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ABSTRACT

Background: A new monitoring system was implemented to support nursing staff and physicians on the

COVID-19 ward. This system was designed to remotely monitor vital signs, to calculate an automated Early

Warning Score, and to help identify patients at risk of deterioration.

Methods: Hospitalized patients who tested positive for SARS-CoV-2 were connected to 2 wireless sensors mea-

suring vital signs. Patients were divided into 2 groups based on the occurrence of adverse events during hospi-

talization. Heart and respiratory rate were monitored continuously and an automated EWS was calculated every

5 minutes. Data were compared between groups.

Results: Prior to the occurrence of adverse events, significantly higher median heart and respiration rate and

significantly lower median SPO2 values were observed. Mean and median automated EWS were significantly

higher in patients with an adverse event.

Conclusion: Continuous monitoring systems might help to detect clinical deterioration in COVID-19 patients at

an earlier stage.
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BACKGROUND

Monitoring vital signs is essential in detecting clinical deterioration

in hospitalized patients. The Early Warning Score (EWS) has proven

to be a useful tool in identifying patients at risk of deterioration [1].

This bedside assessment of 6 physiological parameters (respiratory

rate, oxygen saturation, temperature, blood pressure, pulse rate, and

level of consciousness) provides the nursing staff a tool to evaluate

the clinical condition of patients and notify rapid response teams

(RRTs) quickly in case of imminent clinical instability. This might

shorten the delay to intervention and improve patient outcome [2,

3]. However, manual monitoring is time consuming thus imposing a

substantial burden on the nursing staff. Innovative sensor technol-

ogy allows more frequent assessment of physiological parameters

and, in theory, detects clinical deterioration in an earlier stage [4].

Several recent papers have shown that current wireless monitoring

systems are capable of detecting changes in vital signs in patients

who develop adverse events. These measurements correlate well

with gold standard measurements [4–6]. However, due to the hetero-

geneity of systems and sensors used in different studies there is of yet

lacking evidence supporting universal adoption of continuous moni-

toring [7, 8].

Different patient populations might need their own specific sys-

tems. We adjusted a monitoring system, originally designed to detect

clinical deterioration in electively admitted patients to support nurs-

ing staff and physicians on the COVID-19 ward. This system was
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designed to remotely monitor vital signs (pulse rate, respiratory rate,

and oxygen saturation), calculate an automatic Early Warning Score

(aEWS) and used to try to identify COVID-19 patients at risk of de-

terioration. In this overview, we describe the system used, the les-

sons learned, and the challenges yet remaining.

METHODS

All patients who had been tested positive for SARS-CoV-2 and ad-

mitted to our hospital were considered at risk for rapid clinical dete-

rioration and were connected to 2 wireless sensors (Figure 1). Vital

parameters obtained by these wireless systems were 24/7 monitored

by a trained operator at distance. Also, heart rate (HR), respiratory

rate, temperature, blood pressure, level of consciousness, urine pro-

duction, and oxygen saturation were measured at bedside at least 3

times a day. The collected data were retrospectively analyzed after

formal approval for this study had been given by the local medical

ethical committee.

Study population
All patients admitted to the COVID-19 ward of our hospital be-

tween April 1 and May 15, 2020 were considered for inclusion. Im-

paired cognition and/or psychiatric illness were defined as exclusion

criteria. Monitoring was discontinued if patients had to be trans-

ferred to the intensive care for further treatment or in case palliative

care was started. Patients were excluded from further analyses if

subsequent PCR did not test positive for SARS-CoV-2.

Wireless devices and data collection
HR and respiratory rate were recorded every second using the Ever-

ion sensor (Biovotion AG, Zürich, Switzerland). Saturation was

recorded every fifteen minutes using the iHealth Labs Pulse Oxime-

ter (iHealth Labs Inc., Mountain View, CA, USA). Patients were

allowed to ambulate while wearing the devices. However, most

patients remained in bed due to physical impairment.

Data from these devices were transmitted to a mobile device via

Bluetooth. Wi-Fi facilitated data transmission from the mobile de-

vice to a secured multisensor platform (Digistat) developed by

Ascom (Figure 1). A link between the Digistat platform and the elec-

tronic medical record (EMR) and a mobile notification device

allowed real-time insight in the patients vital signs. All data regis-

tered by the Everion and the Pulse Oximeter were eventually re-

trieved from the Ascom’s Digistat platform (Ascom Holding AG,

Baar, Switzerland) for further analysis. Other patient data were

manually collected from the hospital’s EMR.

