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Abstract
Secondary calibrations (calibrations based on the results of previous molecular dating stud-

ies) are commonly applied in divergence time analyses in groups that lack fossil data; how-

ever, the consequences of applying secondary calibrations in a relaxed-clock approach are

not fully understood. I tested whether applying the posterior estimate from a primary study

as a prior distribution in a secondary study results in consistent age and uncertainty esti-

mates. I compared age estimates from simulations with 100 randomly replicated secondary

trees. On average, the 95% credible intervals of node ages for secondary estimates were

significantly younger and narrower than primary estimates. The primary and secondary age

estimates were significantly different in 97% of the replicates after Bonferroni corrections.

Greater error in magnitude was associated with deeper than shallower nodes, but the oppo-

site was found when standardized by median node age, and a significant positive relation-

ship was determined between the number of tips/age of secondary trees and the total

amount of error. When two secondary calibrated nodes were analyzed, estimates remained

significantly different, and although the minimum and median estimates were associated

with less error, maximum age estimates and credible interval widths had greater error. The

shape of the prior also influenced error, in which applying a normal, rather than uniform,

prior distribution resulted in greater error. Secondary calibrations, in summary, lead to a

false impression of precision and the distribution of age estimates shift away from those that

would be inferred by the primary analysis. These results suggest that secondary calibra-

tions should not be applied as the only source of calibration in divergence time analyses

that test time-dependent hypotheses until the additional error associated with secondary

calibrations is more properly modeled to take into account increased uncertainty in age

estimates.

Introduction
Methods that estimate evolutionary divergence times have come a long way in the 50 years
since the molecular clock was introduced by Zuckerkandl and Pauling [1–3]. Although the
application of a strict molecular clock was rightfully met with apprehension because many data
sets significantly deviated from a constant substitution rate [2], relaxed-clock methods have
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been shown to be robust in the face of substitution rate heterogeneity [4,5]. Examples of signifi-
cant methodological advances include local molecular-clocks [6], the penalized-likelihood
approach implemented in r8s [7,8], the multigene Bayesian-approach implemented in Multi-
divtime [9–11], and the Bayesian approach that implements the uncorrelated lognormal
(UCLN) model (among others) in Beast [12,13]. The behavior of divergence time estimates in
the face of uncertainty and violations of methodological assumptions is also better understood
because of studies that have investigated the effects of the placement, number, and distribution
of calibrated nodes [14–19], consistency among calibrations [20,21], the effects of the number
of loci or number of sites [22,23], DNA substitution model misspecification [24,25], DNA satu-
ration [26], and incomplete taxon sampling [27].

Despite the methodological advances in divergence time estimates, empirical data sets often
remain difficult to calibrate because many groups lack fossil data. Common solutions to not
having fossil calibrations include applying a substitution rate estimated from close relatives to
infer divergence times in a focal group [28,29], and calibrating a node with an age estimate
from a previous molecular-dating study that applied a fossil calibration. Such calibration
schemes are called secondary calibrations because the primary fossils are not included in age
estimates [30]. In 2004, Graur and Martin published a critical assessment of how divergence
times were being estimated, in which they lamented against the application of secondary cali-
brations, among other practices. The authors cited a previous study that found secondary cali-
brations were inconsistent and unreliable on a protein data set analyzed with a strict molecular
clock and a single secondary calibration without associated uncertainty in the age estimate
[30]. Morrison [31] later identified the problem of secondary calibrations not being precise
enough, resulting in overly wide uncertainty in age estimates. Consequently, applying second-
ary calibrations might lead to a loss of precision at best, or confounded error at worst, render-
ing absolute age estimates meaningless.

The Shaul and Graur [30] and Graur and Martin [32] studies predate the common applica-
tion of the Bayesian approaches implemented in the program Beast [33]. Among the methodo-
logical and theoretical advantages that Beast offers, accounting for uncertainty in the fossil
calibration by constructing a prior distribution is especially important [5]. This feature is com-
monly taken advantage of in divergence time analyses that apply a secondary calibration, in
which the 95% credible interval (CI) of divergence times from a primary study is used to build
a prior distribution in a secondary study (e.g., [28,34–40]). In those studies, normal or uniform
prior distributions based on the primary CI are commonly placed on the root node of the sec-
ondary study. Such an approach makes the assumption, either explicitly or implicitly, that the
uncertainty in age estimates from the primary study will appropriately transfer to the second-
ary study [34,35,37]. At face value, this approach might escape from the problem of applying
an errorless secondary calibration by taking into account the uncertainty in the primary esti-
mate, while allowing for age estimates in groups that lack fossil data.

