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ABSTRACT
Vascular calcification (VC) was defined as the ectopic deposition of calcium–phosphorus 
complexes on the blood vessel walls. It was a process involving multiple factors and 
mechanisms, covering the phenotype transition of vascular smooth muscle cells (VSMCs) 
and release of microvesicles. It was a common end-stage alteration of chronic diseases such 
as cardiovascular disease and chronic kidney disease. Increasing evidence indicates that 
mitochondria were involved in the development of VC. Mitochondria provided energy to cells, 
maintained the stability of cell functions, and participated in a variety of biological behavior. 
Oxidative stress, autophagy, apoptosis, and mitochondrial DNA (mtDNA) damage could affect 
the development of VSMCs calcification by alteration of mitochondrial function. This article 
reviewed the mechanism of calcification and the role of mitochondria in VC, aiming to raise a 
novel insight into drug development and clinical treatment.
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INTRODUCTION

Vascular calcification (VC) was a pathological 
phenomenon that calcium and phosphorus 
were deposited on the vessel wall in the 
form of  hydroxyapatite; it was commonly 
found in the intimal or media artery.[1] The 
arterial intima calcification was generally 
related to atherosclerotic plaques, and the 
calcification in the media of  vascular was a 
frequent end-stage pathological change of  
most chronic diseases, especially happened 
in hypertension, diabetes mellitus, and 
chronic kidney diseases.[2,3] According 
to some epidemiological studies, VC 
was found in 80% and 90% of  patients 
with vascular injury and coronary heart 
diseases, respectively,[4] besides, the presence 
of  calcification usually predicted poor 
clinical outcomes especially in coronary 
atherosclerotic diseases.[5] Mitochondria 
were the most crucial energy metabolism 
factories of  cells. Mitochondria could 
produce adenosine triphosphate (ATP) 
and a variety of  biosynthetic intermediates, 
participate in oxidative stress, and affect 
autophagy and apoptosis. Therefore, the 
quality and activity of  mitochondria were 

closely related to the state of  cells. A variety 
of  mechanisms participate in the deposition 
of  calcium in the blood vessel walls, and 
mitochondria played an essential role in 
the process of  VC. In the recent years, the 
impact of  mitochondria on calcification has 
received increasing attention. This review 
has summarized the role of  mitochondria 
in calcification from mitochondrial oxidative 
stress damage, regulation of  autophagy 
and apoptosis, and mitochondrial DNA 
(mtDNA) damage.

VASCULAR CALCIFICATION 

Mechanism of VC
Increasing evidence indicated that the 
process of  VC had a similar program 
with bone formation, and VC was an 
active and highly regulated process based 
on the phenotype transition of  vascular 
smooth muscle cells (VSMCs).[6] The whole 
mechanism of  calcification was still unclear, 
but there were two main characteristics 
of  VSMCs calcification, the transition of  
VSMCs into osteogenic phenotype and the 
secretion of  extracellular vesicles (EVs).
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Usually, VSMCs were in a contractile phenotypic state 
and played an essential role in keeping a stable contractile 
function of  VSMCs. Under the situations of  various 
stimulating factors, especially oxidative stress damage, 
abnormally accumulated reactive oxygen species (ROS) 
and calcium–phosphorus imbalance would upregulate 
the expression of  osteoblast-promoting factor Runt-
related transcription factor 2 (Runx2) and promote the 
differentiation of  VSMCs to the osteogenic phenotype.[7, 8] 
And the other stimuli such as senescence, chronic 
inflammation, and even exosomes contained micro-RNA, 
could change VSMCs into the osteogenic phenotype; 
during this process, the specific gene expression of  the 
smooth muscle contraction phenotype, such as smooth 
muscle 22-α protein (SM22α), alpha-smooth muscle actin 
(α-SMA), and smooth muscle myosin-heavy chain (SMM-
HC), was decreased. In contrast, the expression of  core 
transcription factors, such as co-rebinding factor alpha 1 
(Cbfα1), muscle segment homeobox 2 (MSX2), alkaline 
phosphatase (ALP), and other osteogenic genes, were 
upregulated, a variety of  calcification promoting factors 
and inhibitors were imbalanced, and the expression of  a 
large number of  bone matrix proteins provided a cellular 
basis for the formation of  calcifications.[9-11]

The main component of  EVs was calcium phosphate 
crystals. Calcium phosphate minerals precipitated when 
sufficient Ca2+ and PO4

