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INTRODUCTION: Eosinophilic esophagitis (EoE) is a T-helper 2 (Th2), eosinophilic disease associated with pathologic tissue

remodeling that leads to end-organ dysfunction. During early-stage disease, inflammation and subepithelial

fibrosis are coupled and reversible, but in late-stage or therapy-resistant disease, there can be uncoupling of

these features with progressive esophageal rigidity and strictures contributing to clinical dysphagia and food

impactions. No current pharmacotherapeutic interventions directly target esophageal fibrosis. Based on the

abilityof thethiazolidinediones (TZD)toregulate intestinalandhepatic fibrosis,wetestedtheantifibroticeffects

of the TZDs, rosiglitazone and pioglitazone, in preclinical studies using primary human esophageal fibroblasts.

METHODS: Primary fibroblasts isolated from normal or EoE esophagi were treated with transforming growth factor (TGF)-

b1 in theabsenceorpresenceof TZDsand, in someexperiments,without orwithbudesonideandanalyzedby

quantitative real-time PCR and immunoblotting. Immunohistochemical analysis of human esophageal

biopsies was performed.

RESULTS: EoE esophageal biopsies and esophageal fibroblasts expressed higher levels of the TZD receptor,

peroxisome proliferator-activated receptor-g (PPAR-g), than normal controls. PPAR-gwas inducible by

the Th2 cytokine, interleukin 4 (IL-4). TZD significantly reduced TGF-b1-induced myofibroblast and

fibrotic gene and protein expression preferentially in EoE, but not normal esophageal fibroblasts. In

esophageal fibroblasts, TGF-b1 increased phosphorylated Smad2/3 and p38, but TZDs preferentially

inhibited p38 phosphorylation, suggesting signaling pathway-specific effects. The TZDs were more

potent than budesonide at decreasing collagen-1a1 expression.

DISCUSSION: The TZDs preferentially exert antifibrotic effects in TGF-b1-activated EoE fibroblasts and provide

a preclinical foundation for further investigation of the potential of the TZDs in EoE pathologic remodeling.

Clinical and Translational Gastroenterology 2020;11:e00164. https://doi.org/10.14309/ctg.0000000000000164

INTRODUCTION
Eosinophilic esophagitis (EoE) is a chronic, T-helper 2 (Th2),
antigen-driven eosinophilic disease of the esophagus in children and
adults (1–5). Pathologic tissue remodeling results in esophageal ri-
gidity and fibrostenosis that manifest clinically as dysphagia and
food impactions (6–9). Unbridled or suboptimally controlled EoE-
associated inflammation can lead to persistent or recurrent esoph-
ageal strictures (10–13). In its earlier stages, esophageal in-
flammationand remodeling are coupled inEoE.However, over time,
uncontrolled fibrosis and rigidity can dissociate from inflammation

and demonstrate pharmacotherapeutic resistance (14,15). The en-
suing diminished esophageal distensibility, rather than the degree of
esophageal eosinophilia or mucosal inflammation, is a predictor for
EoE-related food impaction in adult EoE (16).

Submucosal fibrosis is a prominent histologic feature of EoE
and believed to represent a histologic marker of esophageal dys-
function (17,18). Medical and elimination diet therapies can re-
verse esophageal subepithelial fibrosis in pediatric EoE and
improve esophageal distensibility in adults (19–21).Althoughmost
children andmany adults respond to standardEoE therapy, disease
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response is not universal and is oftenneither absolute nor sustained
(22–24). Subgroups of patients, such as those with a narrowed
esophagus at diagnosis, are often resistant to standard EoE anti-
inflammatory therapies, but these patients are themost clinically in
need of therapeutic interventions (19,20,25,26). Inflammation-
independent esophageal remodeling is believed to occur, especially
in long-standing disease, given the observations that a physically
rigid extracellular environment inducesmechanotransduction and
alters esophageal smooth muscle and fibroblast hypertrophy and
gene expression (27,28). Furthermore, persistent activation of
fibroblasts can be observed even after resolution of inflammation
(27). These issues underscore the significant unmet need for novel
antifibrotic therapies in EoE.