Applying secondary calibrations has been said to increase the accuracy of the age estimates
across a secondary study as long as the estimate was derived from a robust primary calibration
[41]. Shaul and Graur's [30] evidence of inconsistency makes intuitive sense, but their method-
ology has been criticized [31,41]. Furthermore, the consequence of applying a secondary cali-
bration has not been empirically tested with relaxed-clock methods, especially in the context of
applying the uncertainty of the primary estimate to a prior distribution in a secondary study. If
applying secondary calibrations increases accuracy and allows for the more widespread appli-
cation of calibrations across systems that lack fossil data, perhaps this practice should be more
widely applied. If, on the other hand, the uncertainty of the secondary study deviates greatly
from the primary study, perhaps secondary calibrations should not be applied in empirical
studies as currently practiced.
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The uncertainty from a primary study could transfer to the secondary study in different
ways. The uncertainty, as measured by the 95% CIs of the secondary study, might become
wider than the primary study, thus indicating even greater uncertainty in age estimates and
making the secondary estimates more conservative. The uncertainty might alternatively nar-
row, and therefore, the secondary study might have estimates that do not include as much
uncertainty as the primary estimates, giving a false impression of precision. Alternatively, the
secondary study might have similar estimates of uncertainty as the primary study, but their dis-
tributions might shift to be younger or older. Any combination of the above outcomes might
also be determined (e.g., a wider distribution that shifts to younger ages). Finally, the level of
uncertainty in the secondary study could be consistent with that of the primary study in width
and position. Only the first and last outcomes are consistent with the assumptions of applying
a distribution of age estimates to a secondary study as currently practiced. Given that second-
ary calibrations are increasingly being applied [42] and the more recent advances in relaxed-
clock methods, it is timely to address the consequences of applying secondary calibrations in a
relaxed-clock framework.

Materials and Methods
The consequences of incorporating secondary calibrations in divergence time estimates were
assessed with simulated data. The experimental approach was designed to explore the conse-
quences of applying secondary calibrations as is currently practiced in the literature, and not to
optimize the best practice of applying secondary calibrations. The simulation approach allowed
for assessment of age estimates on data evolved with a known phylogeny under a simple evolu-
tionary process with known ages. A 1500-tip phylogeny was simulated with a pure-birth model
[43] that had a birth-rate of 0.7 in the Geiger v1.99–2 [44] and Ape v3.0–8 [45] packages in R
[46], and scaled to 70 Ma to be consistent with many family or superfamily level age estimates
and species numbers (e.g., Muroidea [47]). The pure-birth tree was then imported into Mes-
quite v2.75 [48], and used to simulate a 2000 bp DNAmatrix based on the HKY [49] DNA sub-
stitution model with randomly selected base pair frequencies that were consistent with
empirical studies (kappa = 2; base-pair frequencies = 0.30, 0.26, 0.23, 0.21). The data matrix,
therefore, consisted of a relatively simple underlying sequence evolution model, and as such,
the expected results should be less influenced by complex molecular evolutionary scenarios
and phylogenetic uncertainty. Although the ratio of the number of sites to tips might appear
low, simulated data is much more information rich compared to empirical data. A maximum
likelihood search in PAUP� [50] that applied the HKY model to the simulated DNA data dem-
onstrated the appropriate amount of phylogenetic signal by recovering an identical topology
and proportionately similar branch lengths as the simulation tree, plus two additional trees
that varied slightly (Robinson-Foulds distances of 4 and 8).