3− have accumulated within EVs.
[12] The secretion of  EVs not only provided a material basis 
for the calcification process but also further stimulated the 
cells to undergo osteogenic differentiation. The high calcium 
level in the cytoplasm would promote the translocation 
of  Annexin-6 and transport to reposition in the plasma 
membrane, thereby triggering the release of  vesicles, which 
would serve as a platform or calcified core outside the cell for 
calcium and phosphorus deposition and further re-combines 
and stimulates the epitaxial growth of  hydroxyapatite, 
and the sediment would further stimulate cells to undergo  
apoptosis.[4, 13, 14] In addition, the matrix vesicles (MVs), vesicle-
like apoptotic bodies formed by the apoptotic reaction, could 
also enrich calcium.[10] At the same time, the apoptosis of  
cells would accelerate the triggering of  the release of  EVs.[15]

These two processes were causality relationships, but 
could also affect each other, eventually would lead to 
VC, and the calcification further aggravated the process 
of  VSMCs phenotype transition.[16-18] Besides the above 
two main processes, there were several other factors 
or diseases that could affect calcification by regulating 
the microenvironment of  VSMCs, such as the shear-
force of  blood flow on the vessel wall, blood glucose or 
lipid levels, and calcium–phosphorus imbalance,[5, 19, 20] 
especially hypertension had the most visible effects on VC 
microenvironment alteration.

Research has reported that Runx2 expression levels were 
significantly upregulated in pulmonary VSMCs of  patients 
with pulmonary hypertension, and the location of  Runx2 
expression had a significant correlation with the site of  
pulmonary calcification.[21] In the rat model of  VC, it was 
found that the increase in intravascular calcium deposition 
was closely related to the increased angiotensin II and 
aldosterone levels, meanwhile the VC status could be 
inhibited by captopril or spironolactone,[22] furthermore in 
the renal artery vascular also presented a massive calcium 
deposition status.[23, 24] Moreover, in the rat model that 
showed growth-related spontaneous hypertension, VSMCs 
underwent a transition into a chondroblast phenotype.[25] 

These studies suggested that hypertension-induced vascular 
remodeling, such as changes in the extracellular matrix, 
could make the VSMCs microenvironment conducive to 
calcium deposition and subsequently form VC under other 
harmful stimuli or promote calcification factors.

We have already known that the extent of  calcium and 
phosphorus deposition depends on the concentration of  
Ca2+ and phosphate.[26] The phenotype transition and VC 
induced by high phosphate or high calcium were depended 
on phosphate transporter traffic facilitator-1 (Pit-1). High 
level of  calcium or phosphate could upregulate and activate 
Pit-1.[27] The activation of  Pit-1 could increase the intake 
of  inorganic phosphate (Pi), and high level of  intracellular 
phosphorus would lead to the phenotype transition of  
VSMCs and regulate the extracellular matrix that was 
conducive to VC.[28] On the other hand, the activation of  
Pit-1 could also increase the Pi in EVs and promote the 
EVs release,[29] high level of  calcium could enhance the 
effects of  Pit-1 on Pi intake,[27] thereby promoting the 
formation of  vesicle calcification cores.[30]

‘Soil-Seed-Pest’ mechanism model
VC was a complex, multifactor, multiprocess and can be 
a regulated process. Each component in the calcification 
process affected and interacts with each other. Taken 
together, based on the above processes, we propose a “Soil-
Seed-Pest” model to describe the process of  VC (Fig. 1). 
Alteration and imbalance of  VSMCs microenvironment 
and vascular environment (soil); damage to VSMCs (seed) 
exposed to calcification environment, especially VSMCs 
which had transformed into osteogenic phenotype and 
senescence VSMCs; and various extracellular stimuli (pest) 
such as ROS damage, inflammation, and hypertension are 
the three elements that worked together and eventually 
lead to the outcome of  VC.

In the early stage of  VC, VSMCs microenvironment took 
place abnormal alterations, such as calcium–phosphorus 
imbalance, gave rise to the increased levels of  Ca2+ and 
phosphate concentrations in the microenvironment of  
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VSMCs; calcification-promoting factors such as bone 
morphogenetic protein (BMP) keep increasing; and the 
level of  calcification-inhibiting factors such as OPG 
were downregulated. VSMCs would release EVs to 
the matrix, undergo apoptosis, and transform into the 
osteogenic phenotype. At the same time, with some other 
factors such as hypertension, vascular remodeling and 
calcium deposition occur, which changed the vascular 
environment. This alteration would promote the process 
of  VSMCs phenotype transition and further aggravate the 
disorder of  calcium–phosphorus balance in the VSMCs 
microenvironment, making the microenvironment more 
likely to promote the phenotype transition of  VSMCs.

VSMCs were the main elements of  VC. Senescence VSMCs 
were much more likely to damage and calcification. In 
addition, VSMCs that have undergone osteogenic phenotype 
transition could not recover to the contractile phenotype 
in a continuous pro-calcification microenvironment, and 
VSMCs synthesize a large number of  osteoblast-related 
proteins; meanwhile, VSMCs were also under the regulation 
of  calcification signaling and promoting phenotype-
transition-related signals, leading to the calcification.

