71). Recently,
we reported that, whereas PTH and 1,25(OH)2-vitamin D3 stim-
ulate osteoclast formation in mouse bone marrow cultures, ATRA
had no effect (76). Nor did ATRA induce expression of osteo-
clastic genes, such as those encoding calcitonin receptor, TRAP,
and cathepsin K, or osteoclastogenic genes like nuclear factor
of activated T cells 1 (Nfatc1) and FBJ osteosarcoma oncogene
(Fos, c-Fos). The explanation for this is that, unlike 1,25(OH)2-
vitmain D3 or PTH, ATRA does not induce mRNA expression of
Tnfsf11 (encoding RANKL). It currently is not known if the lack
of effect on Tnfsf11expression in bone marrow stromal cells is due
to the absence of retinoid receptors in these cells, or if stromal cell
retinoid receptors are unable to induce the Tnfsf11gene in such
cells. It is apparent, though, that bone marrow stromal cells are
different from calvarial bone cells in terms of responsiveness to
retinoids.

Unexpectedly, retinoids have been found to inhibit 1,25(OH)2-
vitamin D3-stimulated osteoclast formation in rat bone marrow
cultures (77) and in co-cultures containing mouse bone marrow
cells and mouse calvarial osteoblasts (78). We have reported that
ATRA inhibits osteoclast formation in mouse bone marrow cul-
tures stimulated by either 1,25(OH)2-vitamin D3 or PTH (76).
ATRA did not affect 1,25(OH)2-vitamin D3-induced expression of
Tnfsf11 mRNA or down-regulation of Tnfrsf11b mRNA (encoding
OPG), showing that ATRA did not affect 1,25(OH)2-vitamin D3
signaling in stromal cells. The fact that ATRA inhibited hormone-
induced up-regulation of osteoclastic genes indicates that ATRA
inhibits osteoclast progenitor cell differentiation, rather than act-
ing at a later step during osteoclastogenesis. Similar to the findings
in hormone-stimulated bone marrow cultures, ATRA inhibits
RANKL-induced osteoclast formation in mouse spleen cell cul-
tures (76). It is, however, not possible to conclude from the crude
bone marrow and spleen cell cultures that ATRA acts directly on
osteoclast progenitor cells since other cells present in these cul-
tures might respond to ATRA by secreting osteoclast inhibitory
factor(s).

Conclusive evidence that vitamin A can act directly on osteo-
clast progenitor has been obtained in cells purified from mouse
bone marrow and human blood. Using RANKL-stimulated, non-
adherent monocytes/macrophage from mouse bone marrow,
Kneissel et al. (62) reported that ATRA inhibited osteoclast forma-
tion. Using highly purified macrophage colony-stimulating factor
(M-CSF)-expanded macrophages from mouse bone marrow, we
found that ATRA abolished RANKL-stimulated osteoclast forma-
tion with a half maximal effect at 0.3 nM (76). To obtain maximal
inhibition, ATRA had to be added along with RANKL, but not
after RANKL addition, and withdrawal of ATRA 6 h after adding
RANKL and ATRA together still resulted in strong inhibition.
These observations suggest that ATRA interferes at an early interval
of RANKL stimulation. Further evidence for this was the finding
that ATRA strongly inhibited RANKL-induced mRNA expression

of the osteoclastic genes Calcr, Ctsk, and Acp5 (encoding calci-
tonin receptor, cathepsin K, and TRAP, respectively), with half
maximal inhibition at 0.3 nM. Furthermore, the macrophage tran-
scription factor Mafb, which is down-regulated by RANKL during
osteoclastogenesis, still continued to be highly expressed after
ATRA treatment, indicating that the cells were arrested at the
macrophage state.

