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a b s t r a c t

Gilles de la Tourette syndrome (TS) is a common, childhood-onset psychiatric disorder

characterized by persistent motor and vocal tics. It is a heterogeneous disorder in which

the phenotypic expression may be affected by environmental factors, such as immune

responses. Furthermore, several studies have shown that genetic factors play a vital role

in the etiology of TS, as well as its comorbidity with other disorders, including attention

deficit hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum dis-

order. TS has a complex inheritance pattern and, according to various genetic studies,

several genes and loci have been correlated with TS. Genome-wide linkage studies have

identified Slit and Trk-like 1 (SLITRK1) and histidine decarboxylase (HDC) genes, and

candidate gene association studies have extensively investigated the dopamine and se-

rotonin system genes, but there have been no consistent results. Moreover, genome-wide

association studies have implicated several genetic loci; however, larger study cohorts are

needed to confirm this. Copy number variations, which are polymorphisms in the

number of gene copies due to chromosomal deletions or duplications, are considered

another significant source of mutations in TS. In the last decade, whole genome/exome

sequencing has identified several novel genetic mutations in patients with TS. In

conclusion, more studies are needed to reveal the exact mechanisms of underlying TS,

which may help to provide more information on the prognosis and therapeutic plans

for TS.
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Gilles de la Tourette syndrome (or Tourette syndrome, TS) is a

common, inherited, and childhood-onset neuropsychiatric

disorder characterized by persistent motor and vocal tics.

These tics are characterized by the appearance of short-lived,

involuntary, or semi-voluntary attacks in the form of move-

ment and/or voice. Tic disorders can be classified as transient

(duration not exceeding one year), chronic (motor or vocal tics

lastingmore than one year), or TS (motor and vocal tics lasting

more than one year). The incidence of tic disorders in school-

aged children is 1e3% [1]. It is a heterogeneous disease

involving genetic, environmental, and immune factors that

interact to cause susceptibility.

In addition to tics, children with TS usually have a variety

of mental illnesses, including obsessive-compulsive disorder

(OCD), attention deficit hyperactivity disorder (ADHD),

learning difficulties, sleep abnormalities, or other behavioral

problems. However, the mechanism that links TS to other

neurological disorders remains unclear. Commonly, affected

children need treatment for their comorbid mental illness. In

fact, most children with TSmay not need drugs to control tics,

but their comorbidities, which may be more likely than tics to

cause harm. Specifically, it is estimated that 50e75% of chil-

dren with TS also suffer from ADHD. Due to this high co-

morbidity rate between ADHD and TS, it is assumed that they

have a common pathophysiology, that is, in the basal ganglia

circuit.

Anxiety, mood disorders, and other emotional symptoms

have long been described in patients with TS or ADHD [2].

However, only in recent years have people become increas-

ingly aware of the clinical and scientific significance of TS or

ADHD combined with emotional and behavioral disorders.

Overall, the incidence of mood and anxiety disorders is high

among these patients. Using neuropsychological and psy-

chological education testing, it will be beneficial to deter-

mine these specific defects, especially children with TS or

ADHD who may be more susceptible to poor school perfor-

mance, academic failure, and delayed socio-psychological

development.
Heritability and risk factors

Decades of research have established that genetic factors

have a significant impact on TS [1]. Several studies have

shown that TS is familial [3,4]. However, a twin study found

that the concordance rate was 53% and 8% for monozygotic

and dizygotic twins, respectively. This clearly demonstrates

that TS is not entirely determined by genes [3]. Therefore, it is

thought to be a complex disease caused by multiple factors,

including genetic predispositions and environmental triggers.

OCD is a common comorbidity in patients with TS, and fa-

milial studies have shown that these two diseases seem to

have some common genetic susceptibilities [5e8]. Studies

using segregation analysis in affected families showed that TS

manifested in an autosomal dominant pattern with variable

phenotypes, including chronic tic disorders, and OCD [7,9].

However, more recent studies support polygenic or oligo-

gentic inheritance models [3].