The 2000 bp, 1500-tip DNA sequence data matrix was imported into Beast v1.8.2 [33] along
with the pure-birth tree, and divergence times were estimated using the UCLD relax-clock
method. I fixed the topology during the initial and all subsequent Beast analyses to simplify the
confounding effect that alternative phylogenetic relationships could have on age estimates and
because the large number of tips made reaching stationarity difficult in a reasonable timeframe.
Analyses were ran to obtain effective sample sizes greater than 300, although this was not
reached for the UCLD standard deviation or coefficient of variation. I applied a custom R script
to randomly sample 29 nodes plus the root node from the original pure-birth tree to calibrate
the 1500-tip tree, which resulted in an even distribution of calibration points across the tree in
both deep and shallow nodes. This even distribution allowed for an increased chance that the
subtrees were located near a calibration point on the primary tree and it also decreased the
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interval between calibration points, which would have increased credible intervals otherwise
[22]. I applied lognormal priors for all calibrations with a standard deviation of one. A Yule
speciation prior and the HKY DNA-substitution-model were assigned, and I ran the UCLN
model for 100 million generations, sampling from the posterior distribution every 2000 genera-
tions. The first half of the posterior distribution was discarded in TreeAnnotator [33] to allow
the program enough memory to complete its summary of the posterior distribution. The
resulting maximum clade credibility (MCC) tree, which I will refer to as the primary tree, was
then used in all comparisons (trees, DNA data, and custom R scripts can be downloaded from
GSU Digital Commons: http://digitalcommons.georgiasouthern.edu/biology-data/1/).

The secondary trees were compared to the primary tree and not the original pure-birth tree
for several reasons. The main question of this study was whether the amount of uncertainty in
posterior distributions, as applied as prior distributions, are appropriately transferred in sec-
ondary calibration studies. As such, as posterior distribution of times were needed and the
pure-birth tree provided only point estimates. Although comparisons could have been made
with the primary and secondary estimates to the pure-birth tree, such a comparison adds an
element of unnecessary complexity and the deviation between the Beast estimates of the pri-
mary and secondary trees from the pure-birth tree is expected to be similar.

From the primary tree, I applied a second custom script in R that depended on the Phytools
package v0.3–93 [51] to randomly extract 100 clades without replacement on the condition
that they contained at least 20 tips. Subsampling clades with 20 or more tips mimics the sam-
pling of studies that apply secondary calibrations and allowed for the study to avoid overesti-
mation of rates associated with calibrating young nodes [29]. The 100 subsampled trees
contained all members of their respective clade, and I therefore do not expect incomplete sam-
pling bias to influence age estimates. The secondary trees were individually imported into
Beast along with their corresponding DNA data matrix from the DNA simulation, once again
simplifying the comparisons by not confounding error because of different gene histories or
evolutionary rates.

Published studies have applied both uniform and normal distributions as secondary priors,
despite the fact that these distributions might perform poorly [22]. A uniform prior distribu-
tion was applied to the secondary-tree root-node from the primary tree's minimum and maxi-
mum 95% CI values. Because the shape of the prior distribution can influence age estimates, I
also explored the impact of applying normal distribution priors in the secondary study by con-
ducting duplicated analyses of every 10th random replicate with a normal distribution prior in
which 95% of the prior distribution of the secondary study spanned the 95% CI of the primary
tree. Beast analyses were conducted with a Yule speciation prior, the HKY DNA-substitution-
model, and analyses were ran with the UCLN model for 30 million generations for replicates
that included less than 200 tips, and 60 million generations for data sets comprised of 200 tips
or greater. The posterior distribution was sampled every 3000 generations in all analyses. Anal-
yses were conducted on local machines and on the Cipres Science Gateway [52]. The first half
of the posterior distribution was discarded, as it was in the primary tree, and the second half
was summarized in TreeAnnotator.

Applying multiple calibrations will likely lead to more precise age estimates [32], given the
calibrations are not in conflict with one another [22]. I tested whether more consistent age esti-
mates could be estimated if an additional secondary calibration was applied. A second node
was calibrated on every 10th replicate, in which I calibrated the node that was two nodes tip-
ward from the root node on the right side. The average distance between the two calibrated
nodes was 8.920 million years. This sampling strategy mimics those studies that would apply
multiple secondary calibrations, which would be more likely to calibrate deeper versus
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shallower nodes. Uniform prior distributions were applied for both nodes, and the Beast analy-
ses were conduct as above.