Similar to the observation in mouse osteoclast progenitor cell
cultures, it has been reported that ATRA abolishes osteoclast for-
mation in RANKL-stimulated, highly purified CD14+ monocytes
from human peripheral blood, with inhibition observed at and
above 0.04 nM of ATRA (79). Furthermore, the macrophage tran-
scription factor interferon regulatory factor-8 (IRF-8) was not
down-regulated by ATRA treatment, indicating that these cells
were arrested at the monocyte/macrophage state. RANKL-induced
osteoclast differentiation is dependent on a variety of kinases and
transcription factors, which are regulated both at the transcrip-
tional and activation levels (80–82). Three important transcrip-
tion factors are activator protein-1 (AP-1), nuclear factor kappa
B (NF-κB), and NFATc1, the latter being regarded as the mas-
ter regulator of osteoclastogenesis (83). Thus, RANKL induces
an early and prolonged mRNA expression of the AP-1 subunit
Fos (encoding c-Fos), an early and transient induction of the
canonical NF-κB subunits Nfkb1 (p105/p50) and Rela (p65), an
early and prolonged induction of the non-canonical NF-κB sub-
units Nfkb2 (p100/p52) and Relb, and a delayed up-regulation of
Nfatc1. In contrast, ATRA inhibits the RANKL-induced, increased
mRNA expression of Fos, Nfkb2, Relb, and Nfatc1 in the puri-
fied mouse bone marrow macrophages, again with half maximal
inhibition at 0.3 nM (76). It was further shown that ATRA also
inhibited the RANKL-induced protein expression of c-Fos and
Nfatc1. These observations indicate that ATRA inhibits signals
which are downstream from the receptor activated nuclear fac-
tor kappa B (RANK) receptor, providing an explanation for why
ATRA inhibits osteoclastogenesis in progenitors from mouse bone
marrow. It also was found that ATRA inhibited the mRNA expres-
sion of Tnfrsf11a (encoding RANK), but not that of the M-CSF
receptor Csf1r (colony-stimulating factor 1 receptor). However,
Tnfrsf11a mRNA was decreased substantially later than the mRNA
expression of Fos and Nfatc1, indicating that decreased Tnfrsf11a
expression is not the primary event by which ATRA inhibits
osteoclastogenesis.

Mouse bone marrow macrophages abundantly express Rara
mRNA, but express less Rarb and Rarg mRNA (76). At the pro-
tein level, RARα and RARβ were similarly expressed, whereas
hardly any cells expressed RARγ, as assessed by flow cytom-
etry. The inhibitory effect by ATRA on osteoclastogenesis was
shared by 9-cis retinoic acid and TTNPB, which, like ATRA,
activate all three RARs. More importantly, the effect was shared
also by the RARα-specific agonist GR104, and the inhibition
by ATRA was decreased by the RARα antagonist GR110. These
findings, together with the observations that the RARγ agonist
A7980 and the RARβ/γ agonist GR103 were considerably less
potent inhibitors of RANKL-induced osteoclastogenesis in the
bone marrow macrophage cultures, suggest that RARα is the
most important RAR-mediating retinoid-induced inhibitor of
osteoclastogenesis.
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As discussed previously, ATRA may exert biological effects
not only by RARs but also via activation of PPARβ/δ (44–46).
Crucial for this to occur is the intracellular binding of ATRA
to FABP5, which leads to shuttling of ATRA to PPARβ/δ. Since
we have observed that the mouse osteoclast progenitors express
Fabp5 mRNA, we evaluated if osteoclast inhibition might also be
mediated by activation of PPARβ/δ. GW072, however, which is an
activator of this receptor, did not inhibit RANKL-induced osteo-
clastogenesis, but instead potentiated the formation of numerous,
oversized osteoclasts (76).

It seems clear that retinoids stimulate periosteal osteoclast
formation both in vivo and in organ-cultured murine bones
through enhanced RANKL expression, whereas RANKL-induced
osteoclastogenesis in mouse bone marrow macrophage or human
peripheral monocytes cultures is inhibited (Figure 3). The rea-
son osteoclast progenitors in periosteal bone are not sensitive
to retinoid inhibition is currently unclear but might be because
osteoclast progenitors at different sites are heterogeneous, perhaps
some lacking expression of retinoid receptors in periosteal osteo-
clasts but not in bone marrow or peripheral blood progenitors.
Another possibility might be that some cells in the periosteum
release molecules, making the periosteal osteoclast progenitors
resistant to retinoids. Further experiments are needed to explore
these possibilities.

