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COVID‑19, first reported in late 2019, is an ongoing pandemic that has been causing devastation 
across the globe. Although there are multiple vaccines that can prevent severe symptoms, effective 
COVID‑19 therapeutics are still of importance. Using our proprietary in silico engine, we screened 
more than 22,000 unique compounds represented by over half a million gene expression profiles to 
uncover compounds that can be repurposed for SARS‑CoV‑2 and other coronaviruses in a timely and 
cost‑efficient manner. We then tested 13 compounds in vitro and found three with potency against 
SARS‑CoV‑2 with reasonable cytotoxicity. Bortezomib and homoharringtonine are some of the 
most promising hits with  IC50 of 1.39 μM and 0.16 μM, respectively for SARS‑CoV‑2. Tanespimycin 
and homoharringtonine were effective against the common cold coronaviruses. In‑depth analysis 
highlighted proteasome, ribosome, and heat shock pathways as key targets in modulating host 
responses during viral infection. Further studies of these pathways and compounds have provided 
novel and impactful insights into SARS‑CoV‑2 biology and host responses that could be further 
leveraged for COVID‑19 therapeutics development.

In December 2019, a new coronavirus emerged and rapidly spread around the world, causing a global pandemic 
on an unprecedented scale. SARS-CoV-2, the virus that causes COVID-19, is a positive-sense single-stranded 
RNA  coronavirus1. Due to the virus’s rapid transmission rate, asymptomatic infection, and the emergence of 
multiple infectious  variants2,3, the timely development of effective therapeutic modalities has been a global 
 challenge4. While efforts in vaccine development have resulted in emergency use authorization of multiple 
effective  vaccines5 and the recent approvals of coronavirus targeting anti-viral  compounds6, we believe that 
understanding the biology of infection and the host cell responses will allow us to develop novel therapeutics 
that could be used concomitantly with current antivirals and vaccines to prevent severe diseases. In addition, 
we also studied other common cold coronaviruses towards the goal of developing pan-coronavirus therapeutics 
that could slow or stop viral production in host  cells7.

We used gene expression profiles of both compound and genetic perturbations as probes for understand-
ing the biology of viral replication. Using this approach, we predicted for compounds that may impede viral 
production in the host cells. Given SARS-CoV-2 is closely related to SARS-CoV-1 and are both from the beta 
coronavirus  family8,9 and the abundance of SARS-CoV-1 data, we used gene expression from viral studies of 
both viruses for our predictions. The approach starts with our proprietary computational engine that analyzes 
gene expression data of disease cells and chemical and genetic perturbations to generate in silico predictions for 
possible treatments. Towards this goal, we screened in silico more than 22,000 existing compounds represented 
by over half a million gene expression profiles, rapidly producing candidate compounds that can be further 
tested. In summary, we found that chemically perturbing translation initiation or regulation, heat shock, and 
proteasomal pathways, were effective in controlling viral reproduction in a pan-virus or virus-specific manner. 
Small molecules like bortezomib, homoharringtonine and tanespimycin that affected these pathways were able to 
interfere with viral production against SARS-CoV-2 or the common cold viruses HCoV-229E and HCoV-OC43.
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Results
Gene expression based in silico “transcriptotypic screen” approach. Because of the genomic sim-
ilarity between SARS-CoV-1 and SARS-CoV-2, we used gene expression profiles of human lung cell lines and 
peripheral blood from patients infected with either SARS-CoV-1 or SARS-CoV-2 for the predictions. Host cell 
response profiles from each condition were used independently for the prediction and tested against a library of 
gene expression profiles of cell responses to over 22,000 unique compounds or gene perturbations individually.

From the initial raw predictions, we executed our first-round selection by ranking the compounds based on 
the number of times a compound passes the Fisher exact test in each input data independently. We believe this 
stringent criteria allows us to identify compounds with the strongest potential to affect viral production. We 
identified a total of 1416 such ranked compounds from over 6,700 potential compounds that can be sourced and 
therefore tested quickly. In this round of testing, priority was given to groups of compounds representing the 
same classes of mechanisms of action (MOA) if multiple of which are top ranked. We then added an additional 
filter to exclusively focus on launched or clinical phase compounds and tested a representative candidate from 
each MOA of interest. A total of five compounds, namely trametinib (MEK inhibitor), bortezomib (proteasomal 
inhibitor), homoharringtonine (protein synthesis inhibitor), dasatinib (Bcr-Abl kinase inhibitor), and lacidipine 
(calcium channel blocker) were selected for testing in SARS-CoV-2 infected Vero cells. Selective index (SI) was 
used as a measurement of a compound’s therapeutic benefit over risk.