Some extracellular stimuli could change the state of  
VSMCs, taking the damaged VSMCs into a stress state. In 
these situations, VSMCs would easily undergo osteogenic 
phenotype transition if  they were exposed to external 
calcification stimuli. In addition, some extracellular injury 

could take damage to the “seed,” such as ROS damage 
or inflammatory damage, and also could affect the “soil.” 
For example, hypertension would accelerate vascular 
microenvironment remodeling and make arteries stiffing, 
accelerating the calcification process.

Increasing evidence indicates that mitochondrial damage 
existed in calcified VSMCs, and some research also found that 
alterations in VSMCs phenotype were related to a different 
status of  mitochondrial metabolism and that calcified blood 
vessels were often accompanied by mitochondrial damage 
and dysfunction. Various mechanisms could be involved 
in mitochondrial dysfunction and lead to calcification 
of  vascular[31-33]; therefore, an amount of  research has 
reached a consensus that mitochondria play a key role in 
the calcification process of  VSMCs.

MITOCHONDRIAL FUNCTION AND 
BEHAVIOR WERE INVOLVED IN THE 
VC PROCESS

The mitochondrial electron transport chain (ETC) was 
the main source of  ROS production.[34] ETC consisted 
of  13 mtDNA-encoded respiratory complexes. The 
Krebs cycle supplied nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FAD) to two 
transmembrane proteins named respiratory complexes 
I and II, respectively. High-energy electrons moved 

Figure 1: The “Soil-Seed-Pest” mechanism model of VC: alteration and imbalance of VSMCs microenvironment and vascular environment (soil); damage to VSMCs 
(seed) exposed to calcification environment, especially VSMCs that had transformed into osteogenic phenotype and senescence VSMCs; and various extracellular stimuli 
(pest) such as ROS damage, inflammation, and hypertension. Alteration in “soil” conditions, “seed” itself defects, and external “pest” stimuli are the three elements 
that work together and affect each other to form a vicious circle eventually leading to the outcome of VC. VSMC, vascular smooth muscle cell; EV, extracellular vesicle; 
MV, matrix vesicle.
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along the respiratory complexes of  ETC. At the same 
time, protons were transported from the matrix to the 
intermembrane space; the accumulation of  protons across 
the inner membrane provide potential energy for following 
subsequent reactions. The terminal component of  ETC 
was ATP synthase, which forced inorganic phosphate 
groups to connect to adenosine diphosphate (ADP) and 
converted it to ATP. The whole process was defined 
as oxidative phosphorylation (OXPHOS).[35] During 
the process of  transferring electrons, little amounts of  
electrons would leak from the respiratory complexes of  
ETC, extraordinarily complexes I and III.[36] The electrons 
and oxygen molecules combined to form ROS.[36-38] Under 
a variety of  ROS production and clearance mechanisms, 
ROS levels remained stable at a certain concentration and 
participate in the regulation of  physiological process such 
as cell proliferation, apoptosis, and Ca2+ storage[39]; even 
0.01 mmol/L of  hydrogen peroxide (H2O2) could relieve 
VC-induced ROS production by upregulating nuclear 
factor related factor-2 (Nrf-2).[40] However, excessive ROS 
production or insufficient clearance of  ROS would give 
rise to a large accumulation of  ROS, resulting in a series of  
oxidative stress damage caused by the imbalance between 
oxidative and antioxidant effects in the body. 

Mitochondria affect VC directly by oxidative 
stress damage
ROS produced by mitochondria  further cause oxidative 
stress damage and eventually cause damage to cells and 
tissues. This was the primary method that mitochondria 
participate in the development of  various diseases. Some 
studies have found increased H2O2 level and mitochondrial 
injury at the location of  the calcified vessel[41]; meanwhile 
in vivo and in vitro experiments confirmed that antioxidant 
treatment could reduce oxidative stress and improve 
VC.[42] Mitochondrial ROS might affect calcification 
by regulating phenotype transition factors of  VSMCs 
such as ALP activity.[43] During oxidative stress, a lot of  
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases were activated. NADPH oxidase was the main 
enzyme that generates ROS, and its catalyzed ROS could 
further promote much more production of  ROS from 
other sources, which led to a large amount of  ROS in the 
body, eventually upregulated the expression of  Runx2 
via activating the phosphatidylinositol 3-kinase/protein 
kinase-B/Runx2 signaling pathway (PI3K/AKT/Runx2 
signaling) and promoted the transition of  VSMC into 
osteogenic phenotype.[7, 44] And knocking down the level 
of  Runx2 could prevent H2O2-induced VC, indicating that 
ROS must depend on the regulation of  Runx2 to cause 
calcification[7]. These results suggested that mitochondrial 
oxidative stress could cause VC.[45]