EFFECTS BY VITAMIN A ON MATURE OSTEOCLASTS
All-trans-retinoic acid has been reported to increase mature osteo-
clast activity of rabbit osteoclasts on dentin slices (84) and 9-cis
retinoic acid to stimulate mature rat osteoclasts on bovine cor-
tical bone (85). Nevertheless, bone-resorbing activity of chicken
osteoclasts on either bovine cortical bone slices or on sperm whale
dentin was found to be inhibited by ATRA (86). These studies indi-
cate that mature osteoclasts express retinoid receptors, but due to
the divergent findings, it is currently not possible to make precise
determinations about how these receptors might be linked to the
bone-resorbing activity of these cells.

EFFECTS BY RETINOIDS ON BONE FORMATION
EFFECTS BY VITAMIN A ON BONE FORMATION IN VIVO
Hypervitaminosis A in rats, caused by a mixture of retinyl palmi-
tate and retinyl acetate in pellets, has been found to result
in osteocyte-rich woven bone along endosteal bone surfaces in
long bones, which together with the observations that increased
immunohistochemical staining of osteocalcin is increased at
endosteal surfaces, and that the mRNA expression of osteoblas-
tic genes such as Alpl (encoding alkaline phosphatase) and the
transcription factor Runx2 in the bone marrow is enhanced, sug-
gest that vitamin A may have stimulatory effect on bone formation
(63). However, using dynamic histomorphometry, a more accu-
rate measurement of bone formation in vivo, it has recently been
shown that rats fed with this diet exhibit decreased mineraliz-
ing surfaces, bone formation, and mineralized apposition rate in
cortical bone (74) (Figure 4). Similar data has been reported by
Kneissel et al. in rats treated with the retinol Ro 13-6298 (62).
In the latter study, the effect seemed to be specific for cortical
bone since no effects on primary and secondary spongiosa were
observed.

In contrast to these observations, it has been found that lack
of ATRA due to deficiency of RALDH (encoded by the gene
Aldh1a1), the rate limiting enzyme in ATRA biosynthesis results
in increased bone mass (87). In these studies, Aldh1a1-deficient
female mice were compared to age- and sex-matched C57BL/6
mice. Increased bone density was observed in young (12 weeks)
and aged (36 weeks) female mice. Mice with Aldh1a1 deficiency
exhibited increased cortical and trabecular bone mass as assessed
by microCT. Using histomorphometry, thicker cortical bones was
observed, whereas no significant changes of trabecular bone were
found, indicating that RALDH mainly affects cortical bone. On the
other hand, the histomorphometric analyses did not demonstrate
significant changes in the number of osteoblasts or osteoclasts,
nor did dynamic histomorphometry show any effects on bone
formation. Therefore, it is difficult to understand the mechanisms
causing increased bone mass in these mice.

FIGURE 4 | Regulation of bone formation by ATRA. In rats, ATRA inhibits bone formation in cortical bone (left ). In cell cultures, ATRA seems to inhibit
osteoblast differentiation at low concentrations and to stimulate at high concentrations (right ). In addition, ATRA may stimulate differentiation of osteoblasts to
osteocytes.
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Some observations were made, however, that indicate increased
osteoblastic activity might be involved. Bone marrow adiposity
was clearly enhanced, suggesting that RALDH may affect bone
marrow stromal cell differentiation. Interestingly, bone marrow
cells from Aldh1a1-deficient mice were more prone to undergo
both osteoblastic and adipogenic differentiation, which seemed to
be due to increased expression of bone morphogenetic protein
2 (BMP2). These effects might be due to lack of ATRA, but also
could be caused by accumulation of RALD which was not being
converted to ATRA. In agreement with this, addition of RALD
to bone marrow stromal cells resulted in increased BMP2 inde-
pendent of its conversion to ATRA, but dependent on retinoic
receptors. Further studies are needed to gain more insight into the
effect of retinoids on bone formation in vivo in different parts of
the skeleton.