Of the aforementioned compounds, trametinib (SI 3.34) and bortezomib (SI 35.9 and SI 14.63) showed 
anti-SARS-CoV-2 activities and cytotoxicity over 50 μM (Table 1, Fig. 1a and b). Homoharringtonine is highly 
effective against SARS-CoV-2 but also exhibits some level of toxicity. However, the SIs of homoharringtonine 
(12.84 and 24.06, Table 1, Fig. 1a and b) suggest that there may be a reasonable therapeutic window for anti-
SARS-CoV-2 activity before cytotoxicity is induced.

The next set of compounds tested was comprised of top ranked compounds that perturb the same pathways. 
We tested two strongly predicted proteasomal inhibitors namely bortezomib, that showed anti-SARS-CoV-2 
activity in the previous experiment, and its analog ixazomib. We also selected two highly ranked compounds 
from the heat shock pathway, namely tanespimycin and ganetespib. Both the proteasomal pathway and the heat 
shock pathway were significantly represented among the top 100 ranked compounds (Fig. 1c). Consistent with the 
initial study, bortezomib and ixazomib showed anti-SARS-CoV-2 activity with a SI of 14.63 and 4.27 respectively 
(Table 1). Tanespimycin and ganetespib, on the other hand, showed no activity against SARS-CoV-2 in a Vero 
cell assay despite having very strong prediction scores from the engine (Table 1, Fig. 1b). The potent anti-viral 
activity of homoharringtonine was consistent across the two independent studies (Fig. 1a and b).

As another test elucidating the biology of host responses to SARS-CoV-2, we identified several compounds 
that were weakly predicted (poorer ranks) but with novel MOAs. Meclofenamic acid (nonsteroidal anti-inflam-
matory), sitagliptin (DPP4 antagonist), and levetiracetam (anti-convulsant, MOA unclear) did not show mean-
ingful anti-SARS-CoV-2 activity while SR-2640 (leukotriene D4 and E4 receptor antagonist) and AZD-1208 
(PIM kinase inhibitor) had very poor SI values (Table 2, Fig. 2).

Efficacy of compounds against common cold‑causing human coronaviruses. We were also 
interested to understand if these compounds and their target pathways have wider applications in modulating 
viral host responses, specifically other coronaviruses. The two common cold viruses, HCoV-229E and HCoV-
OC43, belong to the coronavirus alpha and beta subgroup, respectively. Both SARS-CoV-1 and SARS-CoV-2 are 

Table 1.  Predicted anti-SARS-CoV-2 compounds in vitro efficacy testing from two independent rounds of 
testing. IC50,  CC50, and SI index were calculated of each compound in SARS-CoV-2 infected in Vero cells. 
Homoharringtonine and bortezomib exhibited strong antiviral activities with corresponding cytotoxicity  CC50 
at least 20 times higher than the viral killing  IC50.