The thiazolidinediones (TZD), such as the FDA-approved an-
tidiabetic drugs rosiglitazone andpioglitazone, function as agonists
for the ligand-activated nuclear receptor peroxisome proliferator-
activated receptor-g (PPAR-g). PPAR-g is a key regulator of lipid
and glucose metabolism expressed in multiple cell types that also
regulates antifibrotic, proadipogenic, and anti-inflammatory
responses (29–32). For example, rosiglitazone monotherapy is ef-
fective in the treatment of mild-to-moderately active ulcerative
colitis (33,34). Pioglitazone, a more clinically favorable TZD,
improves liver fibrosis in adults with nonalcoholic steatohepatitis
(NASH), achieving a resolution of NASH in up to 51% of patients
(35–37). Importantly, pioglitazone is reportedly well tolerated and
without major drug-related adverse events (35,38).

Given the natural trajectory of EoE toward pathologic remod-
eling with fibrosis, we hypothesized that the TZDs might have
therapeutic activity in the esophagus to decrease fibrotic gene and
protein expression in esophageal fibroblasts. Herein, we document
the differential expression of PPAR-g in EoE vs normal esophagi
and the ability of the TZDs to reduce transforming growth factor
(TGF)-β1-induced fibrotic and myofibroblast gene and protein
expressionpreferentially in theEoE-derived esophagealfibroblasts,
setting a foundation for further evaluation of their potential utility
as new therapeutic agents to treat the fibrotic esophagus in EoE.

METHODS
Reagents, human esophageal tissues, and primary human

esophageal fibroblast isolation

TGF-β1 (5 ng/mL; R&DSystems,Minneapolis,MN), rosiglitazone
(20 μM; Abcam, Boston, MA), pioglitazone (20 μM; Sigma-
Aldrich, St. Louis, MO), budesonide (0.1 μM; St. Louis, MO), and
IL-4 (10 ng/mL; R&DSystems,Minneapolis,MN)were used in cell
culture experiments. Inactive EoE, defined as less than 15 eosino-
phils per high-power field (hpf), was achieved with EoE-directed
therapy of topical fluticasone or budesonide, proton pump in-
hibitor, and/or elimination diet. Active EoE was defined as greater
than or equal to 15 eosinophils per hpf. Human organ transplant
donor esophagi servedasnormal controls andwereprovidedby the
National Disease Research Interchange and the Arkansas Regional
Organ Recovery Agency Control. All histopathology slides, pre-
pared from esophageal tissues from patients with EoE and normal
non-EoE controls (Table 1), were reviewed separately by an in-
ternal pathologist who was blinded to therapy. All experiments
were conducted with the approval from the UCSD institutional
review board (IRB). Patients with EoE and their parents were
assented/consented for data and biopsy collection per IRB pro-
tocol. Primary human esophageal fibroblasts (FBL) were isolated
from patients with EoE and non-EoE controls (Table 2), as pre-
viously described (39).

Cell culture and stimulation

Human esophageal fibroblast cells were matched as closely as
possible for sex, race, and passage. At subconfluence, the cells were
serum starved overnight and treatedwith a TZD, budesonide, their
combination, or vehicle for 2–3 hours, followed by incubationwith
TGF-β1 or vehicle.

Preparation of total RNA and cDNA and quantitative PCR

Total RNA from fibroblast cultures was extracted using RNA
STAT-60 (Tel-Test, Friendswood, TX) protocol, and oligo(dT)-
primed cDNA was synthesized, as previously described using the
Qiagen real time-PCR kit and manufacturer’s instructions (40).
Quantitative RT PCR primers are listed in Table 3; quantitative
real-time PCR was carried out as previously described using the
appropriate gene-specific primers, and relative gene expressionwas
calculated using the 22DDCt method, with glyceraldehyde
3-phosphate dehydrogenase (gapdh) as the housekeeping gene (40).