Some studies have suggested that environmental factors

that lead to immune activation can influence a subgroup of
patients with TS and OCD. Part of this association may be

due to the similarity between TS and Sydenham's Chorea,

which is caused by group A b-hemolytic streptococcus

(GABHS) infection [10,11]. Specifically, some immune

studies have shown that infections, such as pediatric

autoimmune neuropsychiatric diseases associated with

streptococcal infections (PANDAS), may induce or increase

the susceptibility of individual to tics and related charac-

teristics via abnormal humoral immune responses directed

against self-tissue antigens. Cross-sectional [11e13] and

longitudinal research [14] support an association between

GABHS infection and the onset or exacerbation of pediatric

OCD, TS, and tic disorders. However, other prospective

longitudinal study results suggest no obvious relationship

between new GABHS infections and symptom exacerbations

in groups of patients with TS and/or OCD [15]. Since its first

definition in 1998, PANDAS has been considered controver-

sial. Another PANDAS-related disorder, pediatric acute-

onset neuropsychiatric syndrome (PANS), has been pro-

posed. PANS is characterized by sudden onset of OCD and/or

severe dietary restrictions, and at least one other accom-

panying cognitive, motor, behavioral, or emotional symp-

toms, but no streptococcal infection. Better definition of

clinical manifestations, precise biological markers, neuro-

imaging tests, and systematic data collection are needed to

determine which of the available diagnostic tests are most

discriminating for a PANDAS/PANS diagnosis; this will also

help to establish more precise diagnostic guidelines

and indications [16,17]. A nationwide population-based

caseecontrol study investigated the association between

allergic diseases (such as allergic rhinitis, asthma, atopic

dermatitis, and allergic conjunctivitis) and TS and deter-

mined that allergic diseases increase the risk of TS. This risk

also rises with an increase in the number of allergic

comorbidities [18].

In addition to antibody-mediated mechanisms, symp-

toms observed in patients with TS, such as tics, obsessive-

compulsive (OC) symptoms, and anxiety/depression, may

be directly or indirectly induced by cytokines. Animal studies

have shown that cytokines injection can have many effects

on the brain, especially on the neuroendocrine system and

behavior [19]. Cytokine administration also alters neuro-

transmission, which might be responsible for these effects.

Of these activation of the hypothalamic-pituitary-adrenal

(HPA) axis by interleukin-1 (IL-1) is the most studied [20,21].

Clinical studies on TS and early-onset OCD have shown that

these diseases are quite sensitive to psychosocial stress

[22e25]. In fact, several reports have suggested that patients

with TS have an abnormal stress response [26e29]. Lin et al.

[29] monitored the psychosocial stress levels of 45 children

with tic disorders and/or OCD and 41 healthy control par-

ticipants for 2 years. A continuous monthly assessment of

the severity of tic and OC and depressive symptoms was

recorded. The modern structural equation model of unbal-

anced repeated measures was used to evaluate the time se-

ries of psychosocial stress, which measures the changes that

accompany the severity of tics and OC and depressive

symptoms. This study found that psychosocial stress was a

powerful predictor of the severity of future tics and OC and

depressive symptoms [29].

https://doi.org/10.1016/j.bj.2022.01.008
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Genetic linkage studies of TS

Genome-wide linkage studies (GWLSs) have identified several

potential candidate loci in chromosomal regions related to TS

[30,31]. The use of the GWLSmethod helps uncover genes that

may be related to TS, and has identified special chromosomal

regions from several families with TS. However, no genes or

mutations that affect pathogenicity have been observed,

except for the Slit and Trk-like 1 (SLITRK1) gene on chromo-

some 13 [32] and the histidine decarboxylase (HDC) gene on

chromosome 15 [33]. These early studies to identify disease-

causing genes using GWLSs had their own constraints. They

include phenotypic complexity, such as the clinical and ge-

netic heterogeneity of TS and its related comorbidities, limited

number of samples, and limitations of genetic technology and

statistical methods at that time, such as low coverage and

resolution of the microsatellite marker sets used. Linkage

analysis is based on calculating the frequency of recombina-

tion events in a limited number of generations, and therefore

it is sensitive to mislabeled genetic information, such as

whether the individual is affected, allele frequency patterns,

and genetic parameters. Nevertheless, the limited but signif-

icant statistical results obtained from TS GWLSs strongly

indicate that the genetic factors of TS and related comorbid-

ities are far more complicated than simple Mendelian

inheritance.
Association studies of candidate genes

Research suggests that TS may be caused by defects in the

dopamine system. This hypothesis is supported by the fact

that an effective reduction of tics is observed inmany patients

who use neuroleptics (dopaminergic blockers). It has also

been reported that the use of a drug that blocks dopamine

accumulation in presynaptic storage vesicles (tetrabenazine)