Additional analyses were conducted to determine whether the primary results held if data
were simulated under a relaxed-clock model. The primary pure-birth tree was imported into
the R package NELSI [53] and branch lengths were rescaled according to the UCLD model
with a lognormal mean rate of 0.020 and standard deviation of 2.017. The rescaled tree was
used to simulate a 3000-bp DNA character matrix, which was evolved under the HKY model
as above. Differences between the full tree and subsampled trees were compared for every 10th

replicate as above.
If the assumption that taking into account the uncertainty of a primary study transfers

appropriate uncertainty to the secondary study is supported, I predict that (1) CIs will be
nearly the same width or wider in the secondary study, (2) CIs will be nearly overlapping,
and (3) the median age estimates will be approximate. To measure the difference in esti-
mates, I summed the absolute values of the difference in the minimum 95% highest posterior
density (HPD) interval estimate across all nodes, as well as the maximum values, the median
values, and the total width of the 95% CI per secondary tree replicate by writing a third cus-
tom script in R that took advantage of the Phyloch package v1.5 (unpublished package, C.
Heibl). The difference between median estimates was assessed with a Student's paired T-test
in R with Bonferroni corrections for multiple comparisons. The differences in CI widths
between primary and secondary estimates was assessed by pooling together all estimates
from the 100 replicated searches with a uniform prior distribution and subjecting these esti-
mates to a Student's paired T-test. I also plotted the raw values of these differences as a func-
tion of median clade ages to determine the effects of variation in age estimates from the root
to the tips of the tree. I investigated the effect that root ages and the number of species has on
estimates by conducting linear regressions in which independent analyses included the
dependent variables of minimum and maximum CI ages, median ages, and CI widths were
regressed on the secondary tree root age and the number of species. Bonferroni corrections
were applied to account for multiple comparisons. The assumptions of the frequentist statis-
tical approaches applied here are likely to be violated due to non-independence of overlap-
ping nodes and should be carefully interpreted; however, they are applied here to describe
the broad patterns in the data.

Results
Age estimates of secondary trees, as measured with the 95% HPD median ages and CI values,
were neither identical to the primary tree, nor were the secondary trees' CIs wider (Figs 1–5).
The differences between median age estimates were significantly younger on average in all rep-
lications based on the T-tests (P< 0.05; Fig 4), and all but three replicates remained significant
at the alpha = 0.05 level when the conservative Bonferroni corrections were applied to correct
for multiple comparisons. Greater magnitude of variation in age estimates were associated with
estimates closer to the root of the tree (Fig 5), however, the opposite pattern was observed
when values were standardized by the median node ages (Fig 6). Increased variance of age esti-
mates was determined for nodes closer to the root, in which the age estimates were mostly
younger for the secondary estimates measured by the minimum, maximum, and median values
from the 95% CI (Fig 5A–5C). Standardized age estimates for the CI widths showed a sinusoi-
dal relationship, in which comparisons at the tips of the phylogeny had little difference, CIs
then became shorter, peaking around 0.2 standardized node age, followed generally by second-
ary age estimates becoming longer (peaking around 0.7 standardized node age), and then
becoming shorter again near the root (Fig 5D). A T-test determined that there were
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significantly different CI width estimates between the primary and secondary estimates
(t = –46.50, df = 8871, P< 0.01).

Both clade age and number of tips were positively correlated with the summed difference in
median age estimates (P< 0.01). Older clades with more tips were associated with the greatest
amount of error (Fig 7). The difference in error was not identical for the minimum as they
were for the maximum estimates. The minimum estimates and number of tips revealed a tight

Fig 1. Randomly chosen example of ages estimated with a secondary calibration compared to those from the primary tree in one replicate (node
2509 on primary tree). All graphs were constructed by comparing the secondary estimates to the primary estimates so that positive values on the y-axis for
A–C indicate younger age estimates in the secondary study, and positive values on the y-axis for D indicate shorter credible interval (CI) in the secondary
tree. Y-axes indicate (A) Difference in median age estimates. (B) Difference in the minimum age estimates based on the 95% CI. (C) Difference in the
maximum age estimates based on the 95% CI. (D) Difference in CI widths of primary versus secondary study.