EFFECTS BY VITAMIN A ON OSTEOBLAST CULTURES
Cell culture studies using different osteoblastic and adipogenic
cell lines have generated conflicting results regarding the role of
retinoids on osteoblast differentiation, to some extent depending
on the concentration of retinoid used. At nanomolar concen-
trations, ATRA has been reported by several studies to inhibit
osteoblastic differentiation and functions, whereas at micromolar
concentrations, stimulatory effects have been observed (Figure 4).
In fetal rat calvarial cells treated with ATRA at 1 nM or higher
concentrations, alkaline phosphatase activity, Bglap mRNA, and
bone noduli mineralization is inhibited (88, 89). Similar findings
have been observed using the human cell line SV-HFO in which
dexamethasone-induced osteoblastic differentiation was inhibited
by ATRA at 100 nM as assessed by alkaline phosphatase activ-
ity, bone noduli mineralization, and increased osteocalcin protein
secretion (90). The inhibition of alkaline phosphatase and min-
eralization seemed to be dependent on RARα/RARβ, whereas
osteocalcin secretion was due to activation of RARγ. Inhibition
of bone noduli mineralization at osteogenic conditions (ascorbic
acid and β-glycerophosphate added) and when osteoblastic dif-
ferentiation was forced with BMP2 was also observed using the
mouse osteoblastic cell line MC3T3-E1 treated with either ATRA,
9-cis retinoic acid, or Ro 13-6298 at 1, 10, and 100 nM (62). In
this study, the retinoids did not inhibit alkaline phosphatase activ-
ity but affected the morphology of the cells, suggesting that the
inhibitory effect on mineralization was not primarily due to inhi-
bition of bone formation. Recently, Lind et al. reported that ATRA
at 4 and 400 nM inhibited bone noduli mineralization in both pri-
mary human osteoblasts and MC3T3-E1 cell cultures (74). The
effect in the MC3T3-E1 cell line was associated with decreased
cell number and mRNA expression of Alpl, Bglap, Runx2, and Sp7.
The mRNA expression of the ATRA-degrading enzyme Cyp26b1 is
enhanced by ATRA in MC3T3-E1 cells and increasing the endoge-
nous intracellular ATRA levels by the Cyp26 inhibitor R115866
results in decreased mineralization in primary human osteoblasts
and MC3T3-E1 cultures, similar to addition of ATRA. In organ-
cultured mouse calvarial bones, we have found ATRA (100 nM) to
inhibit the expression of a variety of genes associated with both
osteoblast differentiation and bone matrix biosynthesis such as
Runx2, Sp7, Alpl, Bglap, and Col1a1 (encoding collagen type I,
alpha 1) (73).

Whereas retinoids at lower concentrations seem to inhibit
osteoblast differentiation, the opposite is generally observed when
cells are treated with high, supra-physiological concentrations. An
early observation was that treatment of the rat preosteoblast cell
line UMR-201-10B with 1 µM of ATRA resulted in increased alka-
line phosphatase activity and mRNA expression of Mgp (encod-
ing matrix gla protein) and Col1a1, effects that were synergis-
tically potentiated by 1,25(OH)2-vitamin D3 (91). Later on, it
was found that treatment of the mouse mesenchymal progen-
itor cell line C3H10T1/2 with 1 µM ATRA enhances alkaline
phosphatase activity, stimulates mRNA expression of Alpl, Ibsp
(encoding integrin-binding sialoprotein or bone sialoprotein),and
Runx2 and promotes bone noduli mineralization (92–94). Sur-
prisingly, ATRA did not affect Bglap or Sp7 expression (94). When
the ATRA concentration was increased to 5 µM in the C3H10T1/2
cell line, alkaline phosphatase activity and Alpl and Bglap expres-
sion were still increased, but no effect on mineralization was
observed (95). The stimulatory effects in the C3H10T1/2 cell line
were mediated by RARα/RARγ. Enhanced Runx2 expression is
due to ATRA displacing the repressor CCAAT/enhancer binding
protein β (C/EBPβ) from the Runx2 promoter (93). Smad3 is also
induced by ATRA in C3H10T1/2 cells and found to be important
for the displacement of C/EBPβ, increased Runx2 expression, and
osteoblast differentiation (96). In agreement with these observa-
tions, treatment of primary rat calvarial osteoblast cultures with
10 µM ATRA inhibits cell proliferation and stimulates alkaline
phosphatase activity and bone noduli mineralization (97). In con-
trast to findings suggesting that high concentrations of ATRA
enhance osteoblast differentiation, it has been reported that ATRA
(5 and 10 µM) inhibits mineralization, alkaline phosphatase activ-
ity, collagen type I protein, and mRNA expression of Alpl, Bglap,
Col1a in primary mouse osteoblasts and MC3T3-E1 cells (98).