Pi was one of  the substrates for ATP synthesis during 

OXPHOS and participated as a key role in regulating the 
stabilization of  mitochondrial membrane potential (MMP) 
and ROS in mitochondria.[46] Tuyet Thi Nguyen et al. have 
found that with the transport of  Pit-1, the cellular uptake 
of  Pi, which was mediated by Pit-1, causes cytoplasmic 
alkalization. This change in pH promoted the transfer of  
Pi into the mitochondrial matrix. The increase in Pi uptake 
level in mitochondrial accelerated the production of  ROS.
[47] In the Pi-induced VSMCs calcification, it was found that 
the MMP was gradually decreased and accompanied by a 
decrease in intracellular ATP level. Oxygen consumption 
was also decreased at the end stage of  VC. However, after 
treatment with alpha-linolenic acid (ALA), which was 
known to enhance mitochondrial metabolism and increase 
ATP production, it was found that the MMP gradually 
returned to a normal level, ATP production increased 
and Pi-induced alterations in the mitochondrial structure 
was reversed. Meanwhile, VC has been significantly  
rescued.[48] These results indicated that Pi could indeed 
result in mitochondrial structural damage and dysfunction, 
further leading to calcification of  cells. 

ROS was the main “tool” of  mitochondria to execute 
cellular damage, and some studies have reported several 
potential signaling pathways for how ROS mediates VC. 
Byon et al. have demonstrated that H2O2 could significantly 
activate extracellular regulated protein kinases (ERKs), 
AKT, and phospholipase C-gamma (PLC γ) signaling 
pathways. However, neither mitogen-activated protein 
kinase (MAPK kinase) nor PLC inhibitor could reverse 
the VC induced by H2O2, while PI3K/AKT blockers 
could significantly inhibit VC, indicating that the signaling 
pathway of  PI3K/AKT mediates the role of  H2O2 in 
regulating VC.[7] High concentration phosphate stimuli 
promote the increase in mitochondrial ROS by changing 
the MMP and activating the nuclear factor-kappa B (NF-
κB) signal pathway, promoted the VSMCs to transform 
into osteogenetic phenotype and finally leads to VC.[49] In 
the beta-glycerophosphate (β-GP)-induced bovine aorta 
smooth muscle cells calcification by Zhao et al., they found 
that mitochondrial ROS activated NF-κB signaling and 
NF-κB subunit p65 was translocated in nuclear and further 
transformed cells into osteogenetic phenotype, leading to 
calcification. Their finding suggested that mitochondrial 
ROS–NF-κB signaling pathway participates in β-GP-
induced calcification through mitochondrial-to-nuclear 
signaling interaction.[50] Further research found that NF-
κB signaling pathway was further activated by TNF, which 
could significantly increase the calcium deposition and 
phenotype transition of  VSMCs.[51] First, NF-κB promoted 
the expression of  Msx2 and thus promoted the expression 
of  ALP to VSMCs, and second, NF-κB promoted the 
expression of  tristetraprolin (TTP), a RNA destabilizing 
factor, thereby reducing the expression of  VC endogenous 
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inhibitory factor ankyrin H (ANKH), and eventually 
promoting VC process.[9, 51] However, at the physiological 
level of  Pi concentration, activation of  NF-κB signaling 
pathway could not lead to VSMCs calcification,[9] indicating 
that NF-κB signal’s activation was just involved in a part of  
the regulation process in high concentration phosphate-
induced calcification. Some research on the brain and 
nervous systems suggest that the regulatory effects of  ROS 
on NF-κB were two ways, depending on the concentration 
of  ROS. Low levels of  ROS could activate NF-κB, but if  
too much ROS was generated, it could inhibit the activity of  
NF-κB. Activation of  NF-κB by ROS would have different 
effects under different conditions of  stimuli or issues.[52-54] 

The process of  high-concentration phosphate-induced 
calcification of  VSMCs involved multiple pathways, and 
there were other approaches to regulation.

In Pi-treated VSMCs, besides mitochondrial structural 
damage, there was also mitochondrial fission, excessive 
mitochondria fragmentation, and enhanced expression 
and phosphorylation of  dynamin-related protein 1 (Drp1). 
Cui et al. used quercetin treatment to reduce mitochondrial 
fission by inhibiting oxidative stress and inhibiting the 
expression or phosphorylation of  Drp1, thereby blocking 
phosphate-induced VSMCs apoptosis and calcification.[55]  
In addition, mitochondrial dysfunction could lead to 
decreased ATP production; recently, an exome sequencing 
of  elastic fiber indicates multiple sequence variants of  
solute carrier family 25 member 5 (SLC25A5) gene were a 
bridge of  elastic fiber and ADP-to-ATP ratio and further 
affected extracellular matrix and upregulated promoting 
osteogenic factors.[56]