Western immunoblot analysis

Adherent cells were washed with ice-cold phosphate-buffered sa-
line containing 1 mM sodium orthovanadate (Na3VO4) and lysed
in ice-cold RIPA lysis buffer freshly prepared and supplemented
with 1 mM Na3VO4, complete protease inhibitor cocktail, and
2 mM phenylmethylsulfonyl fluoride. Whole cell lysates were
centrifuged at 14,000g for 15 minutes at 4 °C. Equivalent amounts
of total proteins were loaded into eachwell and electrophoresed on
NuPAGE 4–12% Bis-Tris gels (Life Technologies, Grand Island,
NY), transferred to polyvinylidene difluoride membranes, blocked
with 5%bovine serumalbumin, incubatedwith primary antibodies
overnight (1:1,000) at 4 °C, detected using species-appropriate
horseradish peroxidase-conjugated secondary antibodies, and
quantified as previously described (40).

Immunostaining and histologic assessment

Tissue sections (5 μm) were deparaffinized and hydrated before
immunostaining, as previously described (41). After antigen re-
trieval, the slides were incubatedwith anti-PPAR-g (1:800; AbCam,
Cambridge,MA)or isotype control. The sampleswere processed for
immunohistochemistry using the appropriate species-specific sec-
ondary antibodies, as previously described (40). All images were
analyzed under identical light setting includingmagnification, gain,
camera position, and background illumination.

Statistical analysis

Using GraphPad PRISM v8.2.0 (GraphPad Software, San Diego,
CA), the analysis of variance and t-tests were performed to assess
statistical significance, defined as P-values , 0.05.

Ethics approval

Approved by the Institutional Review Board (IRB).

RESULTS
Rosiglitazone inhibits profibrotic gene expression dose-

dependently in EoE-derived esophageal fibroblasts

To test the effects ofTZDsonprofibrotic gene expression inhuman
esophageal fibroblasts, we treated cells with TGF-β1 in the absence
or presence of rosiglitazone. TGF-β1 inducedmRNAexpression of
a-smooth muscle actin (a-sma) in primary esophageal fibroblasts
derived from healthy donors and patients with EoE (Figure 1a). At
the concentrations tested at up to 20 μM, as guided by our dose-
response studies in EoE cells, rosiglitazone exerted insignificant
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activities on basal and TGF-β1-induced a-sma gene expression in
esophageal fibroblasts derived from healthy donors (Figure 1a). By
contrast, rosiglitazone significantly inhibited TGF-β1-induced

mRNA expression of a-sma, collagen-1a1, and connective tissue
growth factor (ctgf) in EoE esophageal fibroblasts (Figure 1a–d). A
dose-dependent effect of rosiglitazonewasobserved (Figure1e,f).A

Table 1. Characteristics of archived slides of patients with EoE and normal non-EoE controls used for immunohistochemical staining

Identifier Age Sex Race Relevant therapy

Active EoE #1 2 M Hispanic Not available

Active EoE #2 2 M Other None

Active EoE #3 3 M Caucasian OVB

Active EoE #4 4 M Other Not available

Active EoE #5 4 M Other OVB, PPI

Active EoE #6 5 M Caucasian Diet restriction

Active EoE #7 6 M Caucasian Not available

Active EoE #8 7 M Caucasian OVB, PPI

Active EoE #9 14 F Caucasian None

Active EoE #10 15 F Caucasian None

Active EoE #11 16 M Caucasian None

Inactive EoE #1 1 M Asian None

Inactive EoE #2 2 M Caucasian PPI

Inactive EoE #3 2 M Asian Not available

Inactive EoE #4 8 M Other Not available

Inactive EoE #5 11 M Caucasian Not available

Non-EoE organ donor #1 Not available Not available Not available Not available

Non-EoE organ donor #2 Not available Not available Not available Not available

Non-EoE organ donor #3 11 F Black Not available

Non-EoE organ donor #4 31 Not available Not available Not available

Non-EoE organ donor #5 37 M Caucasian Not available

EoE, eosinophilic esophagitis; F, female; M, male; OVB, oral viscous budesonide; PPI, proton pump inhibitor.