Compound IC50 (μM) CC50 (μM) SI index

Round 1

Homoharringtonine 0.16 2.14 12.84

Bortezomib 1.39  > 50 35.93

Trametinib 14.95  > 50 3.34

Lacidipine 14.89 20.15 1.35

Dasatinib 19.74 13.20 0.67

Remdesivir 12.08  > 50 4.14

Chloroquine 12.0 127.8 10.65

Round 2

Ganetespib 35.50 28.95 0.82

Ixazomib 11.71  > 50 4.27

Tanespimycin 31.33  > 50 1.60

Bortezomib 3.42  > 50 14.63

Homoharringtonine 0.26 6.22 24.06

Chloroquine 9.80  > 150 15.31

Remdesivir 7.45  > 50 6.71

Lopinavir 13.50  > 50 3.70
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Figure 1.  (A) Viral inhibition and cell viability curves used to generate Table 1 Round 1. (B) Viral inhibition 
and cell viability curves used to generate Table 1 Round 2. (C) Comparison of drug MOA class frequency count 
and predicted compound prediction ranking in Top 100 compounds with strongest predicted anti-viral strength.
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also in the beta  subgroup8,9. We tested bortezomib, tanespimycin, and homoharringtonine against these two cold 
viruses in a human lung fibroblast cell line. Our results show strain specific sensitivity to these compounds. Bort-
ezomib showed no activity against HCoV-229E or HCoV-OC43 in three independent studies (Table 3, Fig. 3), 
though it has favorable SIs against SARS-CoV-2 (Table 1). Tanespimycin, on the other hand, was highly effective 
against HCoV-229E and HCoV-OC43 with an  EC50 of less than 1 nM (Table 3, Fig. 3), though it did not exhibit 
anti-SARS-CoV-2 activity in Vero cell studies (Table 1). Homoharringtonine was effective against HCoV-229E 
and HCoV-OC43 with  EC50s < 100 nM (Table 3, Fig. 3), as well as against SARS-CoV-2 with an average  EC50/
IC50 under 300 nM (Table 1).

Pathways predicted that are amenable to small molecule intervention. In addition to the com-
pounds we tested, we also investigated the pathways that are represented by the top 100 ranked predicted com-

Table 2.  Average reversal score predicted anti-SARS-CoV-2 compounds in vitro efficacy testing. IC50,  CC50, 
and SI index were calculated of each compound in SARS-CoV-2 infected in Vero cells. . No compound 
exhibited reasonable anti-SARS-CoV-2 activities due to high  IC50 across board.

Compound IC50 (μM) CC50 (μM) SI index

AZD-1208 27.34  > 50 1.83

Sitagliptin  > 50  > 50 1.00

SR-2640 hydrochloride 24.23  > 50 2.06

Levetiracetam  > 50  > 50 1.00

Meclofenamic acid sodium salt 35.13  > 50 1.42

Chloroquine 11.29  > 150 13.29

Lopinavir 12.63  > 50 3.96

Remdesivir 8.58  > 50 5.83

Figure 2.  Viral inhibition and cell viability curves used to generate Table 2.

Table 3.  (A)  EC50,  CC50, and SI index of 3 compounds of interest in MRC5 cells infected with HCoV-229E or 
HCoV-OC43. Tanespimycin and homoharringtonine exhibited anti-HCoV-229E with tanespimycin’s  EC50 101 
times lower than its  CC50 and homoharringtonine 4 times lower. Tanespimycin was also effective against anti-
HCoV-OC43 with an  EC50 133 times lower than its  CC50. Bortezomib exhibited no anti-viral activity against 
either strain.

HCoV strain Compound EC50 (μM) CC50 (μM) SI index

HCoV-229E

Tanespimycin 0.0036 0.182 101

Bortezomib 0.2518 0.5364 2

Homoharringtonine 0.05106 0.2046 4

HCoV-OC43

Tanespimycin 0.0019 0.2528 133

Bortezomib 0.666 0.5914  < 1

Homoharringtonine 0.1261 0.1670 1
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pounds. Of the top compounds with known MOAs, we found that compounds representing the heat shock, 
proteasomal, and protein synthesis pathways are ranked very highly in our approach in addition to being effec-
tive in curtailing viral production in our experiments (Fig. 1c). In contrast, compounds representing the neuro-
transmitter related classes (e.g., serotonin receptor antagonists, dopamine receptor antagonists) and inflamma-
tory (lipoxygenase, histamine, chemokine) are often represented by more lowly ranked compounds (Fig. 4). As 
mentioned earlier, both levetiracetam and SR-2640 hydrochloride did not result in a meaningful effect on viral 
production (Table 2).

Using expression profiles of gene knockdowns to probe host response biology. By process-
ing the gene expression profiles of gene knockdowns in the same way as we did for compound-generated gene 
expression profiles, we generated a list of genes whose knocked- down gene expression profiles were predicted 
by the Auransa engine to show strong anti-SARS-CoV-2 activities. Pathway analysis using predicted gene targets 
found a significant enrichment of proteasome pathway and heat shock pathway with p-values of 0.01 and 0.07 
from hypergeometric tests, respectively. In fact, shRNA knockdown of HSP90AB1 is ranked the 14th most likely 
candidate to reverse SARS-CoV-2 signatures in host cells.