and a drug that blocks dopamine synthesis (a-methylpar-

atyrosine) can effectively inhibit tics. Contrastingly, drugs that

increase the concentration of dopamine, such as central ner-

vous system stimulants, often worsen tics. Comings et al. re-

ported a highly significant association between TS and a

restriction fragment length polymorphism of the dopamine

receptor D2 (DRD2) locus [34]. However, Nothen et al. reported

that there was no significant difference in the DRD2 A1 allele

frequency between patients with TS and subgroups of pa-

tients classified according to the severity of tics or parental

control alleles [35]. In addition, Diaz-Anzaldua et al. reported

that DRD2, DRD3, and dopamine transporter 1 are not signifi-

cantly associated with TS, but DRD4 andmonoamine oxidase-

A genes may increase the risk of TS development in the

French-Canadian population [36]. Linkage studies on some

genes, including dopamine D3-5 receptors [37e39],

glycine alpha-1 subunit; gamma-aminobutyric acid A

(GABAA) receptor alpha-1, beta-1, and alpha-2, alpha-6, and

gamma-2 subunits (GABRA1, GABRB1, GABARA2, GABRA6,

and GABRG2); alpha-adrenergic receptor ADRA1; beta-

adrenergic receptor ADRB1; glutamate receptor GLUR1; gluco-

corticoid receptor GRL [40]; the norepinephrine transporter

gene [41]; and catechol-O-methyltransferase [42], did not
show a positive association with TS occurrence. Researchers

have also attempted to find an association between TS and

other movement disorders [43].

In one study, a total of 151 childrenwith TS and 183 healthy

controls were included. Polymerase chain reaction was used

to identify the TaqI DRD2 and DRD2 (H313H, rs6275) poly-

morphisms of the DRD2 gene. There was a significant differ-

ence in the genotype proportions of TaqI DRD2 and DRD2

(H313H) polymorphisms between the two groups (p < 0.01).

The odds ratio for developing TS was 2.253 (95% confidence

interval, 1.124e4.517) in homozygous individuals with the

TaqI DRD2 A1 allele compared to those homozygous for the

TaqI DRD2 A2 allele. Likewise, compared to homozygous in-

dividuals with DRD2 (H313H) T, those homozygous for DRD2

(H313H) C had an odds ratio of 2.96 (95% confidence interval,

1.398e6.269) for developing TS. These data indicate that the

DRD2 gene or adjacent genes might be susceptibility factors

for TS [44]. In contrast, polymorphisms in the DRD1 gene

showed no association [45,46], as well as the norepinephrine

genes (ADRA2A and ADRA2C), have not been associated with

TS [47]. Furthermore, a genetic screening in the SLITRK1 gene,

which was recently identified mutations with TS, was per-

formed, but it did not appear to be of utility in TS diagnosis

[48]. Contrastingly, while further evaluating the association

between immunity and TS, it was found that the interleukin 1

receptor antagonist gene, encoding the IL-1 Ra protein, might

be a candidate genetic marker for TS [49].

Neurophysiological and neuroimaging studies suggest

that TS is also associated with the serotonin (5-

hydroxytryptamine, 5-HT) system. A link between seroto-

nin neurotransmission and TS has been suggested to a lesser

extent. One study reported that the serotonin/platelet ratio

was reduced in a large number of individuals with TS and

their family members [50]. In addition, drugs with a high

affinity for serotonin receptors, mainly atypical antipsy-

chotics, have been used to relieve tics [51]. Serotonin re-

ceptors have been shown to promote and inhibit dopamine

activity [52,53]. The serotonin transporter (5-HTT, SERT)

transports serotonin from the synaptic cleft to presynaptic

neurons to regulate serotonin and nerve signal transmission.

It also uptakes dopamine at the same time, which means it

can also act as a dopamine transporter [54]. The serotonin

system may therefore directly or indirectly participate in TS

pathology by regulating other neurotransmitter systems,

particularly the dopaminergic system.

Candidate gene studies suggest that the serotonergic re-

ceptor (HTR1A) and transporter (SLC6A4) genes are involved in

TS pathogenesis [55,56]. SERT is encoded by SLC6A4. Studies

have shown that SLC6A4 is related to the etiology of TS: higher

expression of SLC6A4mRNA in the blood is correlatedwith the

severity of TS tics [57]. SLC6A4 expression was elevated in the

striatum of a rat model of TS [58]. A rare SLC6A4 gain-of-

function variant, Ile425Val, regulates SERT activity. Studies

have found that patients with TS have a higher carrier rate of

this variant than controls [56,59]. The SERT-linked poly-

morphic region (5-HTTLPR), upstream of the promoter region

of SLC6A4, is related to the etiology of OCD [60,61] and TS [56].