Table 2. Clinical characteristics of normal non-EoE controls and patients with EoE used for experiments

Identifier Age Sex Race Relevant therapy

Non-EoE organ donor #1 13 F Caucasian None

Non-EoE organ donor #2 16 M Caucasian None

Non-EoE organ donor #3 20 F Caucasian None

Non-EoE organ donor #4 28 M Caucasian None

Non-EoE organ donor #5 34 F Caucasian None

Non-EoE organ donor #6 44 F Hispanic None

EoE #1 4 M Caucasian OVB

EoE #2 5 F Other Elimination diet

EoE #3 11 M Caucasian Elimination diet, OVB

EoE #4 12 M Caucasian PPI, elimination diet

EoE #5 13 F Caucasian PPI, elimination diet, OVB

EoE #6 14 M Caucasian PPI, fluticasone

EoE #7 16 M Caucasian OVB

EoE #8 18 M Caucasian Elemental formula & elimination diet

EoE, eosinophilic esophagitis; F, female; M, male; OVB, oral viscous budesonide; PPI, proton pump inhibitor.
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lack of reduction in the housekeeper gene expression and on
responses in normal fibroblasts demonstrated that rosiglitazone
effects were not due to toxicity at the concentrations used herein.

TZDs inhibit profibrotic protein expression in EoE-derived

esophageal fibroblasts

TGF-β1 induced protein expression of collagen-1a1 and a-sma in
human primary esophageal fibroblasts (Figures 2 and 3). In
esophageal fibroblasts isolated from patients with EoE, rosiglita-
zone reduced basal collagen-1 (Figure 2a,c; n5 8; P5 0.0496) and
inhibited TGF-β1-induced collagen-1 protein level (Figure 2c–e; n
5 8; P 5 0.0192). By contrast, rosiglitazone did not inhibit basal
protein expression of a-sma but did exhibit a trend toward re-
ducing TGF-β1-driven a-sma protein in EoE-derived esophageal
fibroblasts (Figure 2a,g,h; N 5 7). This observation was validated
by a significant reduction in biological replicates performed in
a representative patient with EoE (Figure 2i; P 5 0.0021). Con-
sistent with its effects on mRNA expression, rosiglitazone did not
inhibit TGF-β1-induced protein expression of a-sma and colla-
gen-1a1 in normal esophageal fibroblasts (Figure 2a,b,f; N5 3).

Next, we evaluated the effects of pioglitazone, a TZD with
a more favorable clinical profile than rosiglitazone (30), in esoph-
ageal fibroblasts isolated from a representative patient with EoE
who responded to rosiglitazone. Pioglitazone also significantly
decreasedTGF-β1-mediated collagen-1a1 anda-sma induction in
EoE-derived esophageal fibroblasts (Figure 3a–c). However, the
effects of rosiglitazone and pioglitazone on basal and TGF-β1-
treated protein levels of fibronectin at the concentrations used
herein were negligible (Figure 3d). Taken together, these data
suggested that EoE might induce a reprogramming of esophageal
fibroblasts, with one of the downstream effects resulting in pref-
erential increased responsiveness of EoE-derived cells to treatment
with the TZDs, rosiglitazone and pioglitazone. Furthermore, the
protein-specific effects of the TZDs suggested pathway-specific
modulation of TGF-β1 signaling.

Rosiglitazone inhibits TGF-β1-induced phosphorylation of p38,

but not Smad2/3, in EoE-derived esophageal fibroblasts

To better understand the distinct pathways affected by TZDs in
esophageal fibroblasts, we evaluated the effects on p38 and
pSmad2/3. As expected, TGF-β1 induced phosphorylation of both
p38 and Smad2/3 in EoE-derived fibroblasts (Figure 4a). Although
rosiglitazone significantly inhibited p38 phosphorylation induced

by TGF-β1, Smad2/3 phosphorylation was not affected
(Figure 4a–c). Rosiglitazone inhibited TGF-β1-induced p38
phosphorylation dose-dependently (Figure 4d,e). Total p38 levels
were unchanged basally, on stimulation with TGF-β1, or in the
presence of rosiglitazone (data not shown). These results indicate
that rosiglitazone may function, in part, via modulation of the
noncanonical TGF-β1 signaling pathway leading to decreased p38
phosphorylation.