Deconvoluting the biology of the prediction. In order to better understand the MOA underlying the 
compounds that were predicted and showed efficacy, we explored the biological rationale underlying the predic-
tion that yielded the three viable compounds, focusing on pathways that were deemed important by our engine 
as it made those predictions (Table 1). Our algorithm found that NF-kappaB signaling, proteasomal/ER stress 
activities, and cell cycle regulation are key targets affected by bortezomib. Tanespimycin shows in silico effects 
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Figure 3.  EC50 versus  CC50 curves associated with Table 3 for the 3 compounds tested against HCoV-229E and 
HCoV-OC43 in MRC5 cells.
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on heat shock pathways, oxidative stress responses, lipid metabolism, and cell cycle. Homoharringtonine has 
impacts on a bigger set of biological processes including cholesterol and steroid biosynthesis, cell cycle, and NF-
kappaB signaling (Table 4).

Discussion
We used our proprietary computational engine to predict compounds and targets in order to study host cell 
responses to infections by SARS-CoV-1, SARS-CoV-2 and 2 common cold coronaviruses. We showed that the 
most strongly predicted compounds belong to the classes of compounds known to modulate the following 
pathways: PKC, SRC, HSP, IKK, mTOR, ACE and proteasome (Fig. 4). Interestingly, the most frequently pre-
dicted drug class among the 1416 unique compounds are the neurotransmitter related classes (e.g., serotonin 
receptor antagonists, dopamine receptor antagonists). However, these compounds generally have lower rankings 

Figure 4.  Visualization of drug class frequency count and prediction strength ranking of all predicted anti-
SARS-CoV-2 compounds. The predicted drug MOAs summary and ranking are useful tools to generate insights 
into the biological pathways important to SARS-CoV-2 infected host cells. The top list of most reoccurring 
MOAs and rankings of predicted compounds consisted of immune type (IKK inhibitor), anti-cancer type 
(mTOR and MEK inhibitor), and unfolded protein response/UPR type (proteasome inhibitor, HSP inhibitor). 
We postulate that the anti-cancer and UPR compounds may be linked to the host cell responses to rapid viral 
replication while the immune type compounds reflect the antiviral inflammatory responses generated by the 
host cells.
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compared to compounds from the heat shock, proteasomal and gene translation classes (Fig. 4). Levetiracetam, 
one of the compounds in the most frequent but low-ranking category, had no anti-viral activity (Table 2, Fig. 2). 
In contrast, the positive results we obtained are from highly ranked predicted compounds belonging to the cell 
growth, proteasome, and heat shock drug classes. These results suggest that frequency of drug classes may not 
be as important for compound selection as much as the predicted ranks that are based on the engine’s disease 
reversal strength scores (Fig. 4). Counting drug class frequency also has the bias of more frequently annotated, 
perhaps older and larger classes of popular compounds compared to newer or smaller classes of compounds.

Many compounds have been predicted or tested for potential activities against SARS-CoV-2 since the start 
of the pandemic by other research groups. Numerous early- and late-stage ongoing clinical trials are focused on 
compounds mostly belonging to the anti-inflammation or direct anti-viral growth  classes10. Our engine identi-
fied some of these reported anti-SARS-CoV-2 compounds, specifically emetine (protein synthesis inhibitor), 
niclosamide (anthelminthic), and pralatrexate (antineoplastic folate analog metabolic inhibitor)11–13. Niclosamide 
and emetine showed impressive anti-SARS-CoV-2 capabilities in published preclinical studies, with reported 
SI index of 178.57 and 176.65, respectively. They are ranked #6 and #28 in our predictions. Pralatrexate, with a 
reported  IC50 of 0.008 μM13, is ranked within the top 60%.