Mitochondria indirectly regulate the VC process
VSMCs were the main cell component of  blood vessels, 
maintaining the tension of  vessels and withstanding 
mechanical shear stress, so it is important for VSMCs 
to maintain the stability of  function.[57-59] Autophagy 
was a conserved intracellular degradation approach. By 
forming autophagosomes and fusing with lysosomes, 
macromolecules and organelles were degraded to maintain 
cell homeostasis.[60]

Autophagy was proved to have the ability to regulate Ca2+ 
transfer and maintain calcium homeostasis in VSMCs. In 
a mice model with VSMC-specific autophagy-related gene 
7 (Atg7) deletion, autophagy of  VSMCs was defective, 
results in breaking the balance of  Ca2+ uptake and 
release. The voltage-gated Ca2+ channels that promote 
Ca2+ from extracellular into cells were more sensitive to 
depolarization, leading to increased intracellular Ca2+ level.
[61] Mitochondria could accumulate calcium in an energy-
dependent manner, and mitochondria play a key role in 
regulating Ca2+ homeostasis in the cell.[62] Excessive intake 

of  Ca2+ by mitochondria would trigger the opening of  
permeability switching pores and release cytochrome C 
into the matrix, which led to apoptosis response.[63] The 
imbalance of  intracellular calcium could directly mediate 
the calcification of  VSMCs. According to the previous 
research, it was currently believed that calcium regulates 
VSMC calcification mainly through the formation of  
mineral cores sites and early-stage events involved in 
the calcification cascade. On the one hand, calcium in 
the cells promoted the release of  EVs, and on the other 
hand, calcium could change the intrinsic characteristics 
of  EVs and make it easy for the EVs to form crystalline 
hydroxyapatite.[64, 65]

In the recent years, some research has shown that autophagy 
has a significant inhibition effect on the development of  
VC. Dai et al. found that high phosphate stimuli could 
promote the formation of  autophagosomes in VSMCs. 
And after 3-methyladenine (3-MA) treatment, to inhibit 
the formation of  autophagosomes, the calcification would 
be significantly aggravated.[14] Liu et al. also found that 
atorvastatin could inhibit transforming growth factor-beta1 
(TGF-β1)-induced VSMCs calcification by inhibiting the 
β-catenin signaling pathway, thereby inducing an increase 
in autophagy levels.[66] Metformin has been proved to have 
the ability to induce upregulation of  autophagy to recover 
the state of  mitochondrial biogenesis and phosphate-
induced damage in VSMCs and block phenotype transition 
in VSMCs.[31] These results indicated that mitochondrial 
autophagy was defective in VC. Upregulation of  
mitophagy might restore mitochondrial function.[67] High-
concentration phosphate could promote the production 
of  mitochondrial superoxide anion and then activate the 
autophagy of  VSMCs. When autophagy was suppressed, 
the calcium deposition was increased and VSMCs released 
more MVs and EVs, which contained high ALP activity 
and accelerated the development of  VC.[29]

Autophagy happened in mitochondria specially to 
selectively remove damaged and unnecessary mitochondria 
were defined as mitophagy. Mitophagy was a protective 
behavior that maintains mitochondrial homeostasis when 
mitochondria were under some stimuli such as cellular 
ROS accumulation, mitochondrial swelling, and mtDNA 
damage.[68, 69] In the calcified VSMCs induced by lactate, 
it was found that mitochondrial dysfunction and the 
mitophagy level were downregulated. However, increased 
levels of  mitophagy, mediated by B-cell lymphoma 2 
(Bcl-2)-interacting protein 3 (BNIP3), could reverse 
mitochondrial disorders and inhibit the VSMCs’ phenotype 
converting to an osteoblastic phenotype.[70] These results 
suggested that autophagy and mitophagy worked as an anti-
calcification and anti-oxidative stress factor and maintained 
the homeostasis of  mitochondria and VSMCs.
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Apoptosis was a sort of  programmed cell death protocol, 
defined as cells take place an orderly death, unlike 
necrocytosis, executed by related genes to keep the 
microenvironment of  the cells to remain stable.[71, 72] At 
present, we knew there were two main apoptotic pathways: 
the extrinsic or death receptor pathway and the intrinsic 
or mitochondrial pathway. However, there was increasing 
evidence, indicating that the two pathways were interrelated 
and that molecules in one pathway could affect the other.[73]

The role of  apoptosis mechanism in VC was also confirmed.[74, 75]  
Apoptosis promoted the bovine VSMCs calcification 
induced by phosphate. Conversely, the application of  
apoptosis inhibitors could inhibit the deposition of  calcium 
and cells phenotype transform. Apoptotic bodies released 
by apoptotic VSMCs were one of  the mechanisms that 
promote VC.[76] In vitro experiments have demonstrated 
that calcification has a closed linkage to the significantly 
increased apoptosis level in VSMCs. Calcification could be 
rescued significantly by decreased release of  calcified MVs 
with the use of  apoptosis inhibitors.[15] H2O2 could induce 
VSMCs apoptosis level and downregulate Bcl-2 expression 
significantly, which was an anti-apoptotic protein, 
suggesting that H2O2 may induce VSMCs apoptosis in the 
way of  downregulating the expression of  anti-apoptosis 
factors such as Bcl-2.[77]