In the human adipose-derived adult stromal cells (ADAS),
2.5 µM ATRA stimulates alkaline phosphatase activity, the mRNA
expression of Runx2, Bglap, and Alpl, and causes enhanced for-
mation of mineralized nodules, while inhibiting adipocyte dif-
ferentiation (99). Alkaline phosphatase activity is increased and
adipocyte differentiation inhibited by ATRA at 1 µM in the murine
preadipocyte cell line 3T3-F442A (100). However, ATRA did not
cause complete osteoblast differentiation in 3T3-F442A cells, for
Blap mRNA expression and bone noduli mineralization were not
affected by ATRA.

In the ADAS cell line,ATRA increases the expression of Bmpr1A
(encoding bone morphogenetic receptor type IA) and addition
of BMP2 and ATRA (2.5 µM) synergistically enhance alkaline
phosphatase activity, Runx2 expression, and bone noduli min-
eralization (99). Synergistic interaction between BMP2 and ATRA
(1 µM) on Alpl mRNA, but not on Bglap, Sp7, and Ibsp, expres-
sion has also been observed in the C3H10T1/2 cell line (94). Using
mouse embryonic fibroblasts (MEF) expressing BMP9 due to ade-
novirus infection, it has been reported that ATRA (5–20 µM)
also synergistically interacts with BMP9 to increase alkaline phos-
phatase activity, Bglap mRNA, osteocalcin protein expression, and
bone noduli mineralization (95). Although it seems as if the stim-
ulatory effects by ATRA per se, or in combinations with BMPs, can
be obtained at micromolar concentrations, it has been observed
in the murine preadipocyte cell line 3T3-F442A that nanomolar
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concentrations of BMP2 and ATRA can synergistically enhance
alkaline phosphatase activity, Runx2, Bglap, and Col1a1 expression,
and bone noduli mineralization (100).

An interesting aspect of the role of retinoids in osteoblast differ-
entiation comes from reports showing that treatment of primary
osteoblasts or MC3T3-E1 cells with micromolar concentrations
of ATRA not only inhibits osteoblast differentiation, but promotes
differentiation of cells with an osteocytic phenotype (98, 101).
Treatment with ATRA (10 µM) changed the morphology of the
cells from cuboidal, typical of osteoblasts in culture, to cells with
many ramified extensions, similar to osteocytes in culture. In both
cell types, ATRA enhanced intracellular sclerostin and fibroblast
growth-factor 23 (FGF23) protein. Furthermore, release of FGF23
protein from the MC3T3-E1 cells was increased by ATRA. The
mRNA expression of Sost (encoding sclerostin) and Fgf23 was
also up-regulated in MC3T3-E1 cells by ATRA. These findings
indicate that ATRA may facilitate the differentiation of osteoblasts
into cells with an osteocytic phenotype (Figure 4).

Dentin matrix phosphoprotein 1 (DMP1) and phosphate reg-
ulating endopeptidase homolog X-linked (PHEX) are also two
markers of late osteoblasts/osteocytes (102). Dmp1 mRNA is
enhanced by ATRA in the MC3T3-E1 cells but not regulated in
the primary osteoblasts, whereas the opposite was found for Phex
mRNA. Lind et al. treated MC3T3-E1 cells with ATRA at 400 nM
and also observed enhanced Dmp1 mRNA expression and DMP1
protein in parallel with decreased expression of Alpl, Runx2, and
Bglap (74). Increased DMP1 protein was also demonstrated by
immunohistochemistry in osteocytes of rats treated with high
dosages of vitamin A. However, other markers of osteocytes such as
Sost, Phex, and Fgf23 were decreased by ATRA. It seems as if ATRA
might change the differentiation of osteoblasts to an osteocyte-like
phenotype although the latter cell type do not share all phenotypes
with native osteocytes.