One interesting pathway in our in silico prediction is the proteasome pathway. The proteasome inhibitors 
bortezomib and ixazomib showed efficacy in controlling viral load without significant cytotoxicity. Of the two, 
bortezomib exhibited more potency. The ubiquitin–proteasome pathway is a key pathway regulating a variety 
of cellular processes. Viruses are known to hijack this pathway for their  propagation14. Interestingly, we did not 
find bortezomib to be effective against the cold viruses. It is unclear as to why ubiquitin–proteasome pathway 
inhibition had no effect in our anti-cold viral assays. One reason could be virus specific susceptibility to pro-
teasome inhibition. We also cannot rule out cell type specificity having an impact on the results of the in vitro 
assay. Furthermore, whether proteasome inhibitors can be developed as an anti-viral depends on their efficacy 
vs. toxicity profiles in vivo. We took up the exercise of calculating the clinical exposure of bortezomib from 
publicly known clinical data and found it to be approximately 580 nM via intravenous infusion for cancer (see 
Materials and Methods).  IC50s of bortezomib in the in vitro assays are 1.39 μM and 3.42 μM with  CC50 > 50 μM, 
indicating that there may be a reasonable window of safety.

Several publications have also mentioned bortezomib as a potential candidate either by different in silico 
approaches or via compound screening in the laboratory. The in silico approaches ranged from prediction only 
to analyzing transcription factors regulatory and protein–protein interactions networks. Pan et al. and Adhami 
et al. used preselected gene sets representing viral responses to predict anti-COVID-19  compounds15,16. Xing 
et al. utilized known antivirals as internal comparisons to identify and test compounds that can significantly 
reverse COVID-19 viral  signature17. These different approaches all led to bortezomib as a candidate for anti-
SARS-CoV-2. These studies, together with our unsupervised (without a known training set, preselection of genes, 
or previously tested positive compound ‘hits’) in silico approach, further validate the proteasomal pathway as a 
critical pathway that can be targeted as an anti-viral strategy.

The next pathway of significance in our prediction is RNA translation. We predicted and validated in vitro 
that ribosome inhibitor homoharringtonine is highly effective against both SARS-CoV-2 and cold coronavi-
ruses. Schubert et al. showed that the Nsp1 (also known as the host shutoff factor) interferes with the ribosomal 
mRNA channel to stop translation of host mRNAs as a host defense against SARS-CoV-2  infection18. Although 
targeting something as critical as RNA translation may adversely impact the host cells, we believe that homohar-
ringtonine, an inhibitor of the ribosome complex, should be further studied as a potential antiviral drug. Even 
though stopping RNA translation can be detrimental for both the host cell and virus, SIs of homoharringtonine 
(12.84 and 24.06, Table 1, Fig. 1a and b) indicate that there might be enough of a window to give the host cell an 
edge by stopping the very mechanisms that the virus relies on to replicate. Other reports using in vitro cell based 
screening of FDA approved drugs such for TMPRSS2 reduction or in silico prediction to affect IFN-beta genes 
also identified homoharringtonine as a promising  candidate19,20. Similar to bortezomib, these studies, together 
with the independent identification by our engine, indicates that gene translation is a critical machinery used 
by the virus to replicate. We also show that homoharringtonine is potent against HCoV-229E and HCoV-OC43 

Table 4.  Selective pathways identified using top genes predicted by Auransa engine to be reversed by anti-
viral compounds based on STRING DB analysis. A clear  NFkB signature was likely the driver for predicting 
bortezomib and homoharringtonine as anti-viral compounds in host cells. In contrast, we hypothesize that 
tanespimycin targets the metabolism and protein folding/synthesis part of viral biology.

Compounds Pathway name Source Strength FDR

Bortezomib

Canonical NF-kB pathways, and NF-kappa-B/Dorsal STRING 1.81 0.00055

G2/M DNA replication checkpoint REACTOME 1.99 0.0267

I-kappaB/NF-kappaB complex GO-CC 1.99 0.0018

Homoharringtonine

I-kappaB/NF-kappaB complex GO-CC 1.92 0.0013

Canonical NF-kB pathways, and NF-kappa-B/Dorsal STRING 1.81 0.00082

Negative regulation of reactive oxygen species metabolic process GO-BP 1.23 0.0105

Tanespimycin

Chaperone-mediated protein transport GO-BP 1.73 0.0071

Cholesterol biosynthesis UniProt 1.47 0.0137

Steroid biosynthesis UniProt 1.65 0.00114
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with  EC50s < 100 nM, indicating perhaps RNA translation may be a common theme that can be exploited as a pan 
anti-coronavirus strategy. In addition, we calculated the clinical exposure of homoharringtonine to approximately 
66 nM.  IC50s of homoharringtonine is 0.16 μM and 0.26 μM in our testing (see Materials and Methods), hence we 
also believe that additional effort is warranted to explore homoharringtonine as a potential pan anti-coronavirus 
compound, although known adverse effects of homoharringtonine must be  considered21. However, it is also 
worth noting that a clinical trial in COVID-19 patients treated with nebulized homoharringtonine is  ongoing22.