Mitochondria-dependent apoptotic events participated in 
the process of  VC. In some damage conditions such as 
high phosphate concentration environment, mitochondrial 
membrane integrity was compromised; mitochondria 
would release cytochrome C from the mitochondrial inner 
membrane space into the cytoplasm.[78] Cytochrome C 
bound and activated apoptotic protease activating factor-1 
(Apaf-1) as well as caspase-3 and caspase-9, leading to DNA 
fragmentation and other alterations that cause apoptosis 
and death.[79] Mitochondria were involved in intrinsic 
apoptotic regulation.[80, 81] α-Lipoic acid was a natural 
antioxidant with antiapoptotic activity; some studies have 
confirmed α-lipoic acid could rescue phosphate-induced 
VC and related apoptosis, and further results demonstrated 
that α-lipoic acid could activate growth arrest-specific 
6 (Gas6)/Axl/Akt pathway to restore mitochondrial 
function and inhibit the activity of  mitochondria-related  
apoptosis.[82, 83] These defects were associated with apoptotic 
events, indicated there might be a potential linkage between 
mitochondrial dysfunction and phosphate-induced 
apoptosis and calcification.

Apoptosis was related to autophagy. Apoptosis, under 
calcification stimuli, could be considered a severe 
consequence of  failure of  autophagy to re-establish 
balance for VSMCs. Autophagy could inhibit the apoptotic 
response by removing damaged mitochondria.[84, 85] 

Autophagy has been shown to be a protective factor of  
Pi-induced calcification and played a key role in arterial 
calcification,[29] although, in some tissues, the apoptotic 
response could be enhanced by autophagy.[86]

MITOCHONDRIAL DNA DAMAGE 
AND VC

mtDNA was a type of  genetic material specific to 
mitochondria and independent of  nuclear DNA (nDNA). 
Each mitochondrion contained one or more copies of  
mtDNA, which were located in the mitochondrial matrix 
near the inner membrane and have a closed double-
stranded circular structure.[87]

mtDNA was mainly responsible for encoding 13 subunits of  
the crucial OXPHOS components,[88] including 7 subunits 
of  complex I, 1 subunit of  complex III, three subunits of  
complex IV, and 2 subunits of  complex V to assemble the 
mitochondrial respiratory chain and construct an oxidative 
phosphorylated respiratory chain and complete electron 
transfer to produce ATP.[89] Unlike nDNA, mtDNA did 
not combine with histones, and DNA polymerase gamma 
(Pol γ) was the only enzyme in mitochondria that was the 
charge of  replication and correction of  mtDNA, leading 
to the DNA damage repair system of  mitochondria was 
relatively simple; therefore, mtDNA had poor stability 
and was prone to take place mutation or deletion.[90] 
Mitochondrial diseases were manifested as mitochondrial 
ETC dysfunction. These diseases were caused by mtDNA 
with pathogenic mutations or mtDNA synthetic-related 
proteins encoded by nuclear genes.

Inherited mtDNA damage and VC
In addition to mtDNA damage caused by some pathological 
stimuli, hereditary mtDNA mutations or deletions, common 
in maternally inherited mitochondrial diseases, may be 
related to  mitochondria distributed predilection, nervous 
system and muscle tissue were more preference to occur 
this type of  disease, such as chronic progressive external 
ophthalmoplegia, myoclonic epilepsy, mitochondrial 
encephalomyopathy, and stroke-like episodes.[91] In this 
kind of  disease, VC occurs relatively rarely, but we could 
usually find severe calcification in other tissues such as 
cerebrum. Some cases report that the mutation at position 
5513 from G to A of  mtDNA led to serving calcification 
in the basal ganglia[92] and the T-A nucleotide pairs 
deletion in positions 3271 to 3273 of  mtDNA, which was 
responsible for encoding transfer RNA (tRNA), also led to 
calcification in patient’s cerebrum.[93] The phenomenon of  
tissue predisposition may be related to the threshold effect 
of  abnormal mtDNA. Pathological changes would occur 
only when a certain amount of  mutated mtDNA reaches 
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a threshold. The threshold in the central nervous system 
was the lowest and the most injured and cardiovascular 
system relatively has a higher threshold; this characteristic 
of  vascular might be a novel insight to the treatment of  
mitochondria-related calcification. In patients with these 
inherited mitochondrial diseases, the mechanism was often 
the deletion or mutation in some sites of  mtDNA that 
leads to the damage of  tRNA or ribosomal (rRNA), which 
further affected the synthesis of  oxidative phosphorylation 
complexes and eventually led to mitochondrial dysfunction. 
Therefore, it seemed to be another novel potential-related 
risk factor of  VC.