Study procedure and automated early warning score

An aEWS was calculated every 5 minutes using heart- and respira-

tory rate (Table 1). aEWS values of less than 3 were considered to

be normal. To correct for outliers, the aEWS was calculated using

the median values of both heart and respiratory rate within a 5-min-

ute window. Oxygen saturation values were not included in the

aEWS because they were only measured every 15 minutes. The

aEWS is based on the EWS used in our hospital’s RRT activation

protocol. Trained operators were situated in a control room, where

they remotely monitored the vital signs of all patients and noticed el-

evated aEWS alarms. The protocol for alerting nursing staff was

based on the existing COVID-19 literature at that time and the ex-

pertise of our pulmonologists. Nursing staff were alerted if a patient

exhibited 2 or more elevated aEWS’s in a time span of half an hour

or if oxygen saturation dropped below 90% or dropped more than

4%. Nursing staff were then instructed to check on the patient and

if deemed necessary perform extra measurements or alert the attend-

ing physician. All vital signs and aEWS scores were also accessible

for the nursing staff itself via the hospital’s EMR.

Data analysis
Patients were divided into 2 groups depending on whether adverse

events had occurred. Adverse events were defined as transfer to in-

tensive care unit (ICU) or death. Normally distributed continuous

variables are presented as mean 6 standard deviation, whereas non-

normally distributed continuous or ordinal variables are expressed

as median and interquartile ranges (IQR). Differences were tested

using a Student’s t test and Mann–Whitney U test for the respective

variables. For categorical and dichotomous variables, Fisher’s exact

test was used to evaluate differences between groups. Density and

Q–Q plots were used to assess normality. Analyses were adjusted

for multiple comparisons using the Benjamini–Hochberg procedure

and the resulting q values are reported along with the original P val-

ues. A q value <0.05 was considered significant.

To provide a confidence interval to our results, we report a 95%

confidence interval of the Mann–Whitney parameter as described in

“Confidence intervals of the Mann–Whitney parameter that are

compatible with the Wilcoxon–Mann–Whitney test” [9].

The Mann–Whitney parameter is consistent with the Mann–

Whitney U test. This parameter can be understood as the probability

that a random individual from the adverse event group has a greater

value (eg, mean automated EWS) than a random individual from the

other group.

We compared multiple derived parameters between groups. For

every patient mean aEWS, median automatic EWS, median SPO2,
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median HR, median respiration rate (RR), and the average number

of automatic EWS �3 per day were calculated.

RESULTS

Between the April 1 and May 4, 2020, 34 patients were enrolled in

this study, of whom 6 were eventually excluded due to a subsequent

negative PCR test. Serious adverse events were seen in half of all cases

(n¼14); 5 patients were transferred to ICU and 10 patients died. Be-

cause of limited ICU capacity 1 patient was transported to a nearby

hospital and subsequent data were lost. Patient characteristics are

shown in Table 2. The median age was 69.5 years in the adverse

events group and 66.0 in the control group.

Main outcomes
Main outcomes are presented in Table 3. Patients who eventually

developed adverse events had significantly higher mean automated

EWS values, median automated EWS values, median HRs, and me-

dian RRs prior to the occurrence of the event. Patients with adverse

events had also significantly lower median SPO2 values. Conse-

quently, patients in the adverse events group had significantly more

automated EWS alarms per day.

Mann–Whitney parameter estimates differed significantly from

0.5 for mean automated EWS, median automated EWS, median

HR, median RR, median SPO2, and average number of automated

EWS �3 per day.

Table 1. Automated early warning score (aEWS)

Score 3 2 1 0 1 2 3

Respiration rate (p/min) <9 9–14 15–20 21–30 >30

Heart rate (p/min) <40 40–50 51–100 101–110 111–130 >130

The aEWS is calculated based on respiration rate and heart rate. Both

parameters have an associated score ranging from 0 to 3. The total score is

the sum of both components.

Figure 1. Overview of the data transmission. (A) Biovotion Everion, (B) iHealth Pulse Oximeter, (C) mobile device, (D) multisensor platform Digistat, and (E) nurs-

ing staff on the COVID-19 ward.
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DISCUSSION

Our findings highlight the possibility of early deterioration predic-

tion using continuous monitoring in COVID-19 patients. The lim-

ited amount of available intensive care beds and the unpredictable

course of this new disease, highlights the relevance for deterioration

predictors in COVID-19 care. We believe our main finding is the sig-

nificance of the difference in vital signs measurements between pa-

tient with and without severe adverse events. The numerical

difference was less relevant due to variability between sensors.

COVID-19 patients transferred to intensive care or those who died

showed changes in HR, respiratory rate, and oxygen saturation

prior to the occurrence of adverse events. Although differences be-

tween groups were found, the number of aEWS is quite substantial

for both patients with or without severe adverse events. This may be

the effect of the severity of COVID-19 causing more fluctuation of

vital signs resulting in more aEWS alarms compared with other con-

ditions. Evaluation of the sensitivity of the aEWS alerting therefore

requires further evaluation in another patient population.