The in vivo data indicate that vitamin A inhibits cortical bone
formation without affecting trabecular bone formation, at least
in rats treated with supra-physiological levels of vitamin A. This
observation is in agreement with several observations showing
that low concentrations of ATRA inhibit osteoblast differentiation
and function in vitro. Interestingly, inhibition of osteoblast dif-
ferentiation seems to be associated with up-regulation of certain
osteocyte characteristics. In contrast, ATRA at high concentra-
tions, or co-treatment of ATRA with BMPs, seems to enhance
osteoblast differentiation and function.

EFFECTS BY VITAMIN A ON HETEROTOPIC BONE FORMATION
Recent studies have indicated that retinoids may have a role in
heterotopic bone formation, a disabling condition that can be
observed in patients after extensive surgery, such as total joint
arthroplasty, traumatic injuries, or in severely wounded soldiers.
A similar type of excessive bone formation also can be formed in
patients with the rare congenital disease fibrodysplasia ossificans
progressiva (FOP). These patients exhibit an activation mutation
in the BMP type I receptor, ALK2R206H. In three experimen-
tal models of heterotopic bone formation in mice, including
transgenic mice with the human FOP mutation and surgically
created pouches in the calf muscles of 2-month-old mice, RARγ

agonists CD1530 or R667 prevented the formation of heterotopic

bone (103). It is not clear, however, how retinoids block this
form of pathological, new bone formation and which cells are
targeted. The observations, though, warrant further studies in
patients.

ASSOCIATIONS BETWEEN VITAMIN A AND BONE MASS IN
HUMANS
Supplementation of the diet with vitamins is a common occur-
rence and there is debate over whether increased vitamin A intake
might promote skeletal fragility. The pursuit of a healthy lifestyle
often includes a diet where many foods contain vitamin A, as well
as taking vitamin A supplements. The currently recommended
daily allowance (RDA) of vitamin A is 900 µg/day in adult males
and 700 µg/day in adult, non-pregnant or non-lactating females.
The tolerable upper level (UL) of vitamin A, the highest level likely
to pose no ill effects, is suggested to be 3,000 µg/day in adult males
and females.

Assessing vitamin A status in individuals is difficult. The most
common methods involve determining serum retinol and retinyl
ester concentrations. Since vitamin A is stored in the liver and
released as needed bound to RBP, measurement of the serum
retinol level is not believed to be a sensitive method for deter-
mining vitamin A status, except when levels are very low or very
high (104). In the case of chronic hypervitaminosis A, measure-
ment of serum retinyl esters have been suggested as an alternative
marker (105, 106).

Clinical studies investigating the association between vitamin
A and osteoporosis or fracture risk have suggested that vitamin A
can be both harmful and beneficial to bone [see Ref. (107) for a
more detailed review of the human studies; Table 1]. The studies
are mainly observational and as stated above it is difficult to deter-
mine vitamin A status in humans. Results can also be influenced
by the vitamin D status. Table 1 is a summary of individual studies
based on either increases, decreases, or no association of fracture
risk or bone mineral density (BMD) to increased vitamin A intake
or increased vitamin A intake/low vitamin D. The data suggest
that increased vitamin A intake/low vitamin D favors a decrease
in BMD and an increase in fracture risk (108–110); however, the
effect of increased intake of vitamin A alone appears to be less clear,
with increases (25, 26, 111–117), decreases (118–121), and no asso-
ciations (122–128) to fracture risk and BMD reported. In contrast
to the individual observations, a recent meta-analysis of prospec-
tive studies has suggested that high retinol intake and blood retinol
levels have no effect on total fractures, but significantly increase
the risk of hip fracture (129).