The last compound, tanespimycin, was predicted very strongly from the SARS-CoV-1 and SARS-CoV-2 data 
but surprisingly, neither tanespimycin nor a second generation HSP90 inhibitor ganetespib exhibited anti-viral 
efficacy in our SARS-CoV-2 assays. In contrast, tanespimycin was highly potent against the 2 cold coronaviruses. 
Interestingly, Li et al. have shown that 10 μM tanespimycin effectively inhibited viral activities of SARS-CoV-1, 
SARS-CoV-2, and MERS-CoV in Huh-7  cells23. We believe that the HSP90 pathway deserves a closer look in 
other cell types and conditions. Furthermore, we postulate that discrepancy in tanespimycin in vitro efficacy 
against SARS-CoV-2 may be partly caused by the difference in cell models used (i.e., Vero vs. Huh-7). Prior 
publication has eluded to anti-SARS-CoV-2 drug response disparity in a cell line dependent manner in Vero 
and Calu-3  cells24.

In 2020, remdesivir, a viral RNA polymerase inhibitor originally developed to treat Ebola patients, was found 
to show clinical improvement in COVID-19 patients in clinical trials and subsequently approved in the United 
States in October  202025. We note that remdesivir was not predicted by our approach. This is likely because our 
approach uses gene expression profiles of infected host cells to predict compounds rather than targeting the viral 
proteins. Remdesivir, on the other hand, targets the viral RdRp, with many fold specificity over human RNA 
Polymerase II and mitochondrial RNA  polymerase18–20, hence, we do not expect to see remdesivir or any other 
virus-targeting compounds to be predicted using our approach.

Another point worth mentioning is that our in silico predictions are focused on host cell responses to viral 
infection instead of targeting specific viral proteins, such as the SARS-CoV-2 spike protein. The SARS-CoV-1 
and SARS-CoV-2 data used for the predictions consist of genomic signatures of infected host cells, not viral 
genomic data. We believe that a host-cell based approach allows the predictions to be more versatile and to 
focus on broader host defense pathways that may be targeted by existing compounds for a faster therapeutic 
development cycle.

In summary, our approach has pointed us to several critical host cell pathways that could be targeted to stop 
coronavirus replication, namely the proteasomal pathway, protein synthesis or post-translational regulation 
machinery, and the heat shock system. We identified compounds in the above pathways that are candidates for 
repurposing. Although the safety profiles of these potential candidates need to be considered in an anti-viral 
context, we believe that repurposing drugs with clinical approval or in advanced clinical phases with acceptable 
clinical safety will greatly shorten the development time and provide the opportune therapies during an ongo-
ing pandemic. In fact, several existing drugs had been recommended to treat hospitalized COVID-19 patients, 
including antiviral drugs (e.g., remdesivir), anti-inflammatory drugs (e.g., baricitinib and corticosteroids), and 
intravenous monoclonal  antibodies29.

We demonstrated that an in silico approach such as ours, done without pre-defined sets of genes or the neces-
sity to train using existing known anti-viral agents, can generate promising anti-viral compounds and vulnerable 
pathway predictions, with in vitro efficacy and reasonable cytotoxicity. Importantly, our prediction focuses us on 
compounds and pathways that can modulate host responses in a more pan-coronavirus way instead of inhibiting 
specific viral proteins. These compounds may have wider clinical applications beyond SARS-CoV-2 treatment 
as shown in our in vitro results and are less constrained by the virus strains as exemplified by homoharringto-
nine. Future additional studies of the predicted compounds in human cell lines (e.g., primary human airway 
epithelium cells or Calu-3) may also provide other insights into differences in efficacy in different biological 
relevant systems. We believe that our work shows strong support for antiviral therapy development focused on 
host response regulation.

Materials and methods
Data curation and processing. SARS-CoV-1 and SARS-CoV-2 studies used in the analysis were curated 
from NCBI Gene Expression Omnibus (GEO). The viral infected genomic signatures are included in the Sup-
plementary Table 1.