Methylation studies of the SLC6A4 promoter region from

the peripheral blood of patients with major depression [62],

children with childhood physical aggression [63], ADHD [64],

https://doi.org/10.1016/j.bj.2022.01.008
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and the saliva of children with OCD [65] found that,

comparedwith the control group, increasedmethylationwas

observed in affected individuals. Hypermethylation at two

CpG sites was also associated with increased expression of

SLC6A4 mRNA in affected individuals [62]. However, the de-

gree of DNA methylation at the promoter region of SLC6A4

was not significantly correlated with the occurrence of TS

(with or without OCD), mRNA expression level, or individual

genotype, indicating that the expression of SLC6A4 is not

affected by methylation of the studied CpG site in the pro-

moter region [66].
Genome-wide significant common variant
associations with TS

In the past ten years, genome-wide association studies

(GWASs) have become a widespread method for identifying

the genetic factors of common diseases. The first GWAS re-

sults for TS were published in 2013 [67]. The TSA Interna-

tional Consortium for Genetics (TSAICG) studied 1285 TS

cases and 4964 ancestry-matched European controls,

including two isolated populations derived from Europe,

Ashkenazi Jews from North America and Israel, and French

Canadians from Qu�ebec, Canada. After several quality con-

trol steps, a final analysis was performed on the joint dataset

of 484,295 single nucleotide polymorphisms (SNPs). In the

primary meta-analysis of GWAS data from these European

ancestry samples, no significant marker reached the

genome-wide threshold (set by the authors at p � 5 � 10�8).

Nevertheless, SNP rs7868992 was the strongest associated

signal, which is located in the intron of the COL27A1 gene on

chromosome 9q32. COL27A1 is a recently discovered collagen

gene that translates into type XXVII collagen. It is abundantly

expressed in developing cartilage, but is lower in many other

tissues. In addition to COL27A1, several top-level signal SNPs

were identified, which were located in various chromosomal

regions, including within the POLR3B gene (the second largest

subunit of RNA polymerase III) on chromosome 12q23, in the

1.7-Mb intergenic region on chromosome 3q13, and in the

intergenic region between THSD7A and TMEM106B on chro-

mosome 7p21. Furthermore, one of the top five SNPs with

significance, rs7336083, was in the 1.9 Mb intergenic region

between the SLITRK6 and SLITRK1 on chromosome 13q31.

Combining the previously mentioned European ancestry

samples and isolated ethnic samples from Costa Rica and

Colombia, a total of 1496 TS cases and 5249 controls were

included in a secondary meta-analysis. Rs7868992, located in

COL27A1 on 9q32, was found to be the strongest association.

The effects of these highly associated SNPs on transcriptional

expression and DNA methylation were further explored to

find functional evidence supporting the association observed

by GWAS. From the primary analysis, top SNPs were nomi-

nally enriched for expression quantitative trait loci in the

frontal cortex, with a trend towards abundance in the cere-

bellum. The highest association signals were also nominally

enriched for the cerebellar methylation quantitative trait loci.

Yu et al. performed another TS GWAS on 4819 cases and 9488
controls and discovered a statistically significant TS-related

gene (FLT3). In addition, they confirmed that most TS heri-

tability can be attributed to the aggregation of common ge-

netic risk variants distributed throughout the genome [68].

Their study also demonstrated that, in subjects with a family

history of tic disorders (TS or chronic tics), the aggregated

genome-wide TS polygenic risk score (PRS) was significantly

correlated with the lifetime worst-ever tic severity score. In

addition, Yu et al. and Abdulkadir et al. used the TS GWAS

PRS to explore two independent population-based GWAS

samples, and found that individuals with non-TS tic disor-

ders also had a higher TS PRS compared to unaffected con-

trols, although the degree was lower than that of individuals

with TS [68,69]. Therefore, these two findings confirm, at the

genetic level, that TS and other tic disorders may exist as a

continuous spectrum, rather than their current classification

as different diagnostic entities. In addition, in the Enhancing

Neuro Imaging Genetics Through Meta-Analysis consortium,

the same TS GWAS PRS was used to detect imaging data of

subcortical brain volume, linking the genetics of TS with

brain volume [70]. Finally, a large-scale study on GWAS data

for more than one million people with various neurological

and mental diseases showed that TS has a genetic variation

common with OCD, major depression, and unexpectedly

with migraine, especially migraine with aura [71].
Chromosomal Abnormalities and Copy Numbers
Variants (CNVs)