doi:10.1371/journal.pone.0148228.g001

Secondary Calibrations

PLOS ONE | DOI:10.1371/journal.pone.0148228 January 29, 2016 6 / 17



Fig 2. Chronogram of one example replicated subtree (based on node 2518) with credible intervals of the primary estimates (white error bars) and
secondary estimates (green error bars). The 95% highest posterior density (HPD) tree is represented in black for the primary estimate, and grey in the
secondary estimate. Overall, secondary estimates were found to be younger than primary estimates, and the CIs were shorter. Some nodes, such as those
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linear relationship (as did the median estimates), whereas the maximum estimates and the
number of tips revealed greater variation among age estimates (as judged by residuals), espe-
cially as the number of tips increased (Fig 7). The summed difference in CI widths among repli-
cates also revealed greater variation in estimates as the number of tips increased.

Greater error in age estimates were inferred in analyses that applied a normal prior distribu-
tion in secondary studies compared to results based on a uniform prior on average (Table 1).
The absolute summed differences between primary and secondary analyses were less on

associated s1011, s1012, and s1013, exhibit CIs between the primary and secondary analyses that do not overlap. In this example, the 95% HPD estimate
for the root node is older in the secondary analysis than in the primary, although older ages for root nodes are not always inferred.

doi:10.1371/journal.pone.0148228.g002

Fig 3. Density plot displaying the differences in credible interval estimates of nodes from the primary and secondary analyses. If uncertainty from
the primary study transferred to the secondary study, credible intervals for each comparison should approximately equal zero (represented by grey line);
however, the majority of estimates fall above, indicating that the primary tree has wider credible intervals on average than the secondary study.

doi:10.1371/journal.pone.0148228.g003
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average when a uniform prior was applied than when a normal prior was applied. All analyses,
regardless of the prior distribution shape, had significantly different median estimates.

Analyses that incorporated two secondary calibrated nodes were associated with less abso-
lute summed differences of minimum and median age estimates on average than estimates
based on a single node and analyses based on a normal distribution (Table 1). Greater differ-
ences in analyses that applied two calibrated nodes were associated with maximum age esti-
mates. Credible intervals were associated with greater difference in analyses that applied two
secondary calibrated nodes than those that applied a single node, but not as great as analyses
that applied a normal distribution.

To test the robustness of the primary results to rate heterogeneity, data were simulated
under the UCLN relaxed-clock model and reanalyzed. Comparisons made between the

Fig 4. Median age estimates of nodes from the primary and secondary analyses. If age estimates were approximate, age estimates would fall near the
grey line (slope = 1, intercept = 0); however, node ages are generally younger in the secondary than in the primary analysis.

doi:10.1371/journal.pone.0148228.g004
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primary and secondary trees for these data again identified significant differences between pri-
mary and secondary estimates in all replicates (Table 1), and difference measures were on aver-
age greater in the relaxed-clock data than uniform-prior estimates based on simulated data
with correlated and constant divergence times (Table 1).

Discussion
Divergence time estimates have had a profound influence on biological inference. These
approaches have tied evolutionary events to geologic and climate events, have allowed us to
model expected change over time to study character evolution and lineage diversification, and
they are the basis of most comparative studies [2,3,42]. It is therefore understandable why
researchers have applied alternative calibration strategies when their study system lacks fossil
data. Yet the question remains, what is the cost of implementing secondary calibrations in
empirical studies? If our aim is to test hypotheses with robust methods that produce reliable
age estimates, the cost of applying secondary calibrations might be too high with our current
methods.

I proposed in the introduction that only results with approximately similar age estimates or
wider CIs would be consistent with the current practice of applying secondary calibrations. I

Fig 5. Differences in age estimates compared to standardized node ages in all 100 replicates based on the uniform distribution. Node ages of all
replicates have been standardize so that the root node = 1 and the tips = 0 (so comparisons can be made across different replicates of different root ages).
(A) Difference in median age estimates, (B) difference in minimum age estimates, (C) difference in maximum age estimates, and (D) difference in the credible
interval widths. The null hypothesis of no difference in age estimates is indicated with a grey line on all plots.

doi:10.1371/journal.pone.0148228.g005
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determined neither to be true. The CIs, which most studies apply to represent uncertainty in
age estimates, are on average significantly narrower in the secondary study (Fig 3), giving the
false impression of precision, and they are generally shifted to younger ages (Fig 4). Even with
Bonferroni corrections for multiple comparisons, 97% of the secondary analyses were inferred
to have significantly different age estimates, a proportion much too high to consider reason-
able. Clearly, the assumption that applying secondary calibrations will account for the uncer-
tainty from the primary study is invalid.