Comparison of rosiglitazone and budesonide in EoE fibroblasts

We compared the effects of rosiglitazone with budesonide, a com-
monly used topical EoE therapy. In esophageal fibroblasts from 2
separate patients with EoE, budesonide had no effects on TGFβ1-
inducedprotein expression of collagen-1a1 (Figure 5). By contrast,
rosiglitazone significantly reduced the expression of TGF-β1-
induced collagen-1a1 protein level in EoE-derived fibroblasts. No
synergistic effects were observed at the concentrations of budeso-
nide and rosiglitazone used herein.

PPAR-g is enriched in EoE-derived esophageal biopsies

and fibroblasts

Given the observation that EoE esophageal fibroblasts had a pref-
erential response to TZD-mediated downregulation of TGF-β1
signaling as compared to normal fibroblasts, we evaluated the ex-
pression of PPAR-g in normal and EoE esophageal biopsies and
fibroblasts. PPAR-g mRNA expression was higher in the EoE-
derived fibroblasts as compared to normal (Figure 6a). We hy-
pothesized that Th2 cytokines such as interleukin (IL)-4 might
modulate the expression of PPAR-g expression. Esophageal
fibroblasts upregulated PPAR-gmRNA expression on stimulation
by IL-4 (Figure 6a).

When assessing esophageal biopsies, we found that active EoE
esophageal biopsies, but not normal esophageal biopsies, had
PPAR-g expression in the epithelium and subepithelial lamina
propria (Figure 6b). Indeed, active EoE esophageal biopsies had
higher expression of PPAR-g than inactive EoE esophagi and
normal healthy esophagi (N5 11 active EoE, 5 inactive EoE, and 5
normal biopsies, respectively) (Figure 6c). Taken together, these
results suggest that the Th2 inflammatory milieu in EoE upregu-
lates PPAR-g expression, thereby rendering EoE cells more re-
sponsive to PPAR-g agonists.

DISCUSSION
EoE is a chronic disease with progressive esophageal fibrostenosis
when left untreated or when the disease is unresponsive to cur-
rently available therapies. Although inflammation is considered as
the trigger for fibrosis, the inflammation-fibrosis connection may
become uncoupled (42). Over time, florid inflammation can di-
minish while fibrosis continues to progress because of pathologic
and uninhibited tissue remodeling, resulting in further tissue
dysfunction. Standard treatments such as topical corticosteroids
and antigen elimination diets resolve inflammation but have var-
iable effects on remodeling, likely depending on the patient phe-
notype, genotype, and disease stage (23,43). Commonly used
medications such as topical corticosteroids can reduce the onset of
strictures and food impactions with chronic use in adults and
children, especially when the disease duration is shorter. However,
many patients, especially adults, are diagnosed after long-standing
disease and thus can have uncoupling of inflammation and rigidity
(14,15), thereby rendering their EoE suboptimally or poorly re-
sponsive to standardEoE therapy. Although topical corticosteroids

Table 3. Human qPCR primer sequences

a-sma 59-CCGACCGAATGCAGAAGGA-39 (S)

59-ACAGAGTATTTGCGCTCCGAA-39 (AS)

collagen-1a1 59-CAGCCGCTTCACCTACAGC-39 (S)
59-TTTTGTATTCAATCACTGTCTTGCC-39 (AS)

ctgf 59-ACCAATGACAACGCCTC-39 (S)

59-AGATTTTGGGAGTACGGATG-39 (AS)

gapdh 59-TGGTATCGTGGAAGGACTCAT-39(S)

59-ATGCCAGTGAGCTTCCCGTTC-39 (AS)

ppar-g 59-TTAGATGACAGCGACTTGG-39 (S)

59-GTAGCAGGTTGTCTTGAATG-39 (AS)

AS, antisense; qPCR, quantitative real-time PCR; S, sense.
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or food elimination can reverse histologic fibrosis and epithelial
remodeling, as well as esophageal rigidity in subsets of children and
adults, the resolution of eosinophilia can be incomplete even in
clinical responders, leaving nonresponders and even some
corticosteroid-responsive patients vulnerable to progression to-
ward esophageal narrowing (9,26,44). In addition, the fibrostenotic
esophagus is often resistant to medical treatments (26). This

situation leaves a pressing need for novel isolated or adjuvant
antifibrotic therapies.