Several rare large-segment structural aberrations associated

with TS and related phenotypes have been identified by

studying chromosomal aberrations. For example, a de novo

chromosome inversion was found in a TS patient near the

SLITRK1 gene on 13q31.1 [32]; exons 1e3 of the inner mito-

chondrial membrane protein 2 L (IMMP2L) gene were deleted

and its function was destroyed in a male patient with TS-like

tics [72]; all three patients from a TS family had an inversion

on chromosome 7q35-q36 that destroyed the Contactin-

associated protein-like 2 (CNTNAP2) gene [73]; and, in a fam-

ily with both autism spectrum disorders (ASDs) and TS

symptoms, exons 4e6 of the neuroligin 4 (NLGN4) gene on

Xp22.3 was deleted [74]. Several large-scale CNV studies have

also been conducted on TS using DNA microarrays [75e80].

Results from these studies show that approximately 1% of

patients with TS carry one known or potentially pathogenic

CNV. Overall, these studies show that chromosomal struc-

tural variations and extensive CNV increases, which are very

important in many common and rare clinical diseases, also

have a significant impact on the genetic structure of TS. In

these studies, CNVs detected in patients and families with TS

were related to previous findings in patients with schizo-

phrenia, autism, and ADHD. Therefore, these CNVs will pro-

duce a continuum of neuropsychiatric disorders, which

manifest in different ways due to differences in genetic,

environmental or other factors. Large CNV fragments could

cause more abnormal gene expression during neuro-

development, leading to more serious lesions [81].

https://doi.org/10.1016/j.bj.2022.01.008
https://doi.org/10.1016/j.bj.2022.01.008
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Next-generation sequencing Era - rare genetic
coding variants with TS

Whole exome sequencing (WES) is an efficient method that

allows sequencing of the entire coding region of the human

genome to discover rare variants that may affect function in

these protein-coding regions. In contrast, whole genome

sequencing (WGS) involves the sequencing of the entire

genome, including introns, exons, flanking sequences, and

intergenic regions. GWAS research usually uses common

variants (frequency �5%), while WES/WGS can identify rare

(frequency �1%) and de novo mutations in the genome. WES

has achieved remarkable results in the study of Mendelian

genetic diseases [82] and is also an effective method for

gene identification for complex traits or diseases [83]. It is

important to note that although these protein-coding re-

gions account for less than 2% of the entire genome,

approximately 85% of disease-causing mutations fall in

these regions [84e86].

After studying 120 TS patients using WES and comparing

them with a rigorous control group, Depienne et al. identify

pathogenic variants in OPRK1 (encoding the opioid kappa

receptor). This result echoes an idea that has existed since

the 1980s, which is that the opioid system plays a role in the

pathophysiology of TS; it also suggests a new potential

treatment approach [87]. WES of 100 trios (patients with TS

and their parents), identified point mutations in ASH1 Like

Histone Lysine methyltransferase (ASH1L), which cause de-

fects in its enzyme activity, thereby making ASH1L a sus-

ceptibility gene for TS. Previous studies on this gene have

shown that it is related to intellectual disability and autism

[88]. Furthermore, the transgenic mouse strain (Ash11 het-

erozygous mouse) exhibits tic-like movements and compul-

sive behaviors, and dopaminergic hyperinnervation in the

dorsal striatum, indicating that it is a goodmodel to study TS.

In another WES study of a cohort of 222 parent and child trio

with OCD, two disease-related genes were found, chromo-

domain helicase DNA binding protein 8 (CHD8) and signal

peptide, CUB domain and EGF-like domain containing 1

(SCUBE1). Interestingly, these two genes also appear in the

list of previously discovered TS-associated genes [89].

Moreover, animal studies have shown that mice heterozy-

gous for the Chd8 mutation show behavioral characteristics

similar to ASD, including repetitive behavior, increased

anxiety, and changes in social behavior [90]. The other study

reported WES data from 802 TS trios (2406 samples); the re-

sults identified a high-confidence TS risk gene, CELSR3, and

two probable risk genes (OPA1 and FBN2). They also sug-

gested that the number of de novo sequence damaging vari-

ants was increased in simplex (parents without tics) but not

multiplex (one parent has tics) families. This study also

observed a significant overlap in de novo sequence variants

between TS and OCD, and de novo CNVs between TS and ASD,

which represent common genetic risk factors [91].