Pol γ-related mtDNA damage and VC
Pol γ, encoded by the gene POLG, was the only known 
DNA polymerase that local in mitochondria and takes 
charge of  mtDNA replication and maintenance.[94] Pol γ 
was a type of  multifunctional enzyme; the catalytic subunit 
of  Pol γ has 5′-3′ DNA polymerase activity and 3′-5′ 
exonuclease activity for mtDNA replication, correction, 
and proofreading. Therefore, the mutation of  POLG or 
damage of  Pol γ would cause some mtDNA damage, such 
as mtDNA mutation, deletion of  mtDNA copy number, 
and even mtDNA depletion. Mutation of  POLG has 
become a major cause of  mitochondrial disease.[95] A case 
reported that a patient with severe neurological disease has 
a mutation occurred in POLG (c3239G> c; p.Ser1080Thr), 
and the computed tomography (CT) results of  the brain 
indicated extensive intracranial calcification, which 
was especially much more concentrated in the dentate 
nucleus and cerebellar hemispheres.[96] A study reported 
that POLG-/-ApoE-/-mice had a higher incidence of  
atherosclerosis compared to POLG+/+ApoE-/- mice; 
the results suggested that the progress and status of  
atherosclerosis could be directly accelerated by mtDNA 
damage, while arteries atherosclerosis, as a progressive 
disease, would eventually lead to calcification of  the 
arterial intima when the disease progress to the end stage. 
Therefore, we speculated that POLG-related mtDNA 
damage could promote the development of  vascular 
diseases and participate in the end-stage calcification 
process indirectly.[97]

Mice with POLG D257A mutation expressing Pol γ 
proofreading defective versions accumulated nearly 
2-fold mtDNA mutations than wild-type mice and show 
accelerated aging characteristics.[98-100] Accumulation 
of  mutations mtDNA eventually led to mitochondrial 
dysfunction. Mice with mtDNA mutation exhibited a 
profound elevated oxidative stress, apoptosis, and decreased 
ATP-to-ADP ratio or decreased ATP production, which 
led to mitochondrial dysfunction.[101] Some researches 
had found that the prevalence of  arterial stiffening in 
POLGD257A/D257A mice was higher than that in the wild-

type mice group, and the intravascular blood flow had a 
greater shear force on the vessel walls, and this excessive 
mechanical pressure was involved in the process of  VC, 
so this phenomenon suggested a potential linkage between 
POLG and VC.[102] Defects in mtDNA caused structural 
damage in the respiratory complexes of  ETC and further 
impaired the function of  the complexes; eventually these 
damages would lead to abnormal OXPHOS and energy 
deficiency.[103]

Taken together, although the mechanism of  calcification 
was not clear, and it was still unclear whether these 
mtDNA-related VC were the primary phenomenon or a 
secondary phenomenon, we believed that the occurrence 
of  calcification was related to the damage of  mtDNA. 
Whether it was a genetic defect or an abnormal synthesis 
of  mtDNA, the calcification induced by mtDNA damage 
affected the formation of  the mitochondrial OXPHOS 
complex, which belonged to the damage in the early stage 
of  OXPHOS synthesis. It was a type of  structural damage 
of  ETC that led to OXPHOS dysfunction and was different 
from external stimuli such as high phosphate.

Mitochondrial-damage-induced calcification was a 
complex process involving multiple factors (Fig. 2). 
ROS was a core factor for VSMCs calcification caused 
by mitochondrial disorders. Mitochondria were directly 
involved in the calcification process via ROS pathway, 
especially the phenotype transition of  VSMCs. Pol γ 
damage or hereditary mtDNA damage led to abnormal 
ETC synthesis, or even incomplete structure of  ETC, 
resulting in excessive production of  ROS. The first target 
ROS attacked was mtDNA, which caused damage or 
deficiency of  mtDNA, resulting in a vicious circle. Some 
external damage, such as high-phosphate environment or 
NADPH activation, would affect the normal operation 
of  ETC and generate ROS. ROS accumulated in 
mitochondria could affect the activity of  ATP synthase 
and the release of  vesicles or even promote the activation 
of  osteoblasts. In addition, excessive ROS could cause 
mitochondrial fusion–fission imbalance through the 
activity of  Drp-1, resulting in mitochondrial damage 
and promoting apoptosis. At the same time, ROS signals 
could activate the NF-κB signaling pathway and the 
PI3K/AKT/Runx2 pathway to promote osteogenic 
phenotype transition of  VSMCs. Mitochondria indirectly 
regulated the calcification of  VSMCs through autophagy/
mitophagy and apoptosis/endogenous apoptosis. 
Both apoptosis and autophagy were cell degradation 
mechanisms. The two behavior interacted with each 
other and maintained a relative balance. Some stimuli that 
caused damage to MMP, such as ROS or high phosphate, 
often caused structural damage to the mitochondria, 
released cytochrome C from mitochondria, and activated 
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endogenous apoptosis, further promoting the release of  
MVs and leading to calcification. At present, autophagy 
was considered a protective factor that inhibits the 
occurrence of  calcification and was regulated by many 
aspects. The large accumulation of  Ca2+ in mitochondria 
led to autophagy damage. And autophagy could reduce 
endogenous apoptosis to inhibit VC. In addition, there 
was a close relationship between mitochondria and 
endoplasmic reticulum (ER). ER, as a calcium bank 
of  VSMCs, takes a great effort in maintaining calcium 
homeostasis and the process of  VC. Endoplasmic 
reticulum stress (ERS) has received much attention 
in the recent years, and mitochondrial oxidative stress 
damage was also one of  the causes of  ERS; thus ERS 
may also participate in the calcification process caused 
by mitochondrial damage.