The TZDs activate PPAR-g to promote anti-inflammatory and
antifibrotic effects. We observed upregulation of PPAR-g expres-
sion at the transcript and protein levels in EoE esophageal fibro-
blasts and biopsies, respectively, potentially suggesting a protective
compensatory mechanism to protect the esophagus from further

Figure 1. EoE-derived primary esophageal fibroblasts respond selectively to rosiglitazone: mRNA analysis. Human primary esophageal fibroblasts (FBL)
derived fromnormal donors or patientswith EoEwere stimulatedwith rosiglitazone (20 μMfor a–d; 10 μMor 20 μMfor e and f) or vehicle (dimethylsulfoxide)
for 3 hours and then treated with TGF-β1 (TGF, 5 ng/mL) for 24 hours in the presence of vehicle or rosiglitazone. mRNA expression was determined by
quantitative real-time PCR and expressed asmean6 SD. (a) Representative of 3 normal controls and 4 separate patients with EoE. (b–d) Representative of
4 separate patients with EoE. (e and f) Representative of 2 separate experiments in fibroblasts from 1 patient with EoE. EoE, eosinophilic esophagitis; Med,
medium; ns, not significant; rosi, rosiglitazone. *P, 0.05; **P, 0.01; ***P, 0.001; ****P, 0.0001.
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pathologic remodeling. This likely reflects the wound healing and
protective nature of fibroblasts as they attempt to downregulate
pathologic remodeling and potentially promote tissue softening.
Importantly, this may present an opportunity to use an endoge-
nously occurringwound healingmechanism via PPAR-g agonism.
The EoE epithelium and subepithelium had increased expression
of PPAR-g in the severe active state, with little to no detection of
PPAR-g expression in the normal state. Similarly, consistent with
the concept of EoE being akin to an asthmatic type pathogenesis in
the esophagus (9,45), PPAR-g expression is elevated in the airway
epithelium of asthma and allergic airway disease (46,47). PPAR-g
deficiency in airway epithelial cells exacerbated murine allergic
airway disease (47), and PPAR-g activation via agonist

nebulization was protective, resulting in reduced airway hyperre-
activity, allergic inflammation, and eosinophil activation (48).
Furthermore, PPAR-g agonism decreased airway collagen de-
position and TGF-β expression in a murine asthma model (49).
Our data suggest that EoE patients with active disease may have
higher PPAR-g expression and thus would be potential clinical
candidates for additional therapies suchas theTZDs.As such, TZD
compounds may be useful as therapeutic options to preferentially
target diseased tissues in EoE while potentially sparing healthy
tissues.

PPAR-g-positive CD41 T cells were recently identified in EoE
tissues (50). PPAR-g has been described to promote Th2 immune
responses (51,52). PPAR-gwas reported to promote Th2 cells that

Figure 2. EoE-derived primary esophageal fibroblasts selectively respond to rosiglitazone: protein analysis. Human primary esophageal fibroblasts from
normal donors or patients with EoEwere stimulated with vehicle (dimethylsulfoxide) or rosiglitazone (20 μM) for 3 hours and then treatedwith TGF-β1 (5 ng/
mL) for 24 hours in the presence or absence of rosiglitazone. A representative blot is shown (a). Protein expression of a-sma and collagen-1 was analyzed
and quantified in 3 normal controls and in 7–8 patients with EoE (b–i). (e and i) Panels represent quantification of biological replicates in a patient with EoE.
EoE, eosinophilic esophagitis; Med, medium; ns, not significant; rosi, rosiglitazone. *P, 0.05; **P, 0.01; ****P, 0.0001.
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express IL-9 (53), a cytokine thought to be pathogenic in EoE (54).
However, PPAR-g inhibited T cell activation and CD41 T cell
effector function, including inhibition of IL-4 production (55–58).
Furthermore, PPAR-g positively regulated the tissue accumula-
tion, phenotype and function of regulatoryT cells to suppress tissue
inflammation (59,60). Pioglitazone administration resulted in an
enrichment of tissue regulatory T cells (59). The expression of
PPAR-g in T cells was protective against experimental colitis
(61,62). PPAR-g suppressed eosinophilic activation (48) and mast
cell maturation and activation (63). Further investigation of the
effects of theTZDsonEoE-derived immune cellswill be required in
future studies, but it is likely that activation of the PPAR-g pathway
could provide anti-inflammatory and antifibrotic benefits in
patients with EoE.