Gene signatures of tested compounds were curated from NCBI GEO and SRA. The corresponding accession 
numbers are included in Supplementary Table 2.

RNASeq data were processed from fastq format to TPM values using  Salmon30. Microarray data were down-
loaded from NCBI GEO as is but may be further processed according to data processing specifications by the data 
publishers. If the dataset is published as raw scores, we may apply RMA or quantile transformation as needed. 
The distribution and scale of all gene expression datasets are then examined to ensure that they are comparable 
without obvious abnormality and skewness. All datasets prior to compound prediction are confirmed to a log2 
scale, which while facilitates log fold change based calculation, also reduces the influence of potential extreme 
values. Log fold change (LogFC) values were computed by contrasting a total of 14 selected viral infection condi-
tions against corresponding controls.

Auransa’s curated gene expression database of compounds and genetic perturbations comprise of over half a 
million gene expression profiles across over 22 K unique compounds (drug induced gene expression signature, 
DIGS). The DIGS data were used to assess compound reversal strength against the gene expression profiles 
generated from human cells infected with viruses of interest. All publicly available gene expression profiles were 
downloaded from the GEO.
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Computational compound prediction. For compound prediction, we designed our prediction algo-
rithm to score and select the compounds that maximize the reversal effect of the human genomic expression 
under virus infection, such that these compounds may have the potential to correct the patient phenotypes 
under virus infection. This algorithm is, in part, based on the concept of  GSEA31. All genes in the gene expres-
sion profiles were used in the algorithm, without any pre-selection that might bias the results. Our algorithm 
also does not need to be trained on any pre-existing list of known antiviral compounds, hence opening us up to 
discovering compounds and critical pathways in an unsupervised manner.

After the reversal scores were calculated, we used a Fisher Exact test-based method for ranking. The Fisher 
Exact test was used to examine if any single compound has a significant good-hit-bad-hit count ratio compared 
to all other compounds within the same DIGS. FDR correction was performed and filtered at the significance 
threshold of 0.05. The threshold of FDR was applied for all compounds tested in silico on each contrast, i.e., a 
Benjamini/Hochberg FDR was calculated for multiple testing correction. Each time a compound has a significant 
FDR value, it is considered a hit count of 1. The Fisher Exact test was conducted on each contrast individually 
where they were treated independently without averaging across studies. Finally, the total number of counts 
across all input conditions is summed into a single cumulative sum for ranking. To break the ties in ranking, we 
also calculate the percentage of number of drug signatures fulfilling the reversal score threshold / total number 
of drug signatures for a single compound for contrasts where the Fisher Exact test yielded a significant result. 
The 50 top ranked approved compounds are listed in Supplementary Table 3.

We also tested compounds that may not pass the method above but nonetheless exhibited on average a good 
reversal score across 14 contrasts on the drug signature level and is of novel MOAs. An average reversal score 
was computed for each drug signature and then filtered using the predetermined reversal score threshold. These 
drug signature conditions were ranked based on the average score in an ascending manner. We selected a few 
compounds in this category to represent each pathway of interest.

Pathway enrichment analysis. Top 100 most significant genes identified by Auransa engine in our approach 
as described in the earlier section were analyzed using STRING  database32,33 (STRING DB, https:// string- db. org/).

Compound sourcing. All compounds are research grade chemicals sourced from MedChemExpress, 
Sigma-Aldrich, Tocris Bioscience, and Selleck Chemicals.

Anti‑SARS‑CoV‑2 compound testing. Predicted compounds were tested at the Institut Pasteur Korea 
(IPK, Seongnam, South Korea). The detailed assays employed by IPK are described in Jeon et al.34. In short, Vero 
cells were infected with SARS-CoV-2 for 24 h followed after a 1-h preincubation with the compounds, all of which 
were done in triplicates. Viral loads were determined by immunofluorescence staining of SARS-CoV-2 Nucle-
ocapsid protein. Fluorescence expression was imaged using Operetta (Perkin Elmer, Waltham, MA) and analyzed 
using an institutional proprietary Image Mining (IM) software. Dose response curve values were computed using 
XLFit 4 software (IDBS, Woking, U.K.). All  IC50 and  CC50 values were measured in two repeated experiments.