APPLICATION AND PROSPECT

For now, there was a little clinical study on mitochondrial 
function and VC, but some in vivo experiments in model 
animals have found that some drugs or processes 
might participate and affect the relationship between 
mitochondrial function and VC. In vivo experiments 
in rats have confirmed that resveratrol could improve 
mitochondrial function and reduce oxidative stress damage, 
further alleviating the degree of  VC.[104] In the recent years, 

more attention was focus on exosomes, and studies have 
found that exosome treatment could also participate in the 
regulation of  mitochondrial function to relieve calcification 
of  VSMCs.[105] Meanwhile, in vivo studies found that Atg7-
related autophagy could affect the senescence process 
of  POLG mutation mice.[106] In addition, the autophagy 
process could also maintain the mitochondrial homeostasis 
to regulate calcification process.[107]

With the maturation of  gene-editing technology, there were 
more increasing studies on the root of  diseases, so in the 
future, the regulation of  mtDNA stability or even directly 
affecting POLG might be a potential therapeutic target. 
Therefore, some measures point to mitochondria might 
also be a novel insight into VC. Mitochondria were the most 
common areas where oxidative stress damage occurs, so the 
intervention in this process should be an effective way to 
maintain mitochondrial function stability. Mitochondrial-
targeted catalase (mCAT) could eliminate excess H2O2 
in mitochondria, maintain the integrity of  mitochondrial 
membrane structure, and regulate mitochondrial-derived 
apoptosis. A study demonstrated the mitochondria’s 
function suffered from oxidative stress damage in mice 
overexpressing mCAT was significantly alleviated than 
wild-type mice.[108] In addition, in the POLGD257A/D257A mice, 
which was a mice model of  mitochondrial damage, in vivo 
or in vitro experiments found that mCAT could significantly 

Figure 2: Summary of mitochondrial-damage-induced VC. In total, mitochondria could affect VC in three main ways. Direct damage to mtDNA caused by various of 
factors could damage the structure and function of ETC, such as mtDNA inherited defects or POLG-related Pol γ defects and high-phosphate environment VC such as the 
high-phosphate environment or due to POLG mutations and eventually lead to VC. Second, mitochondria could also directly participate in the process of VC by oxidative 
stress injury. ROS is a core factor for VSMCs calcification caused by activating related signaling pathway or breaking the balance of mitochondrial fusion–fission. Finally, 
mitochondria could indirectly regulate VC process through some biological behavior, such as autophagy/mitophagy and apoptosis; these behaviors could regulate the 
release of EVs or MVs and further participate in the development of VC. ETC, electron transport chain; mtDNA, mitochondrial DNA; Pol γ, DNA polymerase gamma; ROS, 
reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate; Drp1, dynamin-related protein 1; EV, extracellular vesicle; MV, matrix vesicle; Pi, inorganic 
phosphate; ATP, adenosine triphosphate; ADP, adenosine diphosphate; NF-κB, nuclear factor-kappa B; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase-B; Runx2, 
Runt-related transcription factor 2; VSMC, vascular smooth muscle cell; MMP, mitochondrial membrane potential.
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improve the senescence symptoms of  POLGD257A/D257A 
mice and the lifespan of POLGD257A/D257A/mCAT mice was 
longer significantly.[109] Meanwhile, a study indicated that 
mCAT could also delay the senescence of  cerebrovascular.
[110] Therefore, taken the above results together, we believed 
that various methods to improve mitochondria function 
could regulate the process of  VC.

SUMMARY

Most of  the VC was accompanied by mitochondrial 
dysfunction. Various mechanisms could affect the 
development of  VC through the mitochondrial pathway. 
These researches provided a new target for the clinical 
treatment of  VC; it was hoped to reduce VMSCs calcification 
by improving mitochondrial function and further to improve 
the poor outcome of  chronic diseases such as cardiovascular 
and cerebral diseases and chronic kidney disease.
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