Strength and limitations
To our best of knowledge, no data have been published about continu-

ous monitoring of COVID-19 patients. Previous studies in other pa-

tient populations frequently tested only 1 device and did not have an

automated alarm system incorporated [3–5]. We believe future medical

care will be increasingly dependent on automatic measurements and it

will be vital to have adequate systems in place to handle the data effi-

ciently. Alarm fatigue is a well-documented symptom and it is impor-

tant for patient safety to keep the amount of alarms at a minimum

[10]. Ruskin and Hueske-Kraus [11] found that alarm fatigue can be

countered with appropriate thresholds and directing of alarms. There-

fore, to prevent additional strain of working with new technology on

nurses, we have incorporated a control room where the alarms were

routed and vital signs were monitored. These trained operators had

more time to review data, were better able to see trends, and decreased

the amount of false-positive alarms. We found a control room to be a

feasible and scalable solution for future endeavors, while better algo-

rithms might decrease the added value in the future.

The implementation of this new system presented some chal-

lenges. Although possible, most pulse oximeters are not intended to

be used for continuous monitoring. Wireless pulse oximeter sensors

showed to be prone to failure after long periods of use. With techni-

cal and practical solutions it is possible to minimize the downtime of

these sensors. Other causes of missing data from both the saturation

finger sensor and the arm sensor were attributed to low batteries

and connectivity (WiFi and Bluetooth) problems.

Due to the non-normality of our data, we used the Mann–Whit-

ney U test to assess difference in mean ranks between groups. We

used the techniques described in “Confidence intervals of the

Mann–Whitney parameter that are compatible with the Wilcoxon–

Mann–Whitney test” [9] to provide confidence intervals to our

results. The paper introduces the notion of the Mann–Whitney pa-

Table 2. Patient characteristics

Parameter Patients without adverse events

(n¼ 14)

Patients with adverse events

(n¼ 14)

P value

Age, median (IQR) (years) 66 (57.25–75.75) 69.5 (64.25–81.25) 0.290

Male gender, n (%) 6 (42.9) 6 (42.9) 1.000

BMI, median (IQR) 25.68 (24.82–26.80) 27.15 (24.54–32.62) 0.251

Comorbidities

Hypertension, n (%) 5 (35.7) 8 (57.1) 0.449

Diabetes, n (%) 1 (7.1) 6 (42.9) 0.081

Respiratory disease, n (%) 3 (21.4) 5 (35.7) 0.676

Cardiovascular disease, n (%) 3 (21.4) 7 (50.0) 0.237

COVID-19 medication 0.408

Ceftriaxone, n (%) 4 (28.6) 7 (50)

Hydroxychloroquine þ cefuroxime, n (%) 7 (50.0) 6 (42.9)

Chloroquine þ cefuroxime, n (%) 1 (7.1) 1 (7.1)

No medication, n (%) 2 (14.3) 0 (0.0)

CO-RADS classification, median (IQR) 5 (4.00–5.00) 5 (4.75–5.00) 0.806

Length of stay, median (IQR) 11.50 (9.25–13.75) 8.00 (5.00–11.00) 0.046

Time on wireless devices, median (IQR) 7.25 (5.64–10.03) 2.10 (1.06–2.65) <0.001

Data are presented as absolute number n (%) or median (interquartile range).

Table 3. Outcome statistical analyses per parameter

Parameter Patients without adverse

events, median (IQR)

Patients with adverse

events, median (IQR)

P value Q value Mann–Whitney

estimate

95% confidence

interval

Mean aEWS 1.38 (1.28–1.77) 2.03 (1.76–2.32) 0.0022 0.0100 0.84 0.63–0.94

Median aEWS 1.5 (1–2) 2 (2–2) 0.0201 0.0321 0.71 0.53–0.84

Median HR 75.5 (68.25–77.75) 80.5 (78.25–92.75) 0.0138 0.0276 0.78 0.56–0.9

Median RR 20 (19.25–23) 25 (23–26) 0.0025 0.0100 0.83 0.62–0.93

Median SpO2 93.5 (92.25–94) 90 (87.25–91.88) 0.0069 0.0184 0.20 0.09–0.41

Average number aEWS

�3 per day

6.9 (1.61–11.2) 21.9 (10.85–73.5) 0.0149 0.0238 0.77 0.55–0.9

Data are presented as median (IQR).
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rameter. To illustrate how the Mann–Whitney parameter should be

interpreted, we shall take a closer look at the parameter estimate for

mean automated EWS. The Mann–Whitney parameter estimate is

0.84 with a corresponding 95% confidence interval ranging from

0.63 to 0.94. This means that based on our data, 95 of 100 times the

true probability that a random patient from the adverse event group

has a greater mean automated EWS than another random patient

from the nonadverse event group, is contained within the range

0.63–0.94.

The system we used in this study is a first iteration, it will be im-

proved and evaluated for neurological and vascular patients in our

hospital in a prospective study. Future research should focus on ad-

ditional vital parameters, different sensors and advanced pattern

recognitions. While trained operators were able to spot trends, we

were unable to quantify these changes in this study. Furthermore,

once a robust system is available, the focus of research should shift

to improving clinical outcomes with the implementation of that sys-

tem. In COVID-19 care, this system has proven to be a valuable risk

screening tool in addition to standard care.
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