Thus, while some studies have suggested that increased vitamin
A intake may decrease BMD and promote hip fracture, other stud-
ies have not shown increased bone loss or increased fracture risk,
and in some instances, protection from bone loss by vitamin A has
been suggested. Vitamin D plays a major role in calcium absorp-
tion and mineral homeostasis. Vitamin D deficiency is common
and some studies have suggested that the risk of osteoporosis and
fracture may increase when increased vitamin A intake occurs
in individuals with low vitamin D levels (108–110). It is possi-
ble an increased risk of osteoporosis and fracture might exist for
increased vitamin A intake and/or increased intake in the face
of low vitamin D, but it appears that additional in vivo animal

www.frontiersin.org March 2015 | Volume 6 | Article 31 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Bone_Research/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henning et al. Retinoid receptors in bone

Table 1 | Human studies evaluating the risk of fractures and BMD to

determine the impact of increased vitamin A intake on bone health.

Risk of

fracture

BMD

Studies suggesting an association between

increased vitamin A intake and osteoporosis or

fracture

JAMA. 287: 47–54, 2002 (25) ↑

N Engl J Med. 348: 287–94, 2003 (26) ↑

Am J Epidemiol. 167: 406–11, 2008 (111) ↓

Ann Int Med. 129: 770–8, 1998 (114) ↑ ↓

Am J Med. 117: 169–74, 2004 (115) ↑

J Bone Miner Res. 17: 1349–58, 2002 (117) ↓

Studies suggesting only a weak relationship, at

best, between increased vitamin A intake and

osteoporosis or fracture

Osteoporos Int. 15: 552–9, 2004 (112) NA (↑)

Am J Clin Nutr. 79: 155–65, 2004 (113) NA (↓)

Am J Clin Nutr. 84: 1350–6, 2006 (116) NA (↓)

Studies suggesting a beneficial effect of

vitamin A for bone health

J Bone Miner Res. 20: 913–20, 2005 (118) ↓ ↑

J Nutr. 125: 1229–37, 1995 (119) ↑

J Clin Endocrinol Metab. 88: 1523–7, 2003 (120) ↑

Bone. 38: 244–8, 2006 (121) ↑

Studies showing no association of increased

vitamin A intake to osteoporosis or fracture

J Bone Miner Res. 16: 2306–12, 2001 (122) NA

Osteoporos Int. 14: 418–28, 2003 (123) NA

Osteoporos Int. 15: 872–80, 2004 (125) NA NA

J Clin Epidemiol. 43: 693–9, 1990 (126) NA NA

Arch Dermatol. 146: 478–82, 2010 (127) NA

Am J Clin Nutr. 82: 581–8, 2005 (128) NA

Studies suggesting an association of increased

vitamin A intake/low vitamin D with osteoporosis

or fracture

Am J Clin Nutr. 89: 323–30, 2009 (108) ↑

Arch Osteoporos. 8: 124, 2013 (109) ↓

Clin Biochem. 43: 1064–8, 2010 (110) ↓

↑, increased; ↓, decreased; NA, not associated.

studies and studies in humans to confirm or dispel these posits
will be necessary before clearer estimates of risk emerge.

SUMMARY
It is well established that hypervitaminosis in rodents decreases
cortical thickness by increasing the number of periosteal osteo-
clasts. On the other hand, it is much less clear how vitamin A
affects trabecular bone and if vitamin A regulates bone mass by
affecting bone formation. Most of the experimental studies are
based upon short-term treatments with high concentrations of vit-
amin A. There is a need for experiments testing clinically relevant
concentrations of vitamin A in long-term studies, where effects on

bone mass and activities of osteoclasts and osteoblasts are assessed
in both cortical and trabecular bone. Since DXA measurements
of BMD in humans do not distinguish between cortical and tra-
becular bone, there is also a need for prospective clinical studies
where vitamin A intake and serum levels of retinoids are related to
measurements using peripheral quantitative computed tomogra-
phy analysis of cortical and trabecular bone. These studies should
also include analysis of circulating levels of vitamin D, since the
possibility exists that it is the ratio between vitamin A and D which
is important for bone mass rather than vitamin A itself.
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