The result that variation in age estimates, as judged by the 95% CI, is lost when secondary
calibrations are applied is anything but surprising. Applying a distribution that consists of only
95% of the credible interval, as is commonly practiced, will by definition remove 5% of the vari-
ation. Variation in age estimates is also not consistent across all nodes. Tipward nodes were

Fig 6. Difference in credible intervals after being standardized by the median node age for a representative replicate. Plot represents node 2509, as
in Fig 1, and should be compared to Fig 1D.

doi:10.1371/journal.pone.0148228.g006
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associated with less variation when considering magnitude, but were associated with much
greater variation when standardized by the median node age (Fig 6). The higher variation in
tipward clades might be due to more uncertain rate estimates associated with less information
at shallow nodes. The greater variation in magnitude associated with deeper nodes (Figs 1 and
5), as well as the greater relative variation in tipward nodes makes predictions of how second-
ary calibrations will misestimate ages more tenuous. For each node, how the CIs vary was also
inconsistent, in which applying secondary calibrations had a much greater effect on maximum
compared to minimum age estimates (Figs 1 and 5).

Fig 7. Relationship in magnitude between the number of tips and (A) maximum difference in age estimates, (B) minimum difference in age
estimates, (C) median difference in age estimates, and (D) difference in credible interval widths. A linear model fit onto all data sets revealed a
significant positive relationship after Bonferroni corrections (P < 0.05).

doi:10.1371/journal.pone.0148228.g007
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I primarily explored the effects of applying a uniform prior because it is common practice in
the literature and is more conservative in the comparisons made in this study, but I also
explored the effects of applying a normal prior. Greater error was associated with normal than
uniform distributions (Table 1), despite its' common use in secondary calibration studies [28].
Using the 95% CI from the primary study to construct a prior distribution in a secondary study
automatically reduces the total uncertainty assigned to the prior, and applying a normal distri-
bution can reduce the uncertainty even greater by assigning lower prior probabilities near the
tails. The choice of what distribution to model for a secondary calibration is often overlooked.
Applying a prior distribution that is most similar to the posterior distribution (e.g., lognormal
[28]) is preferable, but seldom done, and more work is needed to understand the interactions
among the prior distributions of secondary calibrations and rate priors.

This study was designed to simplify confounding factors that can increase discordance
among age estimates when applying secondary calibrations. The true species tree was applied
in all analyses and the topology was fixed while ages were estimated, thus absolving phyloge-
netic uncertainty in topology. Primary and secondary trees were estimated with the same DNA
matrix with a known and simple substitution model that resolved lineages at both deep and
shallow positions [24,26]. The secondary analyses were also conducted with all species from
their respective clade [27], calibrations were taken from a tree with a constant substitution rate
across all lineages, and the primary ages were estimated with numerous calibrations of known,
precise ages that were located across the phylogeny [4,14–16,32] and correctly placed [4]. The
results presented here, therefore, might be the best chance to obtain consistent ages between
primary and secondary estimates, and results from empirical data sets could be associated with
even greater error due to the above effects. Analyses that applied more-complex data simulated
with a relaxed-clock model, for example, were associated with greater error than those simu-
lated with a constant substitution rate (Table 1).

A single secondary calibration was applied in this study to mimic common practices in
divergence time estimation. It has long been appreciated that age estimates based on a single
calibration are more prone to error than one in which multiple, but consistent, calibrations are
applied [14,32]. One approach taken to mitigate this error is to apply a combination of primary
and secondary calibrations. Although this may result in narrower error estimates around age
estimates [41], as shown here, this may be due to incorrect inferences of error rather than more
precise estimates, or due to conflicting age estimates [22]. Following the logic of Graur and
Martin [32] that applying only a single calibration point leads to greater error, one would
expect that applying a second secondary calibration would generate age estimates that are
more similar to those from the primary analysis as long as they were consistent. This expecta-
tion was not met. The primary and secondary estimates were more similar, but only for the

Table 1. Comparisons of every 10th replicate showing differences in the prior distribution, number of calibrated nodes, and relaxed clock simula-
tions. Average (Avg.) minimum (Min), maximum (Max), median, and credible interval (CI) values are the averaged absolute summed differences between
primary and secondary estimates in time units (Ma). The uniform and normal prior distribution replicates and relaxed clock simulations applied a single cali-
bration, whereas the two node replicates applied two calibrations per replicate, both of which have a uniform prior distribution. The T-test results are the pro-
portion of replicates that resulted in a significant value at P < 0.05.