Data from the Swedish National Registry on maternal

polycystic ovary syndrome (PCOS) was used to observe the

risk of prenatal androgen exposure to diseases such as TS,
ADHD, and ASD [92]. These results strengthen the evidence

that prenatal androgen exposure has a potential causal effect

on the development of male-dominated neuropsychiatric

disorders in the offspring of women with PCOS. Another

population level study in Sweden investigated whether tic-

related OCD has a stronger family tendency than non-tic-

related OCD. They found that relatives of patients with tic-

related OCD have a significantly higher risk of developing

OCD compared to relatives of patients with non-tic-related

OCD. Therefore, it was concluded that tic-related OCD is a

familial subtype of OCD [93]. These results have important

implications for genetic exploration.
Challenges of TS genetic study

Although much genetic information is available, gene dis-

covery for TS is still in its early stages. The available results

suggest that numerous common variants with small effects

and a few rare variants with moderate or large effects exist.

No single gene, locus or common or rare variant can fully

explain the cause of TS. One study examined a large family

affected by TS that spanned six generations and included 122

members (28 with TS, 20 with chronic multiple tics, and five

with obsessive-compulsive behavior). SNP array and WES

analyses were performed. No notable CNVs, single nucleotide

variants, insertion/deletions, or repeat expansions of near-

Mendelian effect were found. All affected members of this

family had a higher carrier frequency of common TS variant

risk loci, as observed in separate unrelated TS cases. The re-

sults of this study strongly support that the most important

contribution to TS risk is duo to a variety of common risk

variants, rather than one or several variants that exert a

strong effect [94].

Similar to other early-onset neurodevelopmental disor-

ders, identifying recurrent de novo variants is a powerful

strategy for managing long-term side effects including

chronic movement disorders [95]. Due to lack of understand-

ing of pathophysiology, the development of more extensive

and effective treatments is currently restricted. However,

given that genetic factors play an important role in TS [80,96],

a large number of TS risk-related genes, loci, and physiological

information can be integrated and used to shed light on the

potential and promising path forward that combines genomic,

neurological, and clinical data [97]. In the past decade, ad-

vances in genomics technology, including microarray geno-

typing and WES/WGS, have contributed to the substantial

growth of genetic data for neurodevelopmental disorders,

including OCD, ADHD, ASD, intellectual disability, epileptic

encephalopathy, mental disorders, and schizophrenia. Espe-

cially for early onset diseases, such as TS, it is obvious that

when too many associated genes are found, identifying cur-

rent de novo variants are a highly reliable and productive way

to discover disease-causing genes. As mentioned in “Chromo-

somal Abnormalities and Copy Numbers Variants (CNVs)”, some

studies have also shown that rare CNVs are associated with

the risk of TS. However, de novo CNVs have not yet been

identified as risk factors.

https://doi.org/10.1016/j.bj.2022.01.008
https://doi.org/10.1016/j.bj.2022.01.008
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Conclusions and future directions

TS is a complex, genetic disease with a highly variable phe-

nomenology, pathophysiology, and etiology. An expertise in

different clinical disciplines, including neurology and psy-

chiatry, as well as research fields, such as neurophysiology,

neuroanatomy, cognitive psychology, and neurogenetics, is

required to properly understand TS. Soon, GWAS using SNP

arrays is likely to be replaced by WGS, which has higher

excavation capabilities, thus allowingmore rare variants to be

discovered. For many years, genotyping technology has been

the limiting step in the discovery of disease-causing genes,

gradually, this bottleneck has turned into a phenotypic

description. The phenotypic description can be linked with

genetic data to assist in disease stratification, which can be

helpful for treatment. Therefore, a more in-depth phenotypic

analysis combined with genetic research will promote the

understanding of disease risks and mechanisms.

Although the current knowledge is limited, epigenetic

research shows promise in linking genomic variation to

environmental exposure and disease outcomes, especially for

psychiatric diseases and behavioral phenotypes. Specially,

further studies on TS using larger sample sizes are required to

understand the impact of dynamic epigenomes on develop-

mental gene regulation and behavior. Other large-scale

studies can also help differentiate TS from other psychiatric

and behavioral phenotypes, according to disease-specific

genomic and epigenomic variants. Lastly, since TS is a male-

biased disease, understanding the mechanisms underlying

gender differences may also help to further understand how

gene expression is regulated in the brain and its significance

in the pathogenesis of TS.
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