TheTZDs have been demonstrated to improve ulcerative colitis
and NASH (33–37,64,65). Early progress in the development of
TZDs for ulcerative colitis, however,was hamperedby thepotential
cardiotoxicity profile of rosiglitazone, although the myocardial
infarction risk was subsequently disproven (66). In contrast to
rosiglitazone, pioglitazone has been shown to have a car-
dioprotective effect (66–69). In addition, given the inherent anti-
fibrotic and proadipogenic effects of the TZDs, there is a concern
for an effect on bone mineral density and the potential risk for
fractures (70–75). However, recent placebo-controlled long-term

studies evaluating pioglitazone for NASH reported that the drug
was well tolerated, without major drug-related adverse events
(35,38). It is of note thatmost of these studies used a higher dose of
pioglitazone, ranging from 30 mg to 45 mg daily. A lower dose of
pioglitazone of 7.5 mg orally daily has been proposed (76,77).
Previous studies in ulcerative colitis used up to 8 mg per day with
favorable clinical activities (33,34). In addition to dose reduction, it
is possible that topical delivery of the TZDsmight achieve directed
beneficial therapeutic effects while sparing some of the potential
adverse drug effects when given systemically. For example, topical
delivery of rosiglitazone as an enema improved ulcerative colitis
(34). In addition, a locally active, novel topical PPAR-g agonist
AS002 was recently developed and was demonstrated to induce
PPAR-g in human colonic biopsies stimulated ex vivo. In mice,
AS002 prevented and reversed colitis in vivo in a murine model of
colitis (78). The combination of reduced dosing and topical
esophageal deliveryof theTZDsmight allow for directed therapy to
the esophagus while minimizing potential systemic adverse effects.

The strengths of our study center on the elucidation of the effect
of 2 different TZDs on TGF-β1 signaling and TGF-β1-induced
mRNA and protein expression of markers of fibrosis and myofi-
broblast differentiation in primary human esophageal fibroblasts
from patients with EoE and from normal controls. We sought to
evaluate and use the lowest effective concentrations of the TZDs

Figure 3. EoE-derived primary esophageal fibroblasts respond to the TZDs. Human primary esophageal fibroblasts from a representative patient with EoE
were stimulated with vehicle (dimethylsulfoxide), rosiglitazone (20 μM), or pioglitazone (20 μM) for 3 hours and then treated with TGF-β1 (5 ng/mL) for 24
hours in the presence or absence of vehicle, rosiglitazone, or pioglitazone (repeated in 3 separate experiments [a]). (b–d) Panels represent quantification of
3 separate experiments in cells derived from a representative patient with EoE. EoE, eosinophilic esophagitis; Med, medium; ns, not significant; pio,
pioglitazone; rosi, rosiglitazone; TZD, thiazolidinediones. *P, 0.05; **P, 0.01; ***P, 0.001; ****P, 0.0001.
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that would consistently inhibit diseased cells while potentially
sparing normal cells. In other studies, much higher concen-
trations of rosiglitazone, up to 100 μM, have been described to
exert antifibrotic effects in cultured normal cells of the

gastrointestinal tract (79). At the concentrations used herein,
up to 20 μM, as determined by dose-response studies in EoE
cells, although normal esophageal fibroblasts were relatively
resistant to the effects of the TZDs, fibroblasts derived fromEoE

Figure 4. Rosiglitazone inhibits p38 phosphorylation but has minimal effect on Smad2/3 phosphorylation in EoE-derived primary esophageal fibroblasts.
Human primary esophageal fibroblasts from patients with EoE were treated with vehicle (dimethylsulfoxide) and rosiglitazone (20 μM) for 3 hours and then
stimulated with TGF-β1 (5 ng/mL) for 30 minutes in the presence of vehicle or rosiglitazone. A representative blot is shown (a). (b and c) Panels represent
quantification of blots of phospho-p38 and phospho-Smad2/3 in 4–5 different patients with EoE. A representative blot of a dose-response study using 2 or
20 μM rosiglitazone (d). (e) Panels represent quantification of blots of the dose-response study on phospho-p38 from 2 patients with EoE. EoE, eosinophilic
esophagitis; Med, medium; R2, rosiglitazone (2 μM); R20, rosiglitazone (20 μM); TGF, TGF-β1. ns, not significant; *P, 0.05; **P, 0.01.