Anti‑HCoV‑229E and HCoV‑OC43 compound testing. Human lung fibroblast MRC5 cells were cul-
tured in a 96-well plate at 10,000 cells/well in EMEM + 10% FBS overnight. The next day the culture medium was 
removed from each well and compounds in EMEM + 2% FBS + 0.5% DMSO were added. Each drug was tested 
on its own 96 well plate. Each plate contained 3 wells of uninfected cells without DMSO, 3 wells of uninfected 
cells with 0.5% DMSO, 3 wells of infected cells with no DMSO, and 3 wells of infected cells with 0.5% DMSO. 
Experimental compounds were tested in triplicate at each concentration. Tanespimycin, bortezomib, and homo-
harringtonine were tested using 2 µM starting concentration, 8-point, threefold serial dilution. After a 1-h pre-
incubation with testing compounds, HCoV-229E or HCoV-OC43 viruses at an MOI of 0.01 were added to the 
culture with compounds for another 1 h. Cell-Titer Glo assay was added after additional incubation time with 
compounds of interest (HCoV-229E for 96 h and HCoV-OC43 for 120 h). Assay readout was performed using 
luminescence measurement on a Tecan Spark plate reader.

CC50 values were determined by applying nonlinear fit of luminescence readouts from uninfected, compound-
treated wells against compound concentration. Likewise,  EC50 values were determined by nonlinear fit of lumi-
nescence readouts from virus-infected, compound-treated wells. Nonlinear regression models were applied for 
derivation of EC50 and CC50 values respectively, based on built-in equations of Prism Version 8.2.1 (GraphPad 
Software, San Diego, CA). SI calculated as the ratio of CC50 to EC50.

Clinical dosing estimation of compounds. 

Drug Anti-Covid  IC50 Known Pharmacology Clinical Exposure References

Lacidipine1 14.89 μM Calcium channel blocker 0.003–0.013 μM 35

Trametinib2 14.95 μM MEK1/2 inhibitor 0.045 μM 36

Homoharringtonine3 0.16 μM Inhibition of protein synthesis 0.046 μM 37

Bortezomib4 1.39 μM Reversible inhibitor of the chymotrypsin-like activity of the 
26S proteasome 0.29 μM 38

 1 Cmax after a single dose of 4 mg per individual ranged from 1.6 to 5.7 ng/mL; molecular weight is 455.5 ng/
nmol35 2 Cmax after a single dose of 2 mg per individual is 27.6 ng/mL; molecular weight is 615 ng/nmol36 
3 Cmax after a single dose of 1.25 mg/m2 is: 25.1 ng/mL; molecular weight is 545.6 ng/nmol37 4 Cmax after the 
first dose of 1.3 mg/m2 is: 112 ng/mL; molecular weight is 384.24 ng/nmol38

https://string-db.org/
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Data availability
SARS-CoV-1 and SARS-CoV-2 genomics data can be found on Gene Expression Omnibus (GEO). The fol-
lowing datasets were used as viral infected genomic profiles: GSE17400, GSE47960, GSE47961, GSE47962, 
GSE1739, GSE5972, PRJNA625518, PRJNA631969, and PRJNA637580. The following values include drug 
treatment genomic signatures for compounds predicted and tested: Bortezomib, GSE48056,GSE92742; Chlo-
roquine, GSE116023,GSE92742; Dasatinib, GSE92742,GSE39073; Ganetespib, GSE92742; Homoharringtonine, 
GSE92742; Ixazomib, GSE66415,GSE66417,GSE92742; Lacidipine, GSE92742; Levetiracetam, GSE92742; Lopi-
navir, GSE92742; Meclofenamic acid sodium salt, GSE92742; Remdesivir, GSE154936; Sitagliptin, GSE92742; 
SR-2640 hydrochloride, GSE92742; Tanespimycin, GSE92742; Trametinib, GSE98399,GSE112282,GSE11406
0,GSE92742. Drug prediction results against all SARS-CoV-1 and SARS-CoV-2 infected cohorts described in 
this study are hosted on a public facing web application (https:// covid 19. public. auran sa. com/). Users can select 
compounds of interest to query their Fisher Exact test results in relevant disease cohorts. This web service also 
provides basic compound annotations for queried compounds using PubChem  data39.
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