Uniform Normal 2 nodes (uniform) Relaxed

Avg. Min 51.72 98.99 43.48 52.40

Avg. Max 78.66 80.29 85.21 84.54

Avg. Median 79.85 87.03 73.60 80.30

Avg. CI 45.53 55.39 47.07 55.29

T-test median 100% 100% 100% 100%

doi:10.1371/journal.pone.0148228.t001
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minimum and median estimates (Table 1). The maximum age estimates and CIs were actually
more divergent when a second calibration was applied. This result suggests that multiple sec-
ondary calibrations cannot rescue secondary age estimates.

An alternative approach to secondary calibrations is to sample more inclusively until a data
set includes the focal group as well as a more distantly related clades that includes fossil data.
This approach has the advantage of estimating divergence times in groups without fossil data
while directly applying primary fossil ages. Data sets now exist that facilitate applying a wider
set of fossil data, such as the Paleobiology database (http://paleobiodb.org/), Fossilworks
(http://fossilworks.org), Palaeontologia Electronica (http://palaeo-electronica.org), Parham
et al. [54], Weir and Schluter [29], and Magallón and Castillo [55]. This approach, however,
might have some undesired drawbacks. As larger clades are sampled (often from GenBank
accessions), the probability of sampling clades with missing species increases, which might
affect divergence time estimates [27]. These larger data sets, which will often require a multi-
gene approach that includes fast and slow evolving genes to resolve deep and shallow nodes,
also runs the risk of containing missing data for particular genes, which might be problematic
in branch length estimates [56], as well as saturation in deeper relationships of fast evolving
genes [26]. This approach will also contain increased uncertainty in age estimates as patristic
distance from the calibration point increases [22,23,57], which might generate CIs that are too
wide to reject null hypotheses (although for the correct reason) [31]. Consequently, although
this approach is likely to produce more reliable results that appropriately incorporate uncer-
tainty compared to applying secondary calibrations, important sampling issues need to first be
considered.

A closer examination of the error generated by applying a secondary calibration revealed
that it is not completely confounded or intractable. The difference between primary and sec-
ondary estimates behaved consistently across replicates and is dependent on the number of
tips or the root age. The effects of applying a secondary calibration could be parameterized in
divergence time estimates. For example, the distributions in Figs 3 and 5 could be used to con-
struct a secondary calibration distribution to take into account the additional uncertainty in
age estimates across nodes. Noting that the impact of secondary calibrations changes across
nodes, the consequences of secondary calibrations could be accounted for, which would allow
for study systems that do not have fossil data to generate age estimates that reasonably account
for the uncertainty associated with secondary calibrations. Thus, the problem might not be
using secondary calibrations, but rather, using them without taking into account the additional
uncertainty. Until such methods are developed, applying secondary calibrations in studies that
test hypotheses that include a time component should be discouraged.

In conclusion, secondary calibrations fail to accurately account for the variation and uncer-
tainty that was inferred in the primary study. The prior distribution that is accounted for in the
secondary analysis is not identical to the error estimates in the primary study, and this discon-
nection generates biased age estimates. Incorrect age and error estimates are likely to be exas-
perated as researchers apply truncated and different prior distributions than the posterior
distributions that were estimated in the primary study. Empirical studies are likely to include
much more complex data than what were analyzed here, such as rate heterogeneity among lin-
eages, deep tree distances from calibrated root node to tips, and secondary calibrations placed
on non-root nodes, producing the potential to estimate secondary age estimates that vary
greatly from primary estimates. As such, age estimates from secondary calibrations should not
be trusted until methodological advances are developed to account for uncertainty in these
estimates.
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