Figure 5. Comparison of budesonide and rosiglitazone in EoE primary esophageal fibroblasts. EoE-derived esophageal fibroblasts from 2 patients were
treated with vehicle, budesonide (0.1 μM), or rosiglitazone (20 μM) for 3 hours and then stimulated with TGF-β1 in the absence or presence of vehicle,
budesonide, or rosiglitazone. Representative blot (a). (b) Quantification of blots from experiments from 2 separate patients with EoE. EoE, eosinophilic
esophagitis; Med, medium; B, budesonide; R, rosiglitazone. ns, not significant; *P, 0.05.
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biopsies were consistently sensitive to theTZDsat themRNAand
protein expression levels. The effect on p38 phosphorylation could
be observed potently even at lower concentrations, e.g., 2 μM of
rosiglitazone. The TZDs antagonized the noncanonical TGF-β1
pathway leading to diminished phosphorylated p38 levels while
sparing the canonical TGF-β1-mediated Smad2/3 phosphorylation

pathway. This observation for p38 phosphorylation is in congruence
with previous reports that described the effects of the PPAR-g
ligands in fibroblasts from other human tissues (80,81). In addition,
rosiglitazone had distinct effects on EoE esophageal fibroblasts as
compared to budesonide. As such, it is possible that the TZD class of
drugs could potentially function in vivo as adjuvant antifibrotic

Figure 6. PPAR-g expression in humanesophageal fibroblasts (FBL) andhumanesophageal biopsies. PPAR-gmRNAexpressionwasquantified in normal (N52)
andEoE-derivedesophageal fibroblasts (N52)basally (left) andafter IL-4 (10ng/mL) stimulation for6hours (right) (a).Representative imagesofEoE(fibrosis score1,
left panel; fibrosis score 3, middle panel) and normal control (right panel) biopsies stained for PPAR-g protein expression (b). Insets show detail (4003, original
magnification) and isotype control (2003). Quantification of PPAR-g-positive staining in active EoE (N5 11), inactive EoE (N5 5), and normal controls (N5 5) (c).
EoE, eosinophilic esophagitis; IL-4, interleukin-4; ns, not significant; PPAR-g, peroxisomeproliferator-activated receptor-g. *P,0.05; **P,0.01; ****P,0.0001.
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therapies in patients who have advanced, strictured, or steroid-
resistant EoE.

Limitations of the current study include limited availability of
normal controls and a finite number of patients with EoE from
whom esophageal biopsies could be obtained for immunohisto-
chemical analysis and for isolation and culturing of primary
esophageal fibroblasts. Although EoE is rising both in incidence
and prevalence, it remains a relatively rare disease. In addition, we
directed our analysis of the effects of the TZDs on knownmRNA,
protein, and intracellular signaling targets. Future experiments
expanding to unexplored transcriptomes and previously un-
identified protein and signaling targets would provide a more
comprehensive understanding of the effects of the TZDs, as
would experiments evaluating drug effects on other cell types
isolated and cultured from esophageal biopsies. Future studies
systematically evaluating the effects of the TZDs on cells derived
from different EoE phenotypes, e.g., inflammatory, fibrostenotic,
or mixed disease, would provide a better understanding of the
therapeutic utility of the TZDs.

In conclusion, our experiments suggest the potential appli-
cation of TZDs in patients with EoEwith concurrent fibrosis and/
or those who are resistant to topical corticosteroid therapy.
Targeting other profibrotic pathways such as lysyl oxidase and
TNF-a in fibrostenotic EoE is also under development (82). Be-
cause the TZDs are already approved medications in other dis-
eases, it may be of utility to consider the repurposing of these
drugs to treat complicated EoE. Our data are compelling as
a preclinical foundation for further translational and clinical in-
vestigation of the potential utility of TZDs in